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Abstract

This paper introduces the novel concept of KM -single valued neutro-
sophic metric spaces as an especial generalization of KM -fuzzy metric spaces,
investigates several topological and structural properties and presents some
of its applications. This study also considers the metric spaces and constructs
KM -single valued neutrosophic spaces with respect to any given triangular
norms and triangular conorms. Moreover, we try to extend the concept
of KM -single valued neutrosophic metric spaces to a larger class of KM -
single valued neutrosophic metric spaces such as union of KM -single valued
neutrosophic metric spaces and product of KM -single valued neutrosophic
metric spaces.

Keywords:KM -single valued neutrosophic metric, left-continuous triangular
(co)norm, Cauchy sequence

2010 Mathematics Subject Classification: 31C12, 26E50.

How to cite this article
M. Hamidi, M. Mollaei-Arani and Y. Alipour-Fakhri, Toplogical and
geometric KM -single valued neutrosophic metric spaces, Math. Interdisc.
Res. x (202x) xx-yy.

1. Introduction

Classical set theory is a pure concept and without quality or criteria, so it is not
attractive to use in our world, that’s why we use the neutrosophic sets theory as one
of a generalizations of set theory in order to deal with uncertainties, which is a key
action in the contemporary world introduced by Smarandache for the first time in
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1998 and 2005 [11]. This concept is a new mathematical tool for handling problems
involving imprecise, indeterminacy, and inconsistent data. This theory describes
an important role in modeling and controlling unsure hypersystems in nature,
society and industry. In addition, fuzzy topological spaces as a generalization of
topological spaces, have a fundamental role in construction of fuzzy metric spaces
as an extension of the concept of metric spaces. The theory of fuzzy metric spaces
works on finding the distance between two points as non-negative fuzzy numbers,
which have various applications. The structure of fuzzy metric spaces is equipped
with mathematical tools such as triangular norms and fuzzy subsets depending on
time parameter and on other variables. This theory has been proposed by different
researchers with different definitions from several points of views ([1, 2, 3, 7]), and
that this study was applied to the notion of KM-fuzzy metric space introduced in
1975 [2] by Kramosil and Michalek. Further materials regarding the single valued
neutrosophic metric sets and their applications in, graphs, hypergraphs and neutro
algebras are available in the literature too [4, 5, 6].

Regarding these points, we introduce the concept of KM -single valued neutro-
sophic metric spaces as an application of neutrosophic sets. Although we apply
three fuzzy subsets in our definition but it has limited their sum of three fuzzy
subsets in to a fuzzy subset. Also we proved that KM -single valued neutrosophic
metric spaces have both non-increasing fuzzy subsets and non-decreasing fuzzy
subsets. It has tried to construct a larger class of KM -single valued neutrosophic
metric spaces with respect to union and product operations. Metric spaces have
an important role in generating the KM -single valued neutrosophic metric spaces
via any triangular norms and triangular conorms; therefore, we analyzed the rela-
tion between the class of metric spaces and KM -single valued neutrosophic metric
spaces. Moreover, we presented the ball subsets in KM -single valued neutro-
sophic metric spaces and proved that ball subsets are open subsets. Furthermore,
the present study aimed to generate some topologies on the base set of KM -
single valued neutrosophic metric spaces with respect to open balls and it is one
of the main motivations of introducing the KM -single valued neutrosophic metric
spaces. The KM -single valued neutrosophic metric spaces are not necessarily infi-
nite spaces. Thus, another important motivation of this study is the construction of
finite KM -single valued neutrosophic metric spaces. This study also presented an
induced equivalence in relation to KM -single valued neutrosophic metric spaces
such that a quotient of given KM -single valued neutrosophic metric space is a
KM -single valued neutrosophic metric space. This study generated some metrics
on any nonempty sets using the concept of KM -single valued neutrosophic metric
spaces and extended KM -single valued neutrosophic metric spaces to a family of
metric spaces with left-continuous metrics. For the significance of the applicabil-
ity of this argument, we presented an example of application of KM -single valued
neutrosophic metric space on economic and it encouraged us to develop this study.
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2. Preliminaries

This section presented some definitions and results which are used in following
sections.

Definition 2.1. [11] Let V be a universal set. A neutrosophic set (NS) X in V
is an object has the following form X = {(x, TX(x), IX(x), FX(x)) | x ∈ V }, or
X : V → [0, 1]×[0, 1]×[0, 1] which is characterized by a truth-membership function
TX , an indeterminacy-membership function IX and a falsity-membership function
FX . There is no restriction on the sum of TX(x), IX(x) and FX(x), therefore
0− ≤ supTX(x) + sup IX(x) + supFX(x) ≤ 3+.

Definition 2.2. [10] A binary operation T : [0, 1]× [0, 1] → [0, 1] is a t-norm if it
for all x, y, z, w ∈ [0, 1] satisfies the following:

(i) T (1, x) = x;

(ii) T (x, y) = T (y, x);

(iii) T (T (x, y), z) = T (x, T (y, z));

(iii) If w ≤ x and y ≤ z then T (w, y) ≤ T (x, z).

Definition 2.3. [8] A triplet (X, ρ, T ) is called a KM -fuzzy metric space, if X is
an arbitrary non–empty set, T is a left-continuous t-norm and ρ : X2×R≥0 → [0, 1]
is a fuzzy set, such that for each x, y, z,∈ X and t, s ≥ 0, we have:

(i) ρ(x, y, 0) = 0,

(ii) ρ(x, x, t) = 1 for all t > 0,

(iii) ρ(x, y, t) = ρ(y, x, t)(commutative property),

(iv) T (ρ(x, y, t), ρ(y, z, s)) ≤ ρ(x, z, t+ s)(triangular inequality),

(vi) ρ(x, y,−) : R≥0 → [0, 1] is a left-continuous map,

(vii) ρ(x, y, t) → 1, when t→ ∞.

(viii) ρ(x, y, t) = 1, ∀ t > 0 implies that x = y.

If (X, ρ, T ) is satisfied in conditions (i)–(vii), then it is called a KM -fuzzy
pseudometric space and ρ is called a KM -fuzzy pseudometric.
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3. KM-Single Valued Neutrosophic Metric Space
In this section, we introduce the concept of KM -single valued neutrosophic metric
spaces and investigate their properties. In addition, we generate KM -single valued
neutrosophic metric spaces with respect to metric spaces.

Definition 3.1. A triplet (X, ρ1, ρ2, ρ3, T, S) is called a KM -single valued neu-
trosophic metric space, if X is an arbitrary nonempty set, T is a left-continuous
t-norm, S is a left-continuous t-conorm, and ρ1, ρ2, ρ3 : X2 × R≥0 → [0, 1] are
fuzzy subsets, such that for each x, y, z,∈ X and t, s ≥ 0, we have:

(i) ρ1(x, y, 0) = 0 and for all i ∈ {2, 3}, ρi(x, y, 0) = 1,

(ii) ρ1(x, x, t) = 1 and for all i ∈ {2, 3}, ρi(x, x, t) = 0, where t > 0,

(iii) for all i ∈ {1, 2, 3}, ρi(x, y, t) = ρi(y, x, t)(commutative property),

(iv) T (ρ1(x, y, t), ρ1(y, z, s)) ≤ ρ1(x, z, t+ s) and for all i ∈ {2, 3}, S(ρi(x, y, t),
ρi(y, z, s)) ≥ ρi(x, z, t+ s) (triangular inequality),

(vi) for all i ∈ {1, 2, 3}, ρi(x, y,−) : R≥0 → [0, 1] are left-continuous maps,

(vii) lim
t→∞

ρ1((x, y, t)) = 1 and for all i ∈ {2, 3}, lim
t→∞

ρi((x, y, t)) = 0,

(viii) for all t ∈ R+ and for all x, y ∈ X, we have 0 ≤
3∑

i=1

ρi(x, y, t) ≤ 1,

(ix) ∀ t > 0, ρ1(x, y, t) = 1 implies that x = y and for all i ∈ {2, 3}, ∀ t >
0, ρi(x, y, t) = 0 implies that x = y.

If (X, ρ1, ρ2, ρ3, T, S) satisfies in conditions (i)–(viii), then it is called a KM -
single valued neutrosophic pseudometric space and triple (ρ1, ρ2, ρ3) is called a
KM -single valued neutrosophic pseudometric.

The following proposition shows that KM -single valued neutrosophic metrics
are different from KM -fuzzy metrics.

Proposition 3.2. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic
metric space. Then for all x, y ∈ X and t ∈ R+

(i) ρ1(x, y, t) + ρ2(x, y, t) + ρ3(x, y, t) ̸= 0;

(ii) ρ2(x, y, t) + ρ3(x, y, t) ̸= 1;

(iii) if ρ2(x, y, t) = ρ3(x, y, t), then ρ2(x, y, t) <
1
2 , where t > 0;

(iv) ρ1(x, y, t) = 1, if and only if ρ2(x, y, t) + ρ3(x, y, t) = 0.

Proof. It is immediate by definition.
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From now on, for all x, y ∈ [0, 1] we consider Tmin(x, y) = min{x, y}, Tpr(x, y) =

xy, Tlu(x, y) = max(0, x+ y − 1), Tdo(x, y) =


xy

x+ y − xy
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)
,

CT = {T : [0, 1] × [0, 1] → [0, 1] | T is a left-continuous t-norm}, Smax(x, y) =
max{x, y}, Spr(x, y) = x + y − xy, Slu(x, y) = min(1, x + y) and CS = {S :
[0, 1]× [0, 1] → [0, 1] | S is a left-continuous t-conorm}.

In what follows, we investigate some properties of the KM -single valued neu-
trosophic metric spaces.

Definition 3.3. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic met-
ric space,let (xn)n be a sequence in X and x ∈ X. We say that

(i) (xn)n converges to x, if for all t ∈ R+ we have lim
n→∞

ρ1(xn, x, t) = 1 and

lim
n→∞

ρ2(xn, x, t) = lim
n→∞

ρ3(xn, x, t) = 0. It means that for all t ∈ R+ and
for all 0 < ϵ < 1, there exists N ∈ N, such that for all n ≥ N , 1 − ϵ <
ρ1(xn, x, t), ρ2(xn, x, t) < ϵ and ρ3(xn, x, t) < ϵ.

(ii) (xn)n is a Cauchy sequence if and only if for each t ∈ R+ and p > 0
lim

n→∞
ρ1(xn, xn+p, t) = 1 and lim

n→∞
ρ2(xn, xn+p, t) = lim

n→∞
ρ3(xn, xn+p, t) = 0

In [3], George and Veeramani proved that every GV -fuzzy metric is a non-
decreasing map. In a similar way we have the following Theorem on theKM -single
valued neutrosophic metric spaces.

Theorem 3.4. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space. Then ρ1(x, y,−) : R≥0 → [0, 1] is a non-decreasing map and for all i ∈
{2, 3}, ρi(x, y,−) : R≥0 → [0, 1] are non-increasing maps.

Proof. Let 0 ≤ t < s. If t = 0, then for all t > 0, ρ2(x, y, 0) = 1 ≥ ρ2(x, y, s). But
for all t ̸= s if ρ2(x, y, t) < ρ2(x, y, s), then S(ρ2(x, y, t), ρ2(y, y, s−t)) ≥ ρ2(x, y, s).
By definition, ρ2(y, y, s−t) = 0, and thus obtain that ρ2(x, y, t) ≥ ρ2(x, y, s), which
is a contradiction and it implies that ρ2(x, y,−) : R≥0 → [0, 1] is a non-increasing
map. In a similar way, ρ3(x, y,−) : R≥0 → [0, 1] is a non-increasing map and
ρ1(x, y,−) : R≥0 → [0, 1] is a non-decreasing map.

In [12], Rodrguez-Lopez and Romaguera, proved that every GV -fuzzy met-
ric is a continuous map. In a similar way, one can see that KM -single valued
neutrosophic metrics are left-continuous maps.

Theorem 3.5. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space. Then for all i ∈ {1, 2, 3}, ρi’s are left-continuous maps on X2 × R≥0.

Proof. Let x, y ∈ X, t ∈ R+ and (x′n, y
′
n, t

′
n)n be a sequence in X2 × R≥0 that

lim
n→∞

(x′n, y
′
n, t

′
n) = (x, y, t). Suppose that t/2 > ϵ > 0 be arbitrary. Since

(ρ1(x
′
n, y

′
n, t

′
n))n is a sequence in [0, 1], there is a subsequence (xn, yn, tn)n of
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(x′n, y
′
n, t

′
n)n such that ρ2((xn, yn, tn)) converges to some points of [0, 1]. Now,

lim
n→∞

tn = t implies that there is N ∈ N such that for all n ≥ N we have
t − ϵ < tn. Hence, for all n ≥ N we have ρ2(xn, yn, tn) ≤ ρ2(xn, yn, t − ϵ) ≤
S(ρ2(xn, x, ϵ/2), ρ2(x, y, t−2ϵ), ρ2(y, yn, ϵ/2)) and ρ2(x, y, t+2ϵ) ≤ ρ2(x, y, tn+ϵ) ≤
S(ρ2(xn, x, ϵ/2), ρ2(xn, yn, tn), ρ2(y, yn, ϵ/2)). Thus lim

n→∞
ρ2(xn, yn, tn) ≤ S(0, ρ2(x,

y, t − 2ϵ), 0) = ρ2(x, y, t − 2ϵ), so by left-continuity of the function ρ2 on R≥0,
get that lim

ϵ→0
( lim
n→∞

ρ2(xn, yn, tn)) ≤ lim
ϵ→0

(ρ2(x, y, t − 2ϵ)) = ρ2(x, y, t). In addi-
tion, ρ2(x, y, t + 2ϵ) ≥ S(0, lim

n→∞
ρ2(xn, yn, tn), 0) = lim

n→∞
ρ2(xn, yn, tn). Thus

ρ2(x, y, t + 2ϵ) ≤ lim
n→∞

ρ2(xn, yn, tn) and by left-continuity of the function ρ2 on

R≥0, get that lim
ϵ→0

( lim
n→∞

ρ2(xn, yn, tn)) ≥ lim
ϵ→0

(ρ2(x, y, t + 2ϵ)) = ρ2(x, y, t). It fol-

lows that ρ2 is a left-continuous map on X2 × R≥0. In a similar way one can see
that ρ1 and ρ3 are left-continuous maps on X2 × R≥0.

Let x1, x2, . . . , xn ∈ [0, 1]. Then for all T ∈ CT and S ∈ CS , we have T (x1, x2,
x3) = T (T (x1, x2), x3) and T (x1, x2, . . . , xn−1, xn) = T (T (x1, x2, . . . , xn−1), xn).
In a similar way S(x1, x2, x3) = S(S(x1, x2), x3) and S(x1, x2, . . . , xn−1, xn)
= S(S(x1, x2, . . . , xn−1), xn).

Lemma 3.6. Let x1, x2, . . . , xn ∈ [0, 1], T ∈ CT and S ∈ CS. Then

(i) if 0 ∈ {x1, x2, . . . , xn}, then T (x1, x2, . . . , xn−1, xn) = 0;

(ii) if 1 ∈ {x1, x2, . . . , xn}, then S(x1, x2, . . . , xn−1, xn) = 1;

(iii) Smax(x1, x2, . . . , xn−1, xn) ≤ S(x1, x2, . . . , xn−1, xn);

(iv) T (x1, x2, . . . , xn−1, xn) ≤ Tmin(x1, x2, . . . , xn−1, xn);

(v) T (x1, x2, . . . , xn−1, xn) = 1 if and only if x1 = x2 = . . . = xn−1 = xn = 1;

(vi) S(x1, x2, . . . , xn−1, xn) = 0 if and only if x1 = x2 = . . . = xn−1 = xn = 0;

(vii) for all p ∈ R+, Smax(
x1

p ,
x2

p , . . . ,
xn−1

p , xn

p ) = 1
pSmax(x1, x2, . . . , xn−1, xn)

and Tmin(
x1

p ,
x2

p , . . . ,
xn−1

p , xn

p ) = 1
pTmin(x1, x2, . . . , xn−1, xn).

Theorem 3.7. If (X, ρ1, ρ2, ρ3, Tmin, Smax) is a KM -fuzzy metric space, T ∈ CT
and S ∈ CS. Then (X, ρ1, ρ2, ρ3, T, S) is a KM -single valued neutrosophic metric
space.

Proof. It is clear.

In the following, we generate the KM -single valued neutrosophic metric spaces
with respect to the metric spaces.
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For all x, y ∈ X and for all 0 > p, p′,m, (p, p′ ≥ 3m), t, s ∈ R≥0, define

ρ1(x, y, t) =

0 t = 0
φ(t)

φ(t) +md(x, y)
t ̸= 0

, ρ2(x, y, t) =


md(x, y)

p(md(x, y) + φ(t))
if t > 0

1 if t = 0
and

ρ3(x, y, t) =


md(x, y)

p′(md(x, y) + φ(t))
if t > 0

1 if t = 0
, where φ : R≥0 → R≥0 is increasing the

left-continuous map and φ(t) +md(x, y) ̸= 0 and φ(t+ s) ≥ φ(t) + φ(s).

Theorem 3.8. Let (X, d) be a metric space. If p′, p > 2, then (X, ρ1, ρ2, ρ3, Tmin,
Smax) is a KM -single valued neutrosophic metric space.

Proof. If p, p′ > 2, then for all x, y ∈ X, t ∈ R+, we have 0 ≤
3∑

i=1

ρi(x, y, t) ≤ 1.

Now, we only prove the triangular inequality property. Let x, y, z ∈ X. For
0 ∈ {t, s} is clear, now for 0 ̸∈ {t, s} we investigate it. Without loss of generality,

if
φ(t)

p(φ(t) +md(x, y))
≤ φ(s)

p(φ(s) +md(z, y))
, we get that φ(t)d(z, y) ≤ φ(s)d(x, y).

Since for all s, t,m ∈ R+, φ(t + s) ≥ φ(t) + φ(s), we get that φ(t)d(x, z) ≤ φ(t +
s)d(x, y) and so

Tmin(
φ(t)

p(φ(t) +md(x, y))
,

φ(s)

p(φ(s) +md(y, z))
) ≤ φ(t+ s)

p(φ(t+ s) +md(x, z))
.

In a similar way, one can see that Smax(
md(x, y)

p(md(x, y) + φ(t))
,

md(z, y)

p(md(z, y) + φ(s))
) ≥

md(x, z)

p(md(x, z) + φ(t+ s))
, where i ∈ {2, 3}. It follows that Tmin(ρ(x, y, t), ρ1(y, z, s))

≤ ρ1(x, z, t+s), Smax(ρi(x, y, t), ρ(y, z, s)) ≥ ρ(x, z, t+s) and so (X, ρ1, ρ2, ρ3, Tmin,
Smax) is a KM -single valued neutrosophic metric space.

By Lemma 3.6 and Theorem 3.8, one can construct a KM -single valued neu-
trosophic metric space with any triangular norms and triangular conorms on any
given metric space as follows.

Corollary 3.9. Let (X, d) be a metric space. Then there exist fuzzy subsets
ρ1, ρ2, ρ3 on X2 × R≥0 such that for each T ∈ CT and S ∈ CS , (X, ρ1, ρ2, ρ3, T, S)
is a KM -single valued neutrosophic metric space.

Example 3.10. Consider X = N and the metric space (X, d), where d(x, y) =
|x− y|.

Define for all x, y ∈ X, ρ1(x, y, t) =


38t

(38t + 7d(x, y))
if t > 0

0 if t = 0

, ρ2(x, y, t) =
7d(x, y)

21(7d(x, y) + 38t)
if t > 0

1 if t = 0
, and ρ3(x, y, t) =


7d(x, y)

37(7d(x, y) + 38t)
if t > 0

1 if t = 0
.
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Then (X, ρ1, ρ2, ρ3, T, S) is a KM -single valued neutrosophic metric space, where
T ∈ CT and S ∈ CS .

3.1. Operations on KM-Single Valued Neutrosophic Metric
Spaces

In this subsection, we extend KM -single valued neutrosophic metric spaces to
union of KM -single valued neutrosophic metric spaces and product of KM -single
valued neutrosophic metric spaces. Let (X, ρ1, ρ2, ρ3, T, S) and (Y, ρ′1, ρ

′
2, ρ

′
3, T, S)

be KM -single valued neutrosophic metric spaces, (x1, y1), (x2, y2) ∈ X × Y and
t ∈ R≥0. For an arbitrary T ∈ CT and S ∈ CS define T (ρ1, ρ′1), S(ρ2, ρ′2), S(ρ3, ρ′3) :
(X×Y )2×R≥0 → [0, 1] by T (ρ1, ρ′1)

(
(x1, y1), (x2, y2), t

)
= T (ρ1(x1, x2, t), ρ

′
1(y1, y2,

t)
)
, S(ρ2, ρ

′
2)
(
(x1, y1), (x2, y2), t

)
= S(ρ2(x1, x2, t), ρ

′
2(y1, y2, t)

)
and

S(ρ3, ρ
′
3)
(
(x1, y1), (x2, y2), t

)
= S(ρ3(x1, x2, t), ρ

′
3(y1, y2, t)

)
.

So we have the following theorem.

Theorem 3.1. Let (X, ρ1, ρ2, ρ3, T, S) and (Y, ρ′1, ρ
′
2, ρ

′
3, T, S) be KM -single val-

ued neutrosophic metric spaces. Then (X×Y, Tmin(ρ1, ρ
′
1), Smax(ρ2, ρ

′
2), Smax(ρ3,

ρ′3), T, S) is a KM -single valued neutrosophic metric space.

Proof. Let (x1, y1), (x2, y2), (x3, y3) ∈ X × Y and t, s ∈ R≥0.
(i) Since for all x1, x2 ∈ X, y1, y2 ∈ Y, ρ1(x1, x2, 0) = 0 and ρ2(x1, x2, 0) =

ρ3(x1, x2, 0) = ρ′2(y1, y2, 0) = ρ′3(y1, y2, 0) = 1, we have Tmin(ρ1, ρ
′
1)
(
(x1, y1), (x2, y2

), 0
)
= 0, Smax(ρ2, ρ

′
2)
(
(x1, y1), (x2, y2), 0

)
= 1 and Smax(ρ3, ρ

′
3)
(
(x1, y1), (x2, y2), 0

)
= 1.

(ii) Tmin(ρ1, ρ
′
1)
(
(x1, y1), (x2, y2), t

)
= 1 if and only if ρ1(x1, x2, t) = ρ′1(y1, y2, t)

= 1 if and only if (x1, y1) = (x2, y2). In addition, Smax(ρ2, ρ
′
2)
(
(x1, y1), (x2, y2), t

)
=

0 if and only if ρ2(x1, x2, t) = ρ′2(y1, y2, t) = 0 if and only if (x1, y1) = (x2, y2). In a
similar way, Smax(ρ3, ρ

′
3)
(
(x1, y1), (x2, y2), t

)
= 0 if and only if (x1, y1) = (x2, y2).

(iii) It is clear that Tmin(ρ1, ρ
′
1), Smax(ρ2, ρ

′
2) and Smax(ρ3, ρ

′
3) are commuta-

tive maps.
(iv) By Lemma 3.6,

T
(
Tmin(ρ1, ρ

′
1)((x1, y1), (x2, y2), t), Tmin(ρ1, ρ

′
1)((x2, y2), (x3, y3), s)

)
= T

(
Tmin(ρ1(x1, x2, t), ρ

′
1(y1, y2, t)), Tmin(ρ1(x2, x3, s), ρ

′
1(y2, y3, s))

)
≤ Tmin(T

(
ρ1(x1, x2, t), ρ1(x2, x3, s)

)
, T

(
ρ′1(y1, y2, t), ρ

′
1(y2, y3, s)

)
))

≤ Tmin(ρ1(x1, x3, t+ s), ρ′1(y1, y3, t+ s))

= Tmin(ρ1, ρ
′
1)((x1, y1), (x3, y3), t+ s).
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Also,

S
(
Smax(ρ2, ρ

′
2)((x1, y1), (x2, y2), t), Smax(ρ2, ρ

′
2)((x2, y2), (x3, y3), s)

)
= S

(
Smax(ρ2(x1, x2, t), ρ

′
2(y1, y2, t)), Smax(ρ2(x2, x3, s), ρ

′
2(y2, y3, s))

)
≥ Smax(S

(
ρ2(x1, x2, t), ρ2(x2, x3, s)

)
, S

(
ρ′2(y1, y2, t), ρ

′
2(y2, y3, s)

)
))

≥ Smax(ρ2(x1, x3, t+ s), ρ′2(y1, y3, t+ s))

= Smax(ρ2, ρ
′
2)((x1, y1), (x3, y3), t+ s).

In a similar way, one can see that

S
(
Smax(ρ3, ρ

′
3)((x1, y1), (x2, y2), t), Smax(ρ3, ρ

′
3)((x2, y2), (x3, y3), s)

)
≥ Smax(ρ3, ρ

′
3)((x1, y1), (x3, y3), t+ s).

(v) Since ρ1, ρ2, ρ3, ρ′1, ρ′2, ρ′3 are left-continuous maps, we get that
Tmin(ρ1, ρ

′
1), Smax(ρ2, ρ

′
2), Smax(ρ3, ρ

′
3) are left-continuous map.

(vi) Since Tmin and Smax are left-continuous maps, we get that

lim
t→∞

Tmin(ρ1(x1, x2, t), ρ
′
1(y1, y2, t))

= Tmin( lim
t→∞

ρ1(x1, x2, t), lim
t→∞

ρ′1(y1, y2, t)) = Tmin(1, 1) = 1.

In a similar way,

lim
t→∞

Smax(ρ2(x1, x2, t), ρ
′
2(y1, y2, t)) = 1,

and

lim
t→∞

Smax(ρ3(x1, x2, t), ρ
′
3(y1, y2, t)) = 1.

The other cases, clearly obtained, so

(X × Y, Tmin(ρ1, ρ
′
1), Smax(ρ2, ρ

′
2), Smax(ρ3, ρ

′
3), T, S)

is a KM -single valued neutrosophic metric space.

Let X ∩ Y = ∅, (X, ρ1, ρ2, ρ3, T, S) and (Y, ρ′1, ρ
′
2, ρ

′
3, T, S) be KM -single val-

ued neutrosophic metric spaces, x, y ∈ X ∪ Y and t ∈ R≥0. Consider ϵ(x, y, t) =∧
x,u∈X
y,v∈Y

(ρ′1(x, u, t)∧ρ′1(y, v, t))), σ(x, y, t) =
∨

x,u∈X
y,v∈Y

(ρ2(x, u, t)∨ρ′2(y, v, t))) and δ(x, y, t)

=
∨

x,u∈X
y,v∈Y

(ρ3(x, u, t)∨ρ′3(y, v, t))). Define ρ1∪ρ′1, ρ2∪ρ′2, ρ3∪ρ′3 : (X∪Y )2×R≥0 →
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[0, 1] by

(ρ1 ∪ ρ′1)(x, y, t) =


ρ1(x, y, t) if x, y ∈ X,

ρ′1(x, y, t) if x, y ∈ Y,

ϵ(x, y, t) if x ∈ X, y ∈ Y,

,

(ρ2 ∪ ρ′2)(x, y, t) =


ρ2(x, y, t) if x, y ∈ X,

ρ′2(x, y, t) if x, y ∈ Y,

σ(x, y, t) if x ∈ X, y ∈ Y,

and (ρ3 ∪ ρ′3)(x, y, t) =


ρ3(x, y, t) if x, y ∈ X,

ρ′3(x, y, t) if x, y ∈ Y,

δ(x, y, t) if x ∈ X, y ∈ Y,

. So we have the following

theorem.

Theorem 3.2. Let (X, ρ1, ρ2, ρ3, T, S) and (Y, ρ′1, ρ
′
2, ρ

′
3, T, S) be KM -single val-

ued neutrosophic metric spaces. Then (X ∪ Y, ρ1 ∪ ρ′1, ρ2 ∪ ρ′2, ρ3 ∪ ρ′3, T, S) is a
KM -single valued neutrosophic metric space, where X ∩ Y = ∅.

Proof. Let x, y, z ∈ X ∪Y and t, s ∈ R≥0. We only prove the triangular inequality
property and other cases are immediate. Let x, y ∈ X(for x, y ∈ Y is similar),
then T

(
(ρ1 ∪ ρ′1)(x, y, t), (ρ1 ∪ ρ′1)(y, z, s)

)
= T

(
ρ1(x, y, t), (ρ1 ∪ ρ′1)(y, z, s)

)
. If

z ∈ X, then T
(
(ρ1 ∪ ρ′1)(x, y, t), (ρ1 ∪ ρ′1)(y, z, s)

)
= T

(
ρ1(x, y, t), ρ1(y, z, s)

)
≤

ρ1(x, z, t + s) = (ρ1 ∪ ρ′1)(x, z, t + s). If z ∈ Y , then T
(
(ρ1 ∪ ρ′1)(x, y, t), (ρ1 ∪

ρ′1)(y, z, s)
)
= T

(
ρ1(x, y, t), ϵ

)
≤ ϵ = (ρ1 ∪ ρ′1)(x, z, t+ s). Let x ∈ X, y ∈ Y . Then

T
(
(ρ1∪ρ′1)(x, y, t), (ρ1∪ρ′1)(y, z, s)

)
= T

(
ϵ, (ρ1∪ρ′1)(y, z, s)

)
. If z ∈ Y , since x ∈ X

and y ∈ Y , we get that (ρ1 ∪ ρ′1)(x, z, t + s) = ϵ and so T
(
ϵ, (ρ1 ∪ ρ′1)(y, z, s)

)
=

T
(
ϵ, ρ2(y, z, s)

)
≤ ϵ = (ρ1 ∪ ρ′1)(x, z, t + s). If z ∈ X, since x ∈ X and y ∈ Y , we

get that (ρ1 ∪ ρ′1)(x, z, t + s) ̸= ϵ and so T
(
ϵ, (ρ1 ∪ ρ′1)(y, z, s)

)
= T

(
ϵ, ϵ

)
≤ ϵ ≤

ρ1(x, z, t+ s)
)
= (ρ1 ∪ ρ′1)(x, z, t+ s).

Suppose that x, y ∈ X(for x, y ∈ Y is similar), then S
(
(ρ2 ∪ ρ′2)(x, y, t), (ρ2 ∪

ρ′2)(y, z, s)
)
= S

(
ρ2(x, y, t), (ρ2∪ρ′2)(y, z, s)

)
. If z ∈ X, then S

(
(ρ2∪ρ′2)(x, y, t), (ρ2∪

ρ′2)(y, z, s)
)
= S

(
ρ2(x, y, t), ρ2(y, z, s)

)
≥ ρ2(x, z, t + s) = (ρ2 ∪ ρ′2)(x, z, t + s).

If z ∈ Y , then S
(
(ρ2 ∪ ρ′2)(x, y, t), (ρ2 ∪ ρ′2)(y, z, s)

)
= S

(
ρ2(x, y, t), σ

)
≥ σ =

(ρ2∪ρ′2)(x, z, t+s). Let x ∈ X, y ∈ Y . Then S
(
(ρ2∪ρ′2)(x, y, t), (ρ2∪ρ′2)(y, z, s)

)
=

S
(
σ, (ρ2 ∪ ρ′2)(y, z, s)

)
. If z ∈ Y , since x ∈ X and y ∈ Y , we get that (ρ2 ∪

ρ′2)(x, z, t + s) = σ and so S
(
σ, (ρ2 ∪ ρ′2)(y, z, s)

)
= S

(
σ, ρ2(y, z, s)

)
≥ σ = (ρ2 ∪

ρ′2)(x, z, t+s). If z ∈ X, since x ∈ X and y ∈ Y , we get that (ρ2∪ρ′2)(x, z, t+s) ̸= σ
and so S

(
σ, (ρ2∪ρ′2)(y, z, s)

)
= S

(
σ, σ

)
≥ σ ≥ ρ2(x, z, t+s)

)
= (ρ2∪ρ′2)(x, z, t+s).

In common a way, we can prove that for all x, y ∈ X ∪Y , S
(
(ρ3∪ρ′3)(x, y, t), (ρ3∪

ρ′3)(y, z, s)
)
≥ (ρ3 ∪ ρ′3)(x, z, t + s). (X ∪ Y, ρ1 ∪ ρ′1, ρ2 ∪ ρ′2, ρ3 ∪ ρ′3, T, S) is a

KM -single valued neutrosophic metric space, where X ∩ Y = ∅.
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4. Induced Topology from KM-Single Valued Neu-
trosophic Metric Space

In this section, in KM -single valued neutrosophic metric space (X, ρ1, ρ2, ρ3, T, S),
we introduce the subsets as balls and show that they are open subsets. Also we
prove that every KM -single valued neutrosophic metrics ρ1, ρ2, ρ3 on X which has
as a base the family of open sets of the form O = {O(x, ϵ, t) | x ∈ X, 0 < ϵ < 1, t ∈
R+}.

Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric space, t ∈
R≥0, x ∈ X and 0 < ϵ < 1. Define Oρ1(x, ϵ, t) = {y ∈ X | ρ1(x, y, t) > 1 −
ϵ}, Oρ2(x, ϵ, t) = {y ∈ X | ρ2(x, y, t) < ϵ}, Oρ3(x, ϵ, t) = {y ∈ X | ρ3(x, y, t) < ϵ}
and O(x, ϵ, t) = {y ∈ X | ρ1(x, y, t) > 1− ϵ, ρ2(x, y, ϵ) < ϵ, ρ3(x, y, t) < ϵ} as a ball
with center x, radius ϵ, and at the time t. Clearly Oρ1(x, ϵ, 0) = Oρ2(x, ϵ, 0) =
Oρ3(x, ϵ, 0) = O(x, ϵ, 0) = ∅.

Theorem 4.1. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space, t, t1, t2 ∈ R≥0, x, y ∈ X and 0 < ϵ, ϵ1, ϵ2 < 1. Then

(i) if t1 < t2, then Oρ1(x, ϵ, t1) ⊆ Oρ1(x, ϵ, t2);

(ii) if ϵ1 < ϵ2, then Oρ1(x, ϵ1, t) ⊆ Oρ1(x, ϵ2, t);

(iii) if ϵ1 < ϵ2 and t1 < t2, then Oρ1(x, ϵ1, t1) ⊆ Oρ1(x, ϵ2, t2);

(iv) for all t ∈ R+, {x} ⊆ Oρ1(x, ϵ, t) ̸= ∅;

(v) if X is finite, t ∈ R+ and ϵt = (1− δ)−
∨

x,y∈X

ρ1(x, y, t), then Oρ1(x, ϵt, t) =

{x}, where 0 < δ < 1;

(vi) if X is finite and t ∈ R+, there exists ϵmin such that Oρ1(x, ϵmin, t) = X.

Proof. (i) Let y ∈ Oρ1(x, ϵ, t1). Then ρ1(x, y, t1) > 1−ϵ, so by Theorem 3.4, t1 < t2
implies that ρ1(x, y, t2) > ρ1(x, y, t1) > 1− ϵ. Thus Oρ1(x, ϵ, t1) ⊆ Oρ1(x, ϵ, t2).

(ii) Let y ∈ Oρ1(x, ϵ1, t). Then ρ1(x, y, t) > 1 − ϵ1, so ϵ1 < ϵ2 implies that
ρ1(x, y, t) > 1− ϵ1 > 1− ϵ2. Thus Oρ1(x, ϵ, t1) ⊆ Oρ1(x, ϵ, t2).

(iii), (iv) It is clear.
(v) Let y ∈ Oρ1

(x, ϵt, t). Since ρ1(x, y, t) ≤
∨

x,y∈X

ρ1(x, y, t), if ρ1(x, y, t) >

1− ϵt, we get that ρ1(x, y, t) = 1 and so x = y.

(vi) Consider ϵmin = 1 + δ −
∧

x,y∈X

ρ1(x, y, t), where
∧

x,y∈X

ρ1(x, y, t) − δ > 0.

Since for all y ∈ X, ρ1(x, y, t) > ϵmin, we get that X ⊆ Oρ1(x, ϵmin, t).

In a similar way to Theorem 4.1, we have the following Theorem.
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Theorem 4.2. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space, t, t1, t2 ∈ R≥0, x ∈ X and 0 < ϵ, ϵ1, ϵ2 < 1. Then for all i ∈ {2, 3}

(i) if t1 < t2, then Oρi(x, ϵ, t1) ⊆ Oρi(x, ϵ, t2);

(ii) if ϵ1 < ϵ2, then Oρi(x, ϵ1, t) ⊆ Oρi(x, ϵ2, t);

(iii) if ϵ1 < ϵ2 and t1 < t2, then Oρi(x, ϵ1, t1) ⊆ Oρi(x, ϵ2, t2);

(iv) for all t ∈ R+, {x} ⊆ Oρi(x, ϵ, t) ̸= ∅;

(v) if X is finite, t ∈ R+ and ϵ′t = −δ+
∧

x,y∈X

ρ2(x, y, t), then Oρi(x, ϵ
′
t, t) = {x},

where 0 < δ < 1;

(vi) if X is finite, t ∈ R+ and ϵ′max = δ+
∨

x ̸=y∈X

ρ2(x, y, t), then Oρi(x, ϵ
′
max, t) =

X, where 0 < δ < 1.

Corollary 4.3. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic met-
ric space, t, t1, t2 ∈ R≥0, x ∈ X and 0 < ϵ, ϵ1, ϵ2 < 1. Then

(i) if t1 < t2, then O(x, ϵ, t1) ⊆ O(x, ϵ, t2);

(ii) if ϵ1 < ϵ2, then O(x, ϵ1, t) ⊆ O(x, ϵ2, t);

(iii) if ϵ1 < ϵ2 and t1 < t2, then O(x, ϵ1, t1) ⊆ O(x, ϵ2, t2);

(iv) for all t ∈ R+, {x} ⊆ O(x, ϵ, t) ̸= ∅;

(v) if X is finite and t ∈ R+, then O(x, ϵt, t) = O(x, ϵ′t, t) = {x};

(vi) if X is finite and t ∈ R+, then O(x, ϵmin, t) = O(x, ϵ′max, t) = X.

Theorem 4.4. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space, t ∈ R≥0, x, y ∈ X and 0 < r < 1. Then

(i) x ∈ O(y, ϵ, t) if and only if y ∈ O(x, ϵ, t);

(ii) if O(x, ϵ, t) ∩ O(y, ϵ, t) ̸= ∅ then for all 2 ≤ k ∈ N we have O(x, ϵ, kt) ∩
O(y, ϵ, kt) ̸= ∅;

Proof. It is obvious, by definition.

In [3], George and Veeramani proved that in any metric space (X, d) (Remark
2.8) the open ball Oρ1 is an open set. In the following theorem we show that the
open ball O is an open set.

Theorem 4.5. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space, t ∈ R≥0, x ∈ X and 0 < r < 1. Then for all i ∈ {2, 3}
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(i) O(x, ϵ, t) = Oρ1(x, ϵ, t) ∩Oρ2(x, ϵ, t) ∩Oρ3(x, ϵ, t);

(ii) Oρi(x, ϵ, t) is an open set;

(iii) O(x, ϵ, t) is an open set.

Proof. (i) It is obvious.
(ii) Let y ∈ Oρi(x, ϵ, t). Then there exists t > t0 ∈ R+ and ϵ′ such that

ρi(x, y, t0) < ϵ and S(ϵ′, ϵ) < ϵ. Consider B = Oρi(y, ϵ
′, t − t0). For all z ∈

Oρi(y, ϵ
′, t − t0), we have ϵ > S(ϵ, ϵ′) ≥ S(ρi(x, y, t0), ρi(y, z, t − t0)) ≥ ρi(x, z, t).

It follows that y ∈ B ⊆ Oρi(x, ϵ, t) and so Oρi(x, ϵ, t) is an open set.
(iii) It is immediate by (i), (ii)

Theorem 4.6. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric
space, t ∈ R≥0, x ∈ X and 0 < r < 1. Then for all i ∈ {1, 2, 3}

(i) if X is a finite set and τ = {O(x, ϵ, 0), O(x, ϵmax, t) | x ∈ X, 0 < ϵ < 1, t ∈
R+}, then (X, τ) is a topological space;

(ii) O = {Oρ2(x, ϵ, t) | x ∈ X, 0 < ϵ < 1, t ∈ R+} forms a base of a topology τρ2

in X;

(iii) O = {Oρ3(x, ϵ, t) | x ∈ X, 0 < ϵ < 1, t ∈ R+} forms a base of a topology τρ3

in X;

(iv) O = {Oρ1(x, ϵ, t) | x ∈ X, 0 < ϵ < 1, t ∈ R+} forms a base of a topology τρ1

in X.

Proof. (i) It is obvious.
(ii), (iii) Let x ∈ X and i ∈ {2, 3}. Then by Theorem 4.2, for all 0 < ϵ <

1, t ∈ R+, x ∈ Oρi(x, ϵ, t) and so X ⊆
∪
ϵ,t

Oρi(x, ϵ, t). Let for x, y, z ∈ X, 0 <

ϵ, ϵ′ < 1, t, t′ ∈ R+, we have z ∈ Oρi(x, ϵ, t) ∩ Oρi(y, ϵ
′, t′). Then ρ2(x, z, t) <

ϵ, ρ2(y, z, t
′) < ϵ′, ρ3(x, z, t) < ϵ and ρ3(y, z, t

′) < ϵ′. Thus there exists t0 ∈ R+

such that t0 < t, t0 < t′, which ρi(x, z, t0) < ϵ and ρi(y, z, t0) < ϵ′. Now consider
0 < ϵ′′ < 1, t′′ ∈ R+ such that Tmin(ϵ, ϵ

′) > ϵ′′ and t′′ < Tmin{t − t0, t
′ − t0}.

If m ∈ Oρi
(z, ϵ′′, t′′), then ρi(m, y, t

′) ≤ S(ρi(m, z, t
′′), ρi(z, y, t0)) < S(ϵ′′, ϵ′) < ϵ′

and so m ∈ Oρi(y, ϵ
′, t′). Analogously, one can see that Oρi(z, ϵ

′′, t′′) ⊆ Oρi(x, ϵ, t).
(iv) Let x ∈ X. Then by Theorem 4.1, for all 0 < ϵ < 1, t ∈ R+, x ∈ Oρ1(x, ϵ, t)

and so X ⊆
∪
ϵ,t

Oρ1(x, ϵ, t). Let for x, y, z ∈ X, 0 < ϵ, ϵ′ < 1, t, t′ ∈ R+, we have

z ∈ Oρ1(x, ϵ, t) ∩ Oρ1(y, ϵ
′, t′). Then ρ1(x, z, t) > 1 − ϵ and ρ1(y, z, t

′) > 1 − ϵ′.
Thus there exists t0 ∈ R+ such that t0 < t, t0 < t′, which ρ1(x, z, t0) > 1 − ϵ and
ρ1(y, z, t0) > 1 − ϵ′. Now consider 0 < ϵ′′ < 1, t′′ ∈ R+ such that Tmin(ϵ, ϵ

′) >
ϵ′′ and t′′ < Tmin{t − t0, t

′ − t0}. If m ∈ Oρ1(z, ϵ
′′, t′′), then ρ1(m, y, t

′) ≥
T (ρ1(m, z, t

′′), ρ1(z, y, t0)) > T (1 − ϵ′′, 1 − ϵ′) > 1 − ϵ′ and so m ∈ Oρ1(y, ϵ
′, t′).

Analogously, one can see that Oρ1(z, ϵ
′′, t′′) ⊆ Oρ1(x, ϵ, t).
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Corollary 4.7. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic met-
ric space, t ∈ R≥0, x ∈ X and 0 < r < 1. Then O = {O(x, ϵ, t) | x ∈ X, 0 < ϵ <
1, t ∈ R+} forms a base of a topology τρ1,ρ2,ρ3 in X.

5. KM-Single Valued Neutrosophic Metric Spaces
and Metric Spaces

In this section, we present the connection between KM -single valued neutrosophic
metric spaces and metric spaces with respect to induced equivalence relation based
on unite interval values.

Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic metric space and
α, β, γ ∈ [0, 1]. For every time t, on X2, define ρ

(α,t)
1 = {(x, y) | ρ1(x, y, t) ≥

α}, ρ(β,t)2 = {(x, y) | ρ2(x, y, t) ≤ β} and ρ
(γ,t)
3 = {(x, y) | ρ3(x, y, t) ≤ γ} as

α-part, β-part and γ-part.

Theorem 5.1. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space and α, β, γ ∈ [0, 1]. Then

(i) if t = 0, then ρ(α,t)1 = ρ
(β,t)
2 = ρ

(γ,t)
3 = X2 if and only if α = 0 and β = γ = 1;

(ii) if α = β = γ = 0, then ρ
(α,t)
1 = X2, ρ

(β,t)
2 = ρ

(γ,t)
3 = △;

(iii) if α = β = γ = 1, then ρ
(α,t)
1 = △, ρ(β,t)2 = ρ

(γ,t)
3 = X2;

(iv) ρ
(α,t)
1 , ρ

(β,t)
2 and ρ(γ,t)3 are reflexive and symmetric relations on X(t > 0);

(v) ρ(α,β,γ,t) = ρ
(α,t)
1 ∩ ρ

(β,t)
2 ∩ ρ

(γ,t)
3 is a reflexive and symmetric relation on

X(t > 0).

Proof. (i) Let t = 0 and α, β, γ ∈ [0, 1]. Then ρ
(α,t)
1 = {(x, y) | ρ1(x, y, 0) ≥

α} = {(x, y) | 0 ≥ α}. Hence ρ(α,t)1 = X2 if and only if α = 0. In a similar way,
ρ
(β,t)
2 = ρ

(γ,t)
3 = X2 if and only if β = γ = 1.

(ii), (iii) Obviously are proved.
(iv) Let α, β, γ ∈ [0, 1], x, y, z ∈ X and t, s ∈ R≥0. Since ρ1(x, x, t) = 1 ≥

α, ρ2(x, x, t) = 0 ≤ β and ρ3(x, x, t) = 0 ≤ γ, we get that ρ(α,t)1 , ρ
(β,t)
2 , ρ

(γ,t)
3 are

reflexive relations. Clearly ρ(α,t)1 , ρ
(β,t)
2 , ρ

(γ,t)
3 are symmetric relations.

(v) It is similar to item (iv).

In the following Example, we describe some applications of KM -single valued
neutrosophic metric space. We discuss applications of KM -single valued neu-
trosophic metric space for studying the competition along with algorithms. The
KM -single valued neutrosophic metric space has many utilizations in different
areas, where we connect KM -single valued neutrosophic metric space to other
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sciences such as economics, computer sciences and other engineering sciences. We
present an example of application of KM -single valued neutrosophic metric space
in optimization in economic.

Example 5.2. (Decision in Economic) Let X = {x1, x2, x3, x4} be a set of
all factories of a town and by Table 1 be metrics. We want to combine the
performances of these factories in a one year course (t = 1) to decide on how
they work together. In Table 2, we is extracted a list of energy consumption
of factories by ρ1, a list of the profits of production of factories by ρ2 and a
list of losses of producing of factories by ρ3. For Example, if energy consump-
tion of factories x1, x2 is equal to 60/100, it is denoted by ρ1(x1, x2, 1) = 0.6, if
losses of producing are equal to 30/100, it is denoted by ρ1(x1, x2, 1) = 0.3 and
if profits of producing are equal to 20/100, it is denoted by ρ1(x1, x2, 1) = 0.2.
Clearly (X, ρ1, ρ2, ρ3, Tpr, Smax) is a KM -single valued neutrosophic metric space.
So consider a control for energy consumption, profits of producing and losses
of producing with factory cooperation by α-part, β-part and γ-part. For α =

0.3, β = 0.2, γ = 0.12, t = 1, we obtain ρ
(α,t)
1 = X2 \ {(x1, x4), (x4, x1)}, ρ(β,t)2 =

△∪ {(x1, x2), (x2, x1), (x2, x3), (x3, x2), (x3, x4), (x4, x3)} = ρ
(γ,t)
3 .

Table 1: Metric space (X, d)
d x1 x2 x3 x4
x1 0 1 2 3
x2 1 0 1 2
x3 2 1 0 1
x4 3 2 1 0

Table 2: Fuzzy metric subsets ρ1, ρ2, ρ3 on X2 × R≥0.
ρ1 x1 x2 x3 x4
x1 1 1

2
1
3

1
4

x2
1
2 1 1

2
1
3

x3
1
3

1
2 1 1

2
x4

1
4

1
3

1
2 1

,

ρ2 x1 x2 x3 x4
x1 0 1

6
2
9

1
4

x2
1
6 0 1

6
2
9

x3
1
9

1
6 0 1

6
x4

1
4

2
9

1
6 0

and

ρ3 x1 x2 x3 x4
x1 0 1

10
2
15

3
20

x2
1
10 0 1

10
2
15

x3
2
15

1
10 0 1

10
x4

3
20

2
15

1
10 0

Clearly ρ(α,t)1 , ρ
(β,t)
2 and ρ(γ,t)3 are not transitive relations and so ρ(α,β,γ,t) is not a

transitive relation.
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Let ρ(α,t,∗)1 , ρ
(β,t,∗))
2 , ρ(γ,t,∗))3 and ρ(α,β,γ,t,∗) be the transitive closure of ρ(α,t)1 ,

ρ
(β,t))
2 , ρ(γ,t))3 and ρ(α,β,γ,t), respectively (the smallest transitive relation in such

a way that contains ρ(α,t)1 , ρ
(β,t))
2 , ρ(γ,t))3 and ρ(α,β,γ,t), respectively). Then in

the following theorem we show that ρ(α,t,∗)1 , ρ
(β,t,∗))
2 , ρ(γ,t,∗))3 and ρ(α,β,γ,t,∗) are

regular relations. Define X/ρ(α,β,γ,t,∗) = {ρ(α,β,γ,t,∗)(x, y, t) | x, y ∈ X)} as set of
all equivalence class of X on ρ(α,β,γ,t,∗).

Theorem 5.3. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space and α, β, γ ∈ [0, 1]. Then

(i) if t = 0, then ρ
(α,t,∗)
1 = ρ

(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2 and ρ(γ,t,∗)3 = ρ

(γ,t)
3 ;

(ii) if α = β = γ = 0, then ρ
(α,t,∗)
1 = ρ

(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2 and ρ(γ,t,∗)3 = ρ

(γ,t)
3 ;

(iii) if α = β = γ = 1, then ρ
(α,t,∗)
1 = ρ

(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2 and ρ(γ,t,∗)3 = ρ

(γ,t)
3 .

Proof. (i) Let α, β, γ ∈ [0, 1] and x, y ∈ X. If t = 0, then ρ(α,t)1 ∈ {∅, X2}, ρ(β,t)2 ∈
{∅, X2} and ρ

(γ,t)
3 ∈ {∅, X2}. Thus in any case, ρ(α,t,∗)1 = ρ

(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2

and ρ(γ,t,∗)3 = ρ
(γ,t)
3 .

(ii) Let α = β = γ = 0. Then by Theorem 5.1, ρ(α,t)1 = X2, ρ
(β,t)
2 = ρ

(γ,t)
3 = △

and so ρ(α,t,∗)1 = ρ
(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2 and ρ(γ,t,∗)3 = ρ

(γ,t)
3 .

(iii) It is similar to item (ii).

Theorem 5.4. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space and α, β, γ ∈ [0, 1]. Then for all t ∈ R≥0 and n ∈ N,

(i) ρ
(α,t)
1 ⊆ ρ

(α,nt)
1 and for all k ≥ n, ρ

(α,nt)
1 ⊆ ρ

(α,kt)
1 ;

(ii) ρ
(β,t)
2 ⊆ ρ

(β,nt)
2 and for all k ≥ n, ρ

(β,nt)
2 ⊆ ρ

(β,kt)
2 ;

(iii) ρ
(γ,t)
3 ⊆ ρ

(γ,nt)
3 and for all k ≥ n, ρ

(γ,nt)
3 ⊆ ρ

(γ,kt)
3 .

Proof. (i) Let x, y ∈ X, t ∈ R≥0 and n ∈ N. If (x, y) ∈ ρ
(α,t)
1 , then simple induction

concludes that α ≤ Tmin(ρ1(x, y, t), ρ1(y, y, t), . . . , ρ1(y, y, t)︸ ︷︷ ︸
(n−1)-times

) ≤ ρ1(x, y, nt), so

ρ
(α,t)
1 ⊆ ρ

(α,nt)
1 and for all k ≥ n, ρ

(α,nt)
1 ⊆ ρ

(α,kt)
1 .

(ii, iii) Let x, y ∈ X, t ∈ R≥0 and n ∈ N. Since nt > t, by Theorem 3.4, we get
that ρ2(x, y, t) ≥ ρ2(x, y, nt), ρ3(x, y, t) ≥ ρ3(y, y, nt) and it concludes that ρ(β,t)2 ⊆
ρ
(β,nt)
2 , ρ(γ,t)3 ⊆ ρ

(γ,nt)
3 and for all k ≥ n, ρ

(β,nt)
2 ⊆ ρ

(β,kt)
2 and ρ(γ,nt)3 ⊆ ρ

(γ,kt)
3 .

Theorem 5.5. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space and α, β, γ ∈ (0, 1). Then, for all t > 0, there exists the smallest
n ∈ N, such that
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(i) ρ
(α,t,∗)
1 =

n∪
k=1

ρ
(α,kt)
1 , where for all k ≥ n, we have ρ(α,kt)1 = ρ

(α,nt)
1 ;

(ii) ρ
(β,t,∗)
2 =

n∪
k=1

ρ
(β,kt)
2 , where for all k ≥ n, we have ρ(β,kt)2 = ρ

(β,nt)
1 ;

(iii) ρ
(γ,t,∗)
3 =

n∪
k=1

ρ
(γ,kt)
3 , where for all k ≥ n, we have ρ(γ,kt)3 = ρ

(γ,nt)
3 .

Proof. Let n ∈ N, α, β, γ ∈ (0, 1) and x, y ∈ X.
(i) By Theorem 5.4, ρ1(x, y, t) ≤ ρ1(x, y, nt). Since lim

t→∞
ρ1(x, y, t) = 1, we get

that lim
t→∞

ρ1(x, y, nt) = 1. Thus there exists N ∈ N such that for all t > ⌊N/n⌋,
we have 1− α < ρ1(x, y, t). Hence Aα = {m ∈ N | ρ1(x, y,m) ≥ α} ≠ ∅ and using
well-ordering principle, there exists the smallest n ∈ N such that ρ1(x, y, nt) ≥ α.

By Theorem 5.4, for all k ≥ n, ρ
(α,nt)
1 ⊆ ρ

(α,kt)
1 . In addition, since n is the smallest

which ρ1(x, y,m) ≥ α, we get that ρ(α,kt)1 ⊆ ρ
(α,nt)
1 and so for all k ≥ n, ρ

(α,nt)
1 =

ρ
(α,kt)
1 . Now, if (x, y), (y, z) ∈ ρ

(α,t,∗)
1 , then, there exists k, k′ ∈ N in such a

way that (x, y) ∈ ρ
(α,kt)
1 and (x, y) ∈ ρ

(α,k′t)
1 . Theorem 5.4, implies that α ≤

Tmin(ρ1(x, y, t), ρ1(y, z, t)) ≤ Tmin(ρ1(x, y, kt), ρ1(y, z, kt)) ≤ ρ1(x, y, (k + k′)t).

Thus (x, z) ∈ ρ
(α,(k+k′)t)
1 ⊆

n∪
k=1

ρ
(α,kt)
1 = ρ

(α,t,∗)
1 and so ρ

(α,t,∗)
1 is a transitive

relation. Suppose that R be a transitive relation such that ρ(α,t)1 ⊆ R, by induction
we show that ρ(α,t,∗)1 ⊆ R. It is clear for n = 1. Assume that it is satisfied

for n,if means that
n∪

k=1

ρ
(α,kt)
1 ⊆ R. If (x, y) ∈

n+1∪
k=1

ρ
(α,kt)
1 , since

n+1∪
k=1

ρ
(α,kt)
1 =

n∪
k=1

ρ
(α,kt)
1 ∪ ρ(α,t)1 , by assumption of induction we get that (x, y) ∈

n∪
k=1

ρ
(α,kt)
1 ⊆ R

or (x, y) ∈ ρ
(α,t)
1 ⊆ R. It follows that ρ(α,t,∗)1 ⊆ R and so it is transitive closure

of ρ(α,t)1 .
In a similar way, one can see that (ii), (iii) are proved.

Corollary 5.6. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space and α, β, γ ∈ (0, 1). Then, for all t > 0, there exists the

smallest n ∈ N, such that ρ(α,β,γ,t,∗) =
n∪

k=1

ρ(α,β,γ,nt), where for all k ≥ n, we have

ρ(α,β,γ,kt) = ρ(α,β,γ,nt).

Theorem 5.7. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space. Then there exists α, β, γ ∈ [0, 1] such that for all t ≥ 0, ρ(α,β,γ,t,∗) =
ρ(α,β,γ,t).
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Proof. Let x, y ∈ X. Then consider α =
∧

x,y∈X

ρ1(x, y, t), β =
∨

x,y∈X

ρ1(x, y, t)

and γ =
∨

x,y∈X

ρ1(x, y, t). Since for all x, y ∈ X, ρ1(x, y, t) ≥ α, ρ2(x, y, t) ≤ β

and ρ2(x, y, t) ≤ γ, for all t ≥ 0 we ge that ρ(α,t,∗)1 = ρ
(α,t)
1 , ρ

(β,t,∗)
2 = ρ

(β,t)
2 and

ρ
(γ,t,∗)
3 = ρ

(γ,t)
3 . It concludes that there exists α, β, γ ∈ [0, 1] such that for all t ≥ 0,

ρ(α,β,γ,t,∗) = ρ(α,β,γ,t).

Example 5.8. Consider theKM -single valued neutrosophic metric space (X, ρ1, ρ2
, ρ3, T, S) in Example 5.2. For α = 0.3, β = 0.2, γ = 0.12, by Corollary 5.6,
we obtain n = 2(we must consider the performances of these factories in two
years course (t = 2)) and get fuzzy subsets ρ1, ρ2, ρ3 in Table 3. Thus ρ(α,2t)1 =

Table 3: Fuzzy metric subsets ρ1, ρ2, ρ3 on X2 × R≥0.
ρ1 x1 x2 x3 x4
x1 1 1

3
1
4

1
5

x2
1
3 1 1

3
1
4

x3
1
4

1
3 1 1

3
x4

1
5

1
4

1
3 1

,

ρ2 x1 x2 x3 x4
x1 0 1

9
1
6

1
5

x2
1
9 0 1

9
1
6

x3
1
6

1
9 0 1

9
x4

1
5

1
6

1
9 0

and

ρ3 x1 x2 x3 x4
x1 0 1

15
1
10

3
25

x2
1
15 0 1

15
1
10

x3
1
10

1
15 0 1

15
x4

3
25

1
10

1
15 0

△ ∪ {(x1, x2)}, ρ(β,2t)2 = ρ
(γ,2t)
3 = X2 and so ρ(α,β,γ,2t) = △ ∪ {(x1, x2)} is a

transitive relation.

From now on, for allKM -single valued neutrosophic metric space (X, ρ1, ρ2, ρ3,
T, S), we consider A,B ∈ P ∗(X) are finite subsets.

Definition 5.9. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic met-
ric space, A,B ∈ P ∗(X), t ∈ R+, x, y ∈ X. Define

(i) ρ1(x,B, t) =
∨
y∈B

ρ1(x, y, t), ρ2(x,B, t) =
∧
y∈B

ρ2(x, y, t) and ρ3(x,B, t) =∧
y∈B

ρ3(x, y, t).

(ii) ρ1(A, y, t) =
∨
x∈A

ρ1(x, y, t), ρ2(A, y, t) =
∧
x∈A

ρ2(x, y, t) and ρ3(A, y, t) =∧
x∈A

ρ3(x, y, t).
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(iii) ρ1(A,B, t) = (
∧
x∈A

∨
y∈B

ρ1(x, y, t)) ∧ (
∧
y∈B

∨
x∈A

ρ1(x, y, t)),

(iv) ρ2(A,B, t) = (
∨
x∈A

∧
y∈B

ρ2(x, y, t)) ∨ (
∨
y∈B

∧
x∈A

ρ2(x, y, t)),

(v) ρ3(A,B, t) = (
∨
x∈A

∧
y∈B

ρ3(x, y, t)) ∨ (
∨
y∈B

∧
x∈A

ρ3(x, y, t)).

In [12], Rodrguez-Lopez and Romaguera, proved that in every GV -fuzzy metric
space (X, ρ1, T ), the set of nonempty compact subsets (K∗(X)) of (X; τX) con-
struct a fuzzy metric space as Hausdorf fuzzy metric. In a similar way we have
the following Theorem.

Corollary 5.10. Let (X, ρ1, ρ2, ρ3, T, S) be a KM -single valued neutrosophic met-
ric space, A,B,C ∈ K∗(X), t ∈ R+. Then (K∗(X), ρ1, ρ2, ρ3, T, S) is a KM -single
valued neutrosophic metric space.

Theorem 5.11. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space and α, β, γ ∈ [0, 1]. Then, (X/ρ(α,β,γ,t,∗), ρ1, ρ2, ρ3, T, S) is a
KM -single valued neutrosophic metric space.

Proof. The proof is obtained by Corollary 5.10.

Definition 5.12. Let (X, ρ1, ρ2, ρ3, T, S) and (X ′, ρ′1, ρ
′
2, ρ

′
3, T

′, S′) be KM -single
valued neutrosophic metric spaces. A bijection φ : X → X ′ is called an isomor-
phism if for all x, y ∈ X and for all i ∈ {1, 2, 3}, ρi(x, y, t) = ρ′i(φ(x), φ(y), t) and
denoted it by (X, ρ1, ρ2, ρ3, T, S) ∼= (X ′, ρ′1, ρ

′
2, ρ

′
3, T

′, S′).

Corollary 5.13. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space and α, β, γ ∈ [0, 1]. Then

(i) if t = 0, then (X/ρ(α,β,γ,t,∗), ρ1, ρ2, ρ3, T, S) ∼= (X, ρ1, ρ2, ρ3, T, S);

(ii) if α = β = γ = 0, then (X/ρ(α,β,γ,t,∗), ρ1, ρ2, ρ3, T, S) ∼= (X, ρ1, ρ2, ρ3, T, S);

(iii) if α = β = γ = 1, then (X/ρ(α,β,γ,t,∗), ρ1, ρ2, ρ3, T, S) ∼= (X, ρ1, ρ2, ρ3, T, S).

Definition 5.14. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space and α, β, γ ∈ [0, 1]. For all x, y ∈ X, define

d(α,t,∗)(x, y) =

{
0 if x = y

|x/ρ(α,t,∗)1 |+ |y/ρ(α,t,∗)1 | if x ̸= y
,

d(β,t,∗)(x, y) =

{
0 if x = y

|x/ρ(β,t,∗)2 |+ |y/ρ(β,t,∗)2 | if x ̸= y
,

d(γ,t,∗)(x, y) =

{
0 if x = y

|x/ρ(γ,t,∗)3 |+ |y/ρ(γ,t,∗)3 | if x ̸= y
,
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and d(α,β,γ,t,∗)(x, y) =

{
0 if x = y

|x/ρ(α,β,γ,t,∗)|+ |y/ρ(α,β,γ,t,∗)| if x ̸= y
.

Theorem 5.15. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space and 0 ≤ α, β, γ ≤ 1. Then

(i) (X, d(α,t,∗)), (X, d(β,t,∗)), (X, d(γ,t,∗)) and (X, d(α,β,γ,t,∗)) are metric spaces.

(ii) d(α,β,γ,t,∗) = (d(α,t,∗)) ∧ (d(β,t,∗)) ∧ (d(γ,t,∗)).

Proof. It is clear that.

Let A = {(X, ρ1, ρ2, ρ3, T, S) | ρ1, ρ2, ρ3 are fuzzy subsets on X2 × R≥0} and
B = {(X, d) | d is a metric }. Define φ : A → B, by φ((X, ρ1, ρ2, ρ3, T, S)) =
(X, d(α,β,γ,t,∗)) based Theorem 5.15 and ψ : B → A by φ((X, d)) = (X, ρ1, ρ2, ρ3, T,
S) based Corollary 3.9.

Corollary 5.16. Let α, β, γ ∈ [0, 1]. Then For sets A and B, we have a diagram
in Figure 1.

..A.
•
. B.

•
.

φ
..

ψ

.

.

Figure 1: Diagram between KM -single valued neutrosophic metric space and met-
ric space.

5.1. Extended (KM-Single Valued Neutrosophic) Metric
In this subsection, we obtain continuous metrics from KM -single valued neutro-
sophic metric spaces and continuous KM -single valued neutrosophic metric from
metric spaces.

Definition 5.1. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1). For all x, y ∈ X, define dα(x, y) =

∧
{t ∈

R+ | ρ1(x, y, t) ≥ α }, dβ(x, y) =
∧

{t ∈ R+ | ρ2(x, y, t) ≤ β } and dγ(x, y) =∧
{t ∈ R+ | ρ3(x, y, t) ≤ γ }.

In what follows, we generate a family of metric spaces from a KM -single valued
neutrosophic metric space.

Theorem 5.2. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, β, γ ∈ (0, 1). Then (X, dα), (X, dβ) and (X, dγ) are metric spaces.
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Proof. Let x, y, z ∈ X and β ∈ (0, 1). Then dβ(x, x) =
∧

{t ∈ R+ | ρ2(x, x, t) ≤
β} =

∧
{t ∈ R+ | 0 ≤ β } = 0. It is clear that dβ(x, y) = dβ(y, x). Let∧

{t ∈ R+ | ρ2(x, y, t) ≤ β} = t0 and
∧

{t ∈ R+ | ρ2(y, z, t) ≤ β} = s0. Thus
β = Smax(ρ2(x, y, t0), ρ2(y, z, s0)) ≥ ρ2(x, z, t0+s0) implies that ρ2(x, z, t0+s0) ≤
β. It follows that (t0 + s0) ∈

∧
{t ∈ R+ | ρ2(x, z, t) ≤ β} and so dβ(x, y) +

dβ(y, z) =
∧

{t ∈ R+ | ρ2(x, y, t) ≤ β} +
∧

{t ∈ R+ | ρ2(y, z, t) ≤ β} ≥
∧

{t ∈
R+ | ρ2(x, z, t) ≤ β} = dβ(x, z). In a similar way one can see that (X, dα) and
(X, dγ) are metric spaces.

Theorem 5.3. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, α′, β, β′, γ, γ′ ∈ (0, 1) and x, y ∈ X. Then

(i) if α ≤ α′, then dα(x, y) ≤ dα′(x, y);

(ii) if β ≤ β′, then dβ′(x, y) ≤ dβ(x, y);

(iii) if γ ≤ γ′, then dγ′(x, y) ≤ dγ(x, y).

Proof. Let x, y, z ∈ X and α, α′, β, β′, γ, γ′ ∈ (0, 1). If dβ(x, y) = t0, then
ρ2(x, y, t0) ≤ β ≤ β′ and so t0 ∈

∧
{t ∈ R+ | ρ2(x, y, t) ≤ β′}. It concludes

that dβ′(x, y) ≤ t0 = dβ(x, y). Other items are proved in a similar way.

Theorem 5.4. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, β, γ ∈ (0, 1). Then

dα, dβ , dγ : (X, ρ1, ρ2, ρ3, Tmin, Smax)× (X, ρ1, ρ2, ρ3, Tmin, Smax) → R≥0,

are continuous maps.

Proof. Let (xn, yn)n be a sequence in X ×X that converges to (x, y) with respect
to the fuzzy metric (X, ρ1, ρ2, ρ3, Tmin, Smax). Thus for all ε > 0 and t ∈ R+, there
exists N ∈ N, such that for all n ≥ N , 1− ϵ < ρ1((xn, x, t)), ρ2((xn, x, t)) < ϵ and
ρ3((xn, x, t)) < ϵ. Hence for all α, β, γ,∈ (0, 1), {t ∈ R+ | ρ1(xn, x, t) ≥ α} ̸= ∅, {t ∈
R+ | ρ2(xn, x, t) ≤ β} ≠ ∅ and {t ∈ R+ | ρ2(xn, x, t) ≤ γ} ̸= ∅. Hence there exists
N ∈ N, such that for all n ≥ N, and all α < 1 − ε, β > ε and γ > ε,dα(xn, x) <
t, dβ(xn, x) < t and dγ(xn, x) < t and so lim

n→∞
dα(xn, x) = dβ(xn, x) = dγ(xn, x) =

0. In a similar way, lim
n→∞

dα(yn, y) = dβ(yn, y) = dγ(yn, y) = 0. Since for all,
n ∈ N, dα(xn, x)+dα(xn, yn)+dα(yn, y) ≥ dα(x, y), we get that | lim

n→∞
dα(xn, yn)−

dα(x, y)| ≤ ( lim
n→∞

dα(xn, x)+ lim
n→∞

dα(y, yn)) = 0. In a similar way, lim
n→∞

dβ(xn, yn) =

dβ(x, y) and lim
n→∞

dγ(xn, yn) = dγ(x, y).

Theorem 5.5. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, α′, β,
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β′, γ, γ′ ∈ (0, 1) and x, y ∈ X. Then a sequence (xn)n is a Cauchy sequence in
(X, ρ1, ρ2, ρ3, Tmin

, Smax) if and only if it is a Cauchy sequence in (X, dα), (X, dβ) and (X, dγ).

Proof. Suppose (xn)n is a Cauchy sequence in metric spaces (X, dα), (X, dβ) and
(X, dγ). Fixed ε > 0. Since (xn)n is a Cauchy sequence in (X, dβ), there exists
N ∈ N such that for all n,m ≥ N, dβ(xn, xm) < ε. It follows that t0 =

∧
{t ∈

R+ | ρ2(xn, xm, t) ≤ β} < ε and so ρ2(xn, xm, t) ≤ ρ2(xn, xm, t0) < ε. In a
similar way, one can see that ρ3(xn, xm, t) < ε and ρ1(xn, xm, t) > 1 − ε and so
sequence (xn)n is a Cauchy sequence in KM -single valued neutrosophic metric
space (X, ρ1, ρ2, ρ3, Tmin, Smax).

Conversely, let sequence (xn)n is a Cauchy sequence in (X, ρ1, ρ2, ρ3, Tmin, Smax)
and Fixed ε > 0. Thus for all t ∈ R+, there exists N ∈ N such that for any
m,n ≥ N, we have

1− ε < ρ1(xn, xm, t), ρ2(xn, xm, t) < ε and ρ3(xn, xm, t) < ε.

Hence for all α, β, γ,∈ (0, 1), {t ∈ R+ | ρ1(xn, xm, t) ≥ α} ≠ ∅, {t ∈ R+ | ρ2(xn, xm,
t) ≤ β} ̸= ∅ and {t ∈ R+ | ρ2(xn, xm, t) ≤ γ} ̸= ∅. So there exists N ∈ N
such that for all n,m ≥ N and all α < 1 − ε, β > ε and γ > ε, we have
dα(xn, xm) ≤ t < ε, dβ(xn, xm) < t < ε and dγ(xn, xm) < t < ε. It is concluded
that the sequence (xn)n is a Cauchy sequence in metric spaces (X, dα), (X, dβ)
and (X, dγ).

Definition 5.6. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1). For all x ∈ X and k ∈ N, define dα(x, y) =
kdα(x, y)

1 + kdα(x, y)
, dβ(x, y) =

kdβ(x, y)

1 + kdβ(x, y)
and dγ(x, y) =

kdγ(x, y)

1 + kdγ(x, y)
.

Theorem 5.7. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, β, γ ∈ (0, 1). Then (X, dα), (X, dβ) and (X, dγ) are metric spaces.

Proof. The proof is similar to Theorem 5.2.

Theorem 5.8. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutrosophic
metric space, α, β, γ ∈ (0, 1). Then

dα, dβ , dγ : (X, ρ1, ρ2, ρ3, Tmin, Smax)× (X, ρ1, ρ2, ρ3, Tmin, Smax) → R≥0,

are continuous maps.

Proof. The proof is similar to Theorem 5.4.

Definition 5.9. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1) and ∅ ≠ A ⊆ X. For all x ∈ X, define
dα(x,A) =

∧
{dα(x, y) | y ∈ A}, dβ(x,A) =

∧
{dβ(x, y) | y ∈ A}, dγ(x,A) =∧

{dγ(x, y) | y ∈ A}. In a similar way dα(x,A), dβ(x,A) and dγ(x,A) are defined.
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Theorem 5.10. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1) and ∅ ≠ A ⊆ X. Then for all x, y ∈ X

(i) if x ∈ A, then dα(x,A) = dβ(x,A) = dγ(x,A) = 0;

(ii) for all a ∈ A, dα(x,A) ≤ dα(x, a), dβ(x,A) ≤ dβ(x, a), dγ(x,A) ≤ dγ(x, a);

(iii) |dα(x,A)− dα(y,A)| ≤ dα(x, y);

(iv) |dβ(x,A)− dβ(y,A)| ≤ dβ(x, y);

(v) |dγ(x,A)− dγ(y,A)| ≤ dγ(x, y).

Proof. (i), (ii) It is clear.
(iii), (iv), (v) Let x, y ∈ X. If x = y or x, y ∈ A, then by items (i), (ii) it is

straightforward. Suppose that x ̸= y. Without loss of generality x ∈ A and y ̸∈ A,
implies that |dα(x,A) − dα(y,A)| = dα(y,A) ≤ dα(y, x). If x, y ̸∈ A, then there
exists a, a′ ∈ A such that dα(x,A) = dα(x, a) and dα(y,A) = dα(y, a

′). Since
dα(x, a) ≤ dα(x, a

′) and dα(y, a
′) ≤ dα(y, a), we get that |dα(x, a) − dα(y, a

′)| ≤
|dα(x, a′) − dα(y, a

′)| ≤ dα(x, y). It follows that for all x, y ∈ X, |dα(x,A) −
dα(y,A)| ≤ dα(x, y), |dβ(x,A) − dβ(y,A)| ≤ dα(x, y) and |dγ(x,A) − dγ(y,A)| ≤
dγ(x, y).

Corollary 5.11. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, β, γ ∈ (0, 1) and ∅ ≠ A ⊆ X. Then for all x, y ∈ X

(i) if x ∈ A, then dα(x,A) = dβ(x,A) = dγ(x,A) = 0;

(ii) for all a ∈ A, dα(x,A) ∨ dβ(x,A) ∨ dγ(x,A) ≤ dα(x, a) ∧ dβ(x, a) ∧ dγ(x, a);

(iii) |dα(x,A)− dα(y,A)| ≤ dα(x, y).

(iv) |dβ(x,A)− dβ(y,A)| ≤ dβ(x, y);

(v) |dγ(x,A)− dγ(y,A)| ≤ dγ(x, y).

Theorem 5.12. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1). Then for all x ∈ X and ∅ ̸= A ⊆ X,
dα(x,A), dα(x,A), dα(x,A) : (X, ρ1, ρ2, ρ3, Tmin, Smax)×(X, ρ1, ρ2, ρ3, Tmin, Smax)
→ R≥0 are continuous maps.

Proof. Suppose (xn)n is a sequence in X and in such a way that for all t ∈
R+, lim

n→∞
ρ2(xn, x, t) = 1 and x ∈ X. Fixed ε > 0. Thus there exists N ∈

N such that for all n ≥ N, ρ2(xn, x, t) < ε. It follows that for all ε < β,

we have
∧

{t ∈ R+ | ρ2(xn, x, t) ≤ β} ̸= ∅ and so dβ(xn, x) < t. Hence
lim

n→∞
dβ(xn, x) = 0. Using Theorem 5.10, |dβ(x,A) − dβ(xn, A)| ≤ dβ(x, xn).

Consequently, lim
n→∞

dβ(xn, A) = dβ(x,A). In a similar way, one can see that

dα(x,A), dα(x,A) : (X, ρ1, ρ2, ρ3, Tmin, Smax) × (X, ρ1, ρ2, ρ3, Tmin, Smax) → R≥0

are continuous maps.
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Corollary 5.13. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, αβ, γ ∈ (0, 1). Then for all x ∈ X and ∅ ≠ A ⊆ X,
dα(x,A), dα(x,A), dα(x,A) : (X, ρ1, ρ2, ρ3, Tmin, Smax)×(X, ρ1, ρ2, ρ3, Tmin, Smax)
→ R≥0 are continuous maps.

Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be aKM -single valued neutrosophic metric space,
α, β, γ ∈ (0, 1). Then for all x ∈ X and ∅ ≠ A ⊆ X, define A = {y | ρ1(y,A, t) =
1, ρ2(y,A, t) = ρ3(y,A, t) = 0 for all t > 0} and A = {y | dα(y,A) = dβ(y,A) =
dγ(y,A) = 0}.

Corollary 5.14. Let (X, ρ1, ρ2, ρ3, Tmin, Smax) be a KM -single valued neutro-
sophic metric space, α, β, γ ∈ (0, 1). Then for all x ∈ X and ∅ ≠ A ⊆ X, x ∈ A if
and only if x ∈ A.

6. Conclusion

The present study has introduced a novel concept fuzzy algebra as KM -single val-
ued neutrosophic metric spaces and has constructed finite or infinite KM -single
valued neutrosophic metric spaces based on induced unit interval values. We can
make a correspondence between metric spaces and KM -single valued neutrosophic
metric spaces, so we show that KM -single valued neutrosophic metric spaces gen-
erate some topological spaces and metric spaces.
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