Neutrosophic Crisp Probability Theory & Decision Making Process

Abstract
Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. In neutrosophic set, indeterminacy is quantified explicitly and truth-membership, indeterminacy-membership and falsity-membership are independent. So it is natural to adopt for that purpose the value from the selected set with highest degree of truth-membership, indeterminacy membership and least degree of falsity-membership on the decision set. These factors indicate that a decision making process takes place in neutrosophic environment. In this paper, we introduce and study the probability of neutrosophic crisp sets. After given the fundamental definitions and operations, we obtain several properties and discussed the relationship between them. These notions can help researchers and make great use of it in the future in making algorithms to solving problems and manage between these notions to produce a new application or new algorithm of solving decision support problems. Possible applications to mathematical computer sciences are touched upon.

Keywords
Neutrosophic set, neutrosophic probability, neutrosophic crisp sets, intuitionistic neutrosophic set.

1. Introduction
Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts [1, 2, 3, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 42] such as a neutrosophic set theory. The fundamental concepts of neutrosophic set, introduced by Smarandache in [48, 49, 50, 51], and Salama et al. in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], provides a natural foundation for treating mathematically the neutrosophic phenomena which exist pervasively in our real world and for building new branches of neutrosophic mathematics. In this paper is to introduce and study the probability of neutrosophic crisp sets. After given the fundamental definitions and operations, we obtain several properties, and discussed the relationship between neutrosophic crisp sets and others.
2. Terminologies
We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [37, 38, 39, 40], and Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Smarandache introduced the neutrosophic components \(T, I, F \) which represent the membership, indeterminacy, and non-membership values respectively, where \([0,1]\) is nonstandard unit interval.

Example 2.1 [37, 39]
Let us consider a neutrosophic set a collection of possible locations (position) of particle \(x \) and let \(A \) and \(B \) two neutrosophic sets. One can say, by language abuse, that any particle \(x \) neutrosophically belongs to any set, due to the percentages of truth/indeterminacy/falsity involved, which varies between \(-0\) and \(1^+\). For example: \(x(0.5,0.2,0.3) \) belongs to \(A \) (which means, the probability of 50% particle \(x \) is in a poison of \(A \), with a probability of 30% \(x \) is not in \(A \), and the rest is undecidable); or \(y(0,0,1) \) belongs to \(A \) (which normally means \(y \) is not for sure in \(A \)); or \(z(0,1,0) \) belongs to \(A \) (which means one does know absolutely nothing about \(z \) affiliation with \(A \)).

More general, \(x((0.2-0.3),(0.4-0.45)\cup [0.50-0.51],\{0.2,0.24,0.28\}) \) belongs to the set \(A \), which means: With a probability in between 20-30% particle \(x \) is in a position of \(A \) (one cannot find an exact approximate because of various sources used); With a probability of 20% or 24% or 28% \(x \) is not in \(A \); The indeterminacy related to the appurtenance of \(x \) to \(A \) is in between 40-45% or between 50-51% (limits included). The subsets representing the appurtenance, indeterminacy, and falsity may overlap, and \(n-sup = 30%+51%+28% > 100 \) in this case.

Definition 2.1 [14, 15, 21]
A neutrosophic crisp set (NCS for short) \(A = \langle A_1, A_2, A_3 \rangle \) can be identified to an ordered triple \(\langle A_1, A_2, A_3 \rangle \) are subsets on \(X \), and every crisp set in \(X \) is obviously an NCS having the form \(\langle A_1, A_2, A_3 \rangle \).

Definition 2.2 [21]
The object having the form \(A = \langle A_1, A_2, A_3 \rangle \) is called

Neutrosophic Crisp Set with Type I If satisfying \(A_1 \cap A_2 = \phi \), \(A_1 \cap A_3 = \phi \) and \(A_2 \cap A_3 = \phi \). (NCS-Type I for short).

Neutrosophic Crisp Set with Type II If satisfying \(A_1 \cap A_2 = \phi \), \(A_1 \cap A_3 = \phi \) and \(A_2 \cap A_3 = \phi \) and \(A_1 \cup A_2 \cup A_3 = X \). (NCS-Type II for short).

Neutrosophic Crisp Set with Type III If satisfying, \(A_1 \cap A_2 \cap A_3 = \phi \) and \(A_1 \cup A_2 \cup A_3 = X \). (NCS-Type III for short).

Definition 2.3
1) **Neutrosophic Set** [7]: Let \(X \) be a non-empty fixed set. A neutrosophic set (NS for short) \(A \) is an object having the form \(A = \langle \mu_A(x), \sigma_A(x), \nu_A(x) \rangle \) where \(\mu_A(x), \sigma_A(x) \) and \(\nu_A(x) \) which represent the degree of membership function (namely \(\mu_A(x) \)), the degree of indeterminacy
(namely $\sigma_A(x)$), and the degree of non-membership (namely $\nu_A(x)$) respectively of each element $x \in X$ to the set A where $0^- \leq \mu_A(x), \sigma_A(x), \nu_A(x) \leq 1^+$ and $0^- \leq \mu_A(x) + \sigma_A(x) + \nu_A(x) \leq 3^+$.

2) (Neutrosophic Intuitionistic Set of Type 1 [8]): Let X be a non-empty fixed set. A neutrosophic intuitionistic set of type 1 (NIS1 for short) set A is an object having the form $A = (\mu_A(x), \sigma_A(x), \nu_A(x))$ where $\mu_A(x), \sigma_A(x)$ and $\nu_A(x)$ which represent the degree of membership (namely $\mu_A(x)$), the degree of indeterminacy (namely $\sigma_A(x)$), and the degree of non-membership (namely $\nu_A(x)$) respectively of each element $x \in X$ to the set A where $0^- \leq \mu_A(x), \sigma_A(x), \nu_A(x) \leq 1^+$ and the functions satisfy the condition $\mu_A(x) \land \sigma_A(x) \land \nu_A(x) \leq 0.5$ and $0^- \leq \mu_A(x) + \sigma_A(x) + \nu_A(x) \leq 3^+$.

3) (Neutrosophic Intuitionistic Set of Type 2 [41]). Let X be a non-empty fixed set. A neutrosophic intuitionistic set of type 2 (NIS2 for short) is an object having the form $A = (\mu_A(x), \sigma_A(x), \nu_A(x))$ where $\mu_A(x), \sigma_A(x)$ and $\nu_A(x)$ which represent the degree of membership (namely $\mu_A(x)$), the degree of indeterminacy (namely $\sigma_A(x)$), and the degree of non-membership (namely $\nu_A(x)$) respectively of each element $x \in X$ to the set A where $0.5 \leq \mu_A(x), \sigma_A(x), \nu_A(x)$ and the functions satisfy the condition $\mu_A(x) \land \sigma_A(x) \land \nu_A(x) \leq 0.5$, $\mu_A(x) \land \nu_A(x) \leq 0.5$, $\sigma_A(x) \land \nu_A(x) \leq 0.5$, and $0 \leq \mu_A(x) + \sigma_A(x) + \nu_A(x) \leq 2^-$. A neutrosophic crisp with three types the object $A = \langle A_1, A_2, A_3 \rangle$ can be identified to an ordered triple $\langle A_1, A_2, A_3 \rangle$ are subsets on X, and every crisp set in X is obviously a NCS having the form $\langle A_1, A_2, A_3 \rangle$. Every neutrosophic set $A = (\mu_A(x), \sigma_A(x), \nu_A(x))$ on X is obviously on NS having the form $\langle \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$.

Salama et al. in [14, 15, 21] constructed the tools for developed neutrosophic crisp set, and introduced the NCS ϕ_N, X_N in X.

Remark 2.1

i) The neutrosophic intuitionistic set is a neutrosophic set but the neutrosophic set is not in general a neutrosophic intuitionistic set in general.

ii) Neutrosophic crisp sets with three types are neutrosophic crisp set.

3. The Probability of Neutrosophic Crisp Sets

If an experiment produces indeterminacy, that is called a neutrosophic experiment. Collecting all results, including the indeterminacy, we get the neutrosophic sample space (or the neutrosophic probability space) of the experiment. The neutrosophic power set of the neutrosophic sample space is formed by all different collections (that may or may not include the indeterminacy) of possible results. These collections are called neutrosophic events. In classical experimental the probability is $\frac{\text{number of times event } A \text{ occurs}}{\text{total number of trials}}$. Similarly, Smarandache [16, 17, 18] introduced neutrosophic experimental probability as follows:

293
Probability of NCS is a generalization of the classical probability in which the chance that event
\(A = \langle A_1, A_2, A_3 \rangle \) occurs is: \(P(A_1) \) true, \(P(A_2) \) indeterminate, \(P(A_3) \) false, on a sample space \(X \), or \(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle \).

A subspace of the universal set, endowed with a neutrosophic probability defined for each of its subset, forms a probability neutrosophic crisp space.

Definition 3.1

Let \(X \) be a non-empty set and \(A \) be any type of neutrosophic crisp set on a space \(X \), then the probability is a mapping \(NP : X \rightarrow [0,1]^3 \), \(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle \) that is the probability a neutrosophic crisp set has the property that, \(NP(A) = \begin{cases} (p_1,p_2,p_3) & \text{where } p_{1,2,3} \in [0,1] \\ 0 & \text{if } p_1,p_2,p_3 < 0 \end{cases} \).

Remark 3.1

i) In case if \(A = \langle A_1, A_2, A_3 \rangle \) is NCS then \(-0 \leq P(A_1) + P(A_2) + P(A_3) \leq 3^+ \)

ii) In case if \(A = \langle A_1, A_2, A_3 \rangle \) is NCS-Type I then \(0 \leq P(A_1) + P(A_2) + P(A_3) \leq 2^+ \).

iii) The probability of NCS-Type II is a neutrosophic crisp set where \(-0 \leq P(A_1) + P(A_2) + P(A_3) \leq 2^+ \).

iv) The probability of NCS-Type III is a neutrosophic crisp set where \(-0 \leq P(A_1) + P(A_2) + P(A_3) \leq 3^+ \).

Probability Axioms of NCS

Axioms:

1- The probability of neutrosophic crisp set and NCS-Type III \(A \) on \(X \)

\(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle \) where \(P(A_1) \geq 0, P(A_2) \geq 0, P(A_3) \geq 0 \) or

\(NP(A) = \begin{cases} (p_1,p_2,p_3) & \text{where } p_{1,2,3} \in [0,1] \\ 0 & \text{if } p_1,p_2,p_3 < 0 \end{cases} \)

2- The probability of neutrosophic crisp set and NCS-Type III \(A \) on \(X \)

\(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle \) where \(-0 \leq p(A_1) + p(A_2) + p(A_3) \leq 3^+ \).

3- Bonding the probability of neutrosophic crisp set and NCS-Type III

\(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle \) where \(1 \geq P(A_1) \geq 0, P(A_2) \geq 0, P(A_3) \geq 0 \).

4- Addition law for any two neutrosophic crisp sets or NCS-Type III

i) \(NP(A \cup B) = \langle P(A_1) + P(B_1) - P(A_1 \cap B_1), (P(A_2) + P(B_2) - P(A_2 \cap B_2), (P(A_3) + P(B_3) - P(A_3 \cap B_3) \rangle \)
if \(A \cap B = \phi_N \), then \(NP(A \cap B) = NP(\phi_N) \).

\[
NP(A \cup B) \leq NP(A) + NP(B) - NP(\phi_N),
\]

\[
NP(A_1) + NP(B_1) - NP(\phi_{N_1}),
\]

\[
NP(A_2) + NP(B_2) - NP(\phi_{N_2}),
\]

\[
NP(A_3) + NP(B_3) - NP(\phi_{N_3}).
\]

Since our main purpose is to construct the tools for developing probability of neutrosophic crisp sets, we must introduce the following:

1) Probability of neutrosophic crisp empty set with three types (\(NP(\phi_N) \) for short) may be defined as four types:

i) Type 1: \(NP(\phi_N) = \langle P(\phi), P(\phi), P(X) \rangle \leq 0,0,1 \)

ii) Type 2: \(NP(\phi_N) = \langle P(\phi), P(X), P(X) \rangle \leq 0,1,1 \)

iii) Type 3: \(NP(\phi_N) = \langle P(\phi), P(\phi), P(\phi) \rangle \leq 0,0,0 \)

iv) Type 4: \(NP(\phi_N) = \langle P(\phi), P(X), P(\phi) \rangle \leq 0,1,0 \)

2) Probability of neutrosophic crisp universal and NCS-Type III universal sets (\(NP(X_N) \)) may be defined as four types:

i) Type 1: \(NP(X_N) = \langle P(X), P(\phi), P(\phi) \rangle \leq 1,0,0 \)

ii) Type 2: \(NP(X_N) = \langle P(X), P(X), P(\phi) \rangle \leq 1,1,0 \)

iii) Type 3: \(NP(X_N) = \langle P(X), P(X), P(X) \rangle \leq 1,1,1 \)

iv) Type 4: \(NP(X_N) = \langle P(X), P(\phi), P(X) \rangle \leq 1,0,1 \)

Remark 3.1

1) \(NP(X_N) = 1_N, \ NP(\phi_N) = O_N \). Where \(1_N, O_N \) are in Definition 2.1 [6], or equals any type for \(1_N \).

2) The probability of neutrosophic crisp set is a neutrosophic set.

Definition 3.2 (Monotonicity)

Let \(X \) be a non-empty set, and NCSS \(A \) and \(B \) in the form \(A = \{A_1, A_2, A_3\}, B = \{B_1, B_2, B_3\} \) with \(NP(A) = \langle P(A_1), P(A_2), P(A_3) \rangle, NP(B) = \langle P(B_1), P(B_2), P(B_3) \rangle \) then we may consider two possible definitions for subsets (\(A \subseteq B \))

(\(A \subseteq B \)) may be defined as two types:

1) Type1: \(NP(A) \leq NP(B) \Leftrightarrow P(A_1) \leq P(B_1), P(A_2) \leq P(B_2) \) and \(P(A_3) \geq P(B_3) \) or

2) Type2: \(NP(A) \leq NP(B) \Leftrightarrow P(A_1) \leq P(B_1), P(A_2) \geq P(B_2) \) and \(P(A_3) \geq P(B_3) \).
Definition 3.3

Let χ be a non-empty set, and NCSs A and B in the form $A = \langle A_1, A_2, A_3 \rangle$, $B = \langle B_1, B_2, B_3 \rangle$ are NCSs. Then

1. $NP(A \cap B)$ may be defined two types as:

i) Type1: $NP(A \cap B) = \langle P(A_1 \cap B_1), P(A_2 \cap B_2), P(A_3 \cap B_3) \rangle$ or

ii) Type2: $NP(A \cap B) = \langle P(A_1 \cap B_1), P(A_2 \cup B_2), P(A_3 \cup B_3) \rangle$

2. $NP(A \cup B)$ may be defined two types as:

i) Type1: $NP(A \cup B) = \langle P(A_1 \cup B_1), P(A_2 \cap B_2), P(A_3 \cap B_3) \rangle$ or

ii) Type 2: $NP(A \cup B) = \langle P(A_1 \cup B_1), P(A_2 \cup B_2), P(A_3 \cap B_3) \rangle$

3. $NP(A^c)$ may be defined by three types

i) Type1: $NP(A^c) = \langle P(A_1^c), P(A_2^c), P(A_3^c) \rangle = \langle 1-A_1, 1-A_2, 1-A_3 \rangle >$

ii) Type2: $NP(A^c) = \langle P(A_3), P(A_2^c), P(A_1^c) \rangle$

iii) Type3: $NP(A^c) = \langle P(A_3), P(A_2), P(A_1) \rangle$.

Proposition 3.1

Let A and B in the form $A = \langle A_1, A_2, A_3 \rangle$, $B = \langle B_1, B_2, B_3 \rangle$ are NCSs on a non-empty set χ. Then

1) $NP(A)^c + NP(A) = \langle 1, 1, 1 \rangle >$ or Type (iii) of $NP(X_N) = 1_N$ or = any types for 1_N.

2) $NP(A - B) = NP(A - B) = \langle (P(A_1) - P(A_1 \cap B_1), (P(A_2) - P(A_2 \cap B_2), (P(A_3) - P(A_3 \cap B_3)) \rangle$

3) $NP(A/B) = \langle \frac{NP(A_1)}{NP(A_1 \cap B_1)}, \frac{NP(A_2)}{NP(A_2 \cap B_2)}, \frac{NP(A_3)}{NP(A_3 \cap B_3)} \rangle$

Proposition 3.1

Let A and B in the form $A = \langle A_1, A_2, A_3 \rangle$, $B = \langle B_1, B_2, B_3 \rangle$ are NCSs on a non-empty set χ. And p, p_N are NCSs. Then

i) $NP(p) = \langle \frac{1}{n(X)}, \frac{1}{n(X)}, \frac{1}{n(X)} \rangle$

ii) $NP(p_N) = \langle 0, \frac{1}{n(X)}, 1 - \frac{1}{n(X)} \rangle$
Example 3.1

1) Let \(X = \{a, b, c, d\} \) and \(A, B \) are two neutrosophic crisp events on \(X \) defined by
\[
A = \{a, b, c\}, \quad B = \{a, b, c\}, \quad p = \{a\}, \quad \text{then see that}
\]
\[
NP(A) = (0.25, 0.5, 0.5), \quad NP(B) = (0.5, 0.5, 0.25), \quad NP(p) = (0.25, 0.25, 0.25),
\]
one can compute all probabilities from definitions.

2) If \(A = \{\phi, [b, c, \phi]\} \) and \(B = \{\phi, [d, \phi]\} \) are neutrosophic crisp sets on \(X \) then:
\[
A \cap B = \{\phi, [b, c, d, \phi]\}, \quad NP(A \cap B) = (0, 0) = 0_N,
\]
\[
A \cup B = \{\phi, [b, c, d, \phi]\}, \quad NP(A \cup B) = (0, 0.75, 0) \neq 0_N.
\]

Example 3.2

Let \(X = \{a, b, c, d, e, f\}, A = \{a, b, c, d, e\}, D = \{a, b, c, e, f, d\} \) be a NCS-Type II, and
\(B = \{a, b, c, d\} \) be a NCT-Type I but not NCS-Type II, III, \(C = \{a, b, c, d, e, f, a\} \) be a NCS-Type III, but not NCS-Type I, II, \(E = \{a, b, c, d, e\}, \{c, d\}, \{e, f, a\} \) be a
\(F = \{a, b, c, d, e\}, \{\phi, e, f, a, d, c, b\} \)

We can compute the probabilities for NCSs by the following:
\[
NP(A) = \begin{bmatrix} 4/6 & 1/6 & 1/6 \\ 2/6 & 2/6 & 1/6 \end{bmatrix}, \quad NP(D) = \begin{bmatrix} 3/6 & 1/6 & 1/6 \\ 2/6 & 2/6 & 1/6 \end{bmatrix}, \quad NP(B) = \begin{bmatrix} 2/6 & 2/6 & 3/6 \\ 1/6 & 1/6 & 1/6 \end{bmatrix}, \quad NP(C) = \begin{bmatrix} 2/6 & 2/6 & 3/6 \\ 1/6 & 1/6 & 1/6 \end{bmatrix},
\]
\[
NP(E) = \begin{bmatrix} 4/6 & 2/6 & 3/6 \\ 2/6 & 2/6 & 1/6 \end{bmatrix}, \quad NP(F) = \begin{bmatrix} 5/6 & 0 & 6/6 \\ 2/6 & 2/6 & 1/6 \end{bmatrix}.
\]

Remark 3.2

The probabilities of a neutrosophic crisp set are neutrosophic sets.

Example 3.3

Let \(X = \{a, b, c, d\}, A = \{a, b, c\}, \{c\}, \{d, b\} \) are NCS-Type I on \(X \) and
\(B = \{a, b, c\}, \{d, b\} \) are NCS-Type III on \(X \), then we can find the following operations
1) Union, intersection, complement, deference and its probabilities
a) Type 1: \(A \cap B = \{a, c, d, b\}, \quad NP(A \cap B) = (0.25, 0.25, 0.5) \) and Type 2,3:
\[
A \cap B = \{a, c, d, b\}, \quad NP(A \cap B) = (0.25, 0.25, 0.5).
\]
2) \(NP(A - B) \) may be equals

Type 1: \(NP(A - B) = < 0.25, 0, 0 > \), Type 2: \(NP(A - B) = < 0.25, 0, 0 > \), Type 3:
\[
NP(A - B) = < 0.25, 0, 0 >.
\]
b) Type 2: \(A \cup B = \{a, b, c, d\} \), \(N_P(A \cup B) = \langle 0.5, 0.25, 0.25 \rangle \) and Type 2: \(A \cup B = \{a, b, c, d\} \), \(N_P(A \cup B) = \langle 0.5, 0.25, 0.25 \rangle \).

c) Type 1: \(A^c = \langle c, d \rangle \), \(\{a, b, d\}, \{a, b, c\} \rangle \), \(\text{NCS-Type III set on } X, \ N_P(A^c) = \langle 0.5, 0.75, 0.75 \rangle \).

Type 2: \(A^c = \langle d \rangle, \{a, b, d\}, \{a, b\} \rangle \), \(\text{NCS-Type III on } X, \ N_P(A^c) = \langle 0.25, 0.75, 0.5 \rangle \).

Type 3: \(A^c = \langle d \rangle, \{c\}, \{a\} \rangle \), \(\text{NCS-Type III on } X, \ N_P(A^c) = \langle 0.75, 0.75, 0.5 \rangle \).

d) Type 1: \(B^c = \langle \{b, c\}, \{a, b, d\}, \{a, c\} \rangle \) be NCS-Type III on \(X \), \(N_P(B^c) = \langle 0.75, 0.75, 0.5 \rangle \.

Type 2: \(B^c = \langle \{b, d\}, \{c\}, \{a\} \rangle \), \(\text{NCS-Type I on } X, \ N_P(B^c) = \langle 0.5, 0.25, 0.25 \rangle \).

Type 3: \(B^c = \langle \{b, d\}, \{a, b, d\}, \{a\} \rangle \), \(\text{NCS-Type III on } X \) and \(N_P(B^c) = \langle 0.5, 0.75, 0.25 \rangle \).

e) Type 1: \(U_1 \cup U_2 = \langle \{a, b, c\}, \{c, d\}, \{a, d\} \rangle \), \(\text{NCS-Type III, } N_P(U_1 \cup U_2) = \langle 0.75, 0.5, 0.5 \rangle \).

Type 2: \(U_1 \cup U_2 = \langle \{a, b, c\}, \{c\}, \{a, d\} \rangle, \ N_P(U_1 \cup U_2) = \langle 0.75, 0.25, 0.5 \rangle \).

f) Type 1: \(U_1 \cap U_2 = \langle \{a, b\}, \{c, d\}, \{a, d\} \rangle \), \(\text{NCS-Type III, } N_P(U_1 \cap U_2) = \langle 0.5, 0.5, 0.5 \rangle \).

Type 2: \(U_1 \cap U_2 = \langle \{a, b\}, \{c\}, \{a, d\} \rangle, \ N_P(U_1 \cap U_2) = \langle 0.5, 0.25, 0.5 \rangle \).

g) Type 1: \(U_1^c = \langle \{c, d\}, \{a, b\}, \{c, b\} \rangle \), \(\text{NCS-Type III and } N_P(U_1^c) = \langle 0.5, 0.5, 0.5 \rangle \).

Type 2: \(U_1^c = \langle \{a, d\}, \{c, d\}, \{a, b\} \rangle, \ N_P(U_1^c) = \langle 0.5, 0.5, 0.5 \rangle \).

Type 3: \(U_1^c = \langle \{a, d\}, \{a, b\}, \{a, b\} \rangle, \ N_P(U_1^c) = \langle 0.5, 0.5, 0.5 \rangle \).

h) Type 1: \(U_2^c = \langle \{d\}, \{a, b, d\}, \{a, b, c\} \rangle \), \(\text{NCS-Type III and } N_P(U_2^c) = \langle 0.25, 0.75, 0.75 \rangle \).

Type 2: \(U_2^c = \langle \{d\}, \{c\}, \{a, b, c\} \rangle \), \(\text{NCS-Type III and } N_P(U_2^c) = \langle 0.25, 0.25, 0.75 \rangle \).

Type 3: \(U_2^c = \langle \{d\}, \{a, b, d\}, \{a, b, c\} \rangle \), \(\text{NCS-Type III, } N_P(U_2^c) = \langle 0.25, 0.75, 0.75 \rangle \).

2) Probabilities for events: \(N_P(A) = \langle 0.5, 0.25, 0.25 \rangle, \ N_P(B) = \langle 0.25, 0.25, 0.5 \rangle, \ N_P(U_1) = \langle 0.5, 0.5, 0.5 \rangle, \ N_P(U_2) = \langle 0.75, 0.25, 0.25 \rangle \).

\(N_P(U_1^c) = \langle 0.5, 0.5, 0.5 \rangle, \ N_P(U_2^c) = \langle 0.25, 0.75, 0.75 \rangle \).

\((A \cap B)^c = \langle \{b, c, d\}, \{a, b, d\}, \{a, c\} \rangle, \ \text{be a NCS-Type III. } N_P(A \cap B)^c = \langle 0.75, 0.75, 0.25 \rangle \) be a neutrosophic set.

f) \(N_P(A)^c \land N_P(B)^c = \langle 0.5, 0.75, 0.75 \rangle, \ N_P(A)^c \lor N_P(B)^c = \langle 0.75, 0.75, 0.5 \rangle \)

g) \(N_P(A \lor B) = N_P(A) + N_P(B) - N_P(A \cap B) = \langle 0.5, 0.25, 0.25 \rangle \)
s) \(NP(A) = \langle 0.5,0.25,0.25 \rangle, \ NP(A^c) = \langle 0.5,0.75,0.75 \rangle, \ NP(B) = \langle 0.25,0.25,0.5 \rangle, \ NP(B^c) = \langle 0.75,0.75,0.5 \rangle \)

Probabilities for Products

1) The product of two events given by
\[
A \times B = \{ \{(a,a),(b,a),(c,c),(d,d),(d,b)\} \}, \text{ and } \ NP(A \times B) = \langle \frac{3}{16}, \frac{3}{16}, \frac{3}{16} \rangle
\]

\[
B \times A = \{ \{(a,a),(a,b),(c,c),(d,d),(b,d)\} \}, \text{ and } \ NP(B \times A) = \langle \frac{3}{16}, \frac{3}{16}, \frac{3}{16} \rangle
\]

\[
A \times U_1 = \{ \{(a,a),(b,a),(a,b),(b,b),(c,c),(c,c),(d,d),(d,a)\} \}, \text{ and } \ NP(A \times U_1) = \langle \frac{3}{16}, \frac{3}{16}, \frac{3}{16} \rangle
\]

\[
U_1 \times U_2 = \{ \{(a,a),(b,a),(a,b),(b,b),(a,c),(b,c),(c,c),(d,c),(d,d),(a,d)\} \}, \text{ and } \ NP(U_1 \times U_2) = \langle \frac{3}{16}, \frac{3}{16}, \frac{3}{16} \rangle
\]

Remark 3.3

The following diagram represents the relation between neutrosophic crisp concepts and neutrosophic sets

Probability of Neutrosophic Crisp Sets

\[
\downarrow
\]

Generalized Neutrosophic Set \(\leftrightarrow \) Intuitionistic Neutrosophic Set

\[
\downarrow
\]

Neutrosophic Set

References

300
35. I. M. Hanafy and A.A. Salama, "A unified framework including types of fuzzy compactness" Conference Topology and Analysis in Applications Durban, 12-16 July, 2004. School of Mathematical Sciences, UKZN.
39. A.A. Salama, Fuzzy Bitopological Spaces Via Fuzzy Ideals, Blast 2008, August 6-10, (2008), University of Denver, Denver, CO, USA.
42. A.A. Salama and S.A. Alblowi, Neutrosophic set theory and neutrosophic topological ideal spaces The First International Conference on Mathematics and Statistics (ICMS’10) to be held at the American University.
44. A. A. Salama and Smarandache, Neutrosophic crisp set theory, 2015 USA Book , Educational. Education Publishing 1313 Chesapeake, Avenue, Columbus, Ohio 43212,