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Abstract: Fuzzy clustering is widely used in business, biology, geography, coding for the internet and
more. A single-valued neutrosophic set is a generalized fuzzy set, and its clustering algorithm has
attracted more and more attention. An equivalence matrix is a common tool in clustering algorithms.
At present, there exist no results constructing a single-valued neutrosophic number equivalence
matrix using t-norm and t-conorm. First, the concept of a (T, S)-based composition matrix is defined
in this paper, where (T, S) is a dual pair of triangular modules. Then, a (T, S)-based single-valued
neutrosophic number equivalence matrix is given. A λ-cutting matrix of single-valued neutrosophic
number matrix is also introduced. Moreover, their related properties are studied. Finally, an example
and comparison experiment are given to illustrate the effectiveness and superiority of our proposed
clustering algorithm.
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1. Introduction

In 1965, Zadeh [1] proposed the concept of a fuzzy set (FS) for dealing with uncertain information.
Intuitionistic fuzzy sets (IFS) were introduced by Atanassov [2] in 1986. Different from a FS, an IFS
considers membership functions, non-membership functions and hesitant functions, which is more
suitable for expressing fuzzy information, such as a voting system. To consider more information,
Atanassov and Gargov [3] extended IFSs to interval-valued intuitionistic fuzzy sets (IVIFS). However,
there are many situations with indeterminate and inconsistent information in application, which can
not be handled by FS, IFS or IVIFS. For example, for a phenomenon in which quantum particles are
neither existent nor non-existent, a better description can be obtained by using the “neutrosophic”
attribute instead of the “fuzzy” attribute. Therefore, the concept of a neutrosophic set (NS) was
developed by Smarandache [4]. Wang et al. [5] proposed the single-valued neutrosophic set (SVNS),
which can be applied with more flexibly. In recent years, FS, IFS, IVIFS and SVNS have been widely
applied in medical diagnosis [6,7], and decision making [8–12].

Clustering is a process of clustering similar things into the same category [13–29]. For FS,
Seising [17] presented the interwoven historical developments of the two mathematical theories,
which opened up into fuzzy pattern classification and fuzzy clustering. Chen et al. [18] summed up
the FS equivalence matrix clustering algorithm. For IFS, Zhang et al. [19] proposed an intuitionistic
fuzzy equivalence matrix clustering algorithm. Guan et al. [20] proposed the intuitionistic fuzzy
agglomerative hierarchical clustering algorithm for recommendation using social tagging. Combining
the metaheuristic with kernel intuitionistic fuzzy c-means algorithm, Kuo et al. [21] introduced an
evolutionary-based clustering algorithm. Xu et al. [22] developed an orthogonal clustering algorithm
for intuitionistic fuzzy information. Zhao et al. [23] presented an intuitionistic fuzzy minimum
spanning tree clustering algorithm. For IVIFS, Sahu et al. [24] developed a procedure for constructing
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a hierarchical clustering for IVIFS max-min similarity relations. Zhang [25] introduced a c-means
clustering algorithm in IVIFS. For SVNS, Ye [26] developed a fuzzy equivalence matrix clustering
algorithm for SVNS. Guo et al. [27] presented a novel image segmentation algorithm based on
neutrosophic c-means clustering and the indeterminacy filtering method. Ali et al. [28] proposed a
SVNS orthogonal algorithm for segmentation of dental X-Ray images. Ye [29] introduced a minimum
spanning tree clustering algorithm in SVNS.

The triangular module [30–32] is a useful integration tool and is widely used in information
integration and clustering. Based on the triangular module, the IFS operation principle [33], the specific
intuitionistic fuzzy aggregation operator [34], the generalized intuitionistic fuzzy interactive geometric
interaction operator [35], the intuitionistic fuzzy heronian mean operator [36], the single-valued
neutrosophic number weighted averaging operator and the weighted geometric operator [37] are given
by many researchers. Huang [38] introduced the (T, S)-based IVIF composition matrix, the (T, S)-based
IVIF equivalence matrix and its application for clustering, where (T, S) is a dual triangular module.

At present, no one has studied the construction of an equivalence matrix based on the dual
triangular module under an SVNS environment. Therefore, the main work of this paper is to propose
the operation of the (T, S)-based composition matrix and (T, S)-based single-valued neutrosophic
number equivalence matrix. By comparing with the methods in the literature [18,19,28], our method
has the following advantages: (1) The classification results are stable when λ is in a certain range.
(2) The methods of the literature [18,19] can only divide objects into three classifications, and the method
of literature [28] can only divide objects into four classifications, while our clustering algorithm can
divide objects into five classifications. (3) Many existing composition matrices are fuzzy matrix, while
our proposed composition matrix is a single-valued neutrosophic number matrix, which can better
preserve the primitiveness of the data.

The structure of the paper is as follows: In Section 2, some basic notions, operations and relations
are reviewed. In Section 3, in the SVNS environment, the concepts of (T, S)-based composition matrix
and (T, S)-based single-valued neutrosophic number equivalence matrix are defined, where (T, S) is a
dual pair of triangular module. Their properties are investigated. In Section 4, a clustering algorithm
with (T, S)-based single-valued neutrosophic number equivalence matrix is proposed. In Section 5,
we give a numerical example to illustrate the effectiveness of the proposed method. Compared with
other existing methods, our method has better classification ability and more reasonable classification
results. In Section 6, we conclude this paper.

2. Preliminaries

In this section, we briefly introduce some of the basic definitions to be used in this paper.
To facilitate reading, some concepts are abbreviated in this paper.

FS: fuzzy set
FEM: fuzzy equivalence matrix
IFS: intuitionistic fuzzy set
IVIFS: interval-valued intuitionistic fuzzy set
IFEM: intuitionistic fuzzy equivalence matrix
NS: neutrosophic set
SVNS: single-valued neutrosophic set
SVNN: single-valued neutrosophic number
SVNNM: single-valued neutrosophic number matrix
SVNNSM: single-valued neutrosophic number similarity matrix
(T, S)-SVNNEM: (T, S)-based single-valued neutrosophic number equivalence matrix

The NS was proposed in 1995 by Smarandache.

Definition 1 ([4]). Let X be a universe of discourse, with a generic element in X denoted by x. A NS A in X is
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A(x) = 〈x|(tA(x), iA(x), fA(x))〉,

where tA(x) denotes the truth-membership function, iA(x) denotes the indeterminacy-membership function,
and fA(x) denotes the falsity-membership function. tA(x),iA(x), and fA(x) are real standard or nonstandard
subsets of ]−0, 1+[. There is no limitation on the sum of tA(x), iA(x), and fA(x), so −0 ≤ tA(x) + iA(x) +
fA(x) ≤ 3+.

To apply the NS, Wang et al. developed the concept of SVNS. Some relationships of SVNSs
were discussed.

Definition 2 ([5]). Let X be a universe of discourse, with a generic element in X denoted by x. A SVNS A in
X is depicted by the following:

A(x) = 〈x|(tA(x), iA(x), fA(x))〉,

where tA(x) denotes the truth-membership function, iA(x) denotes the indeterminacy-membership function,
and fA(x) denotes the falsity-membership function. For each point x in X, we have tA(x), iA(x), fA(x) ∈ [0, 1]
and 0 ≤ tA(x) + iA(x) + fA(x) ≤ 3. For convenience, we can use α = (t, i, f ) to represent a SVNN.

Definition 3 ([5]). Let A = {〈x, tA(x), iA(x), fA(x)〉 |x ∈ X} and B = {〈x, tB(x), iB(x), fB(x)〉 |x ∈ X}
be two SVNSs. The following relations hold:

(1) Inclusion: A ⊆ B if only if tA(x) ≤ tB(x), iA(x) ≥ iB(x), fA(x) ≥ fB(x).
(2) Complement: Ac = {〈x, fA(x), 1− iA(x), tA(x)〉 |x ∈ X}.
(3) Union: A ∪ B = {〈x, tA(x) ∨ tB(x), iA(x) ∧ iB(x), fA(x) ∧ fB(x)〉 |x ∈ X}.
(4) Intersection: A ∩ B = {〈x, tA(x) ∧ tB(x), iA(x) ∨ iB(x), fA(x) ∨ fB(x)〉 |x ∈ X}.

In order to develop SVNNSM, the neutrosophic number similarity relation and similarity matrix
are reviewed.

Definition 4 ([28]). Let A and B be two NSs. The following

R = {〈(a, b), tR(a, b), iR(a, b), fR(a, b)〉 |a ∈ A, b ∈ B}

is called a neutrosophic relation, where tR : A × B → [0, 1], iR : A × B → [0, 1], fR : A × B → [0, 1];
0 ≤ tR(a, b) + iR(a, b) + fR(a, b) ≤ 3, for any (a, b) ∈ A× B.

Definition 5 ([28]). Let A and B be two NSs and R be a neutrosophic relation. If

(a) (Reflexivity) tR(a, a) = 1, iR(a, a) = 0, fR(a, a) = 0, for any a ∈ A;
(b) (Symmetry) tR(a, b) = tR(b, a), iR(a, b) = iR(b, a), fR(a, b) = fR(b, a), for any (a, b) ∈ A× B.

Then R is called a neutrosophic similarity relation.

Definition 6 ([28]). Given A and B be two NSs on a universe U and R is a neutrosophic similarity relation.
A matrix M = (rpq)n×n is called a neutrosophic similarity matrix if rpq = R(yp, yq), where p, q = 1, 2, ..., n
and tpq, ipq, fpq are the truth, indeterminacy and falsehood membership values of an element (yp, yq) ∈ A× B
respectively. Equivalently, R(yp, yq) = (tpq, ipq, fpq) that implies rpq = (tpq, ipq, fpq).

The above introduction can be extended to the following conclusion.
If pij = (tij, iij, fij)(i, j = 1, 2, ..., n) are SVNNs, then P = (pij)n×n is called a SVNNM,

where pij = (tij, iij, fij)(i, j = 1, 2, ..., n). Further, if P satisfies the following conditions:

(1) Reflexivity: pii = (1, 0, 0)(i = 1, 2, ..., n);
(2) Symmetry: pij = pji, i.e., (tij, iij, fij) = (tji, iji, f ji)(i, j = 1, 2, ..., n).
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Then P is a SVNNSM.
Klir and Yuan proposed the t-norm and t-conorm in 1995.

Definition 7 ([30]). A function T : [0, 1] × [0, 1] → [0, 1] is called a triangular norm, if it satisfies the
following conditions:

(1) T(0, 0) = 0, T(1, 1) = 1;
(2) T(x, y) = T(y, x), for any x and y;
(3) T(x, T(y, z)) = T(T(x, y), z), for any x, y and z;
(4) if x1 ≤ x2, y1 ≤ y2, then T(x1, y1) ≤ T(x2, y2).

Furthermore, for any a ∈ [0, 1], T is a t-norm if T(a, 1) = a, T is a t-conorm if T(0, a) = a. In this
paper, denote T, S as the t-norm and t-conorm, respectively.

Lemma 1 ([31]). For any x, y ∈ [0, 1], we have

(1) 0 ≤ T(x, y) ≤ x ∧ y ≤ 1, that is T ≤ ∧ and T(0, y) = 0;
(2) 0 ≤ x ∨ y ≤ S(x, y) ≤ 1, that is ∨ ≤ S and S(1, y) = 1.

Definition 8 ([31]). Let x ∈ [0, 1], x′ = 1− x is the complement of x. If T and S satisfy T(x, y)′ = S(x′, y′),
for any x,y∈ [0, 1], then T and S is called a dual pair of triangular module.

Following, we call a dual pair of triangular modules as a dual triangular module for short, denoted
by (T, S).

Further, based on a dual triangular module, Smarandache proposed the concepts of generalized
union and intersection.

Definition 9 ([32]). Let αi = (ti, ii, fi)(i = 1, 2) be any two SVNNs, then the generalized union and
intersection are defined as follows:

(1) α1 t α2 = (S(t1, t2), T(i1, i2), T( f1, f2));
(2) α1 u α2 = (T(t1, t2), S(i1, i2), S( f1, f2)).

Several commonly used dual triangular modules are listed below:

(1) Type I (min and max t-norm and t-conorm): T(a, b) = min(a, b), S(a, b) = max(a, b);
(2) Type II (Algebraic t-norm and t-conorm): T(a, b) = ab, S(a, b) = a + b− ab;
(3) Type III (Einstein t-norm and t-conorm): T(a, b) = ab

1+(1−a)(1−b) , S(a, b) = a+b
1+ab ;

(4) Type IV (Hamacher t-norm and t-conorm): T(a, b) = ab
γ+(1−γ)(a+b−ab) , S(a, b) =

a+b−ab−(1−γ)ab
1−(1−γ)ab (γ ∈ (0,+∞)).

Based on Definition 9 and the dual triangular modules of the type I-IV, the corresponding
generalized union and intersection are expressed as: α1 tw α2, α1 uw α2(w = I, I I, I I I, IV).

3. Main Results

In this section, we first study some properties of generalized unions and intersections. Moreover,
we introduce the concept of a (T, S)-based SVNN composition matrix and investigate its properties.
Finally, we develop the λ-cutting matrix and the (T, S)-SVNNEM. Their relationship is also studied.

3.1. Some Properties of Generalized Unions and Intersections

The properties of generalized unions and intersections have not been studied in literature [32].
So we first investigate some properties of generalized unions and intersections.

Some operational properties of generalized unions and intersections are proposed in Theorem 1.



Mathematics 2019, 7, 36 5 of 16

Theorem 1. Let αi = (ti, ii, fi)(i = 1, 2, 3) be any three SVNNs, then

(1) α1 t α2 = α2 t α1;
(2) α1 u α2 = α2 u α1;
(3) (α1 t α2) t α3 = α1 t (α2 t α3);
(4) (α1 u α2) u α3 = α1 u (α2 u α3);
(5) (α1 t α2)

c = αc
1 u αc

2;
(6) (α1 u α2)

c = αc
1 t αc

2.

Proof. (1) and (2) are obvious. We only prove (3) and (5). The proofs of (4) and (6) are analogous.
(3) (α1 t α2) t α3 = (S(t1, t2), T(i1, i2), T( f1, f2)) t (t3, i3, f3)

= (S(S(t1, t2), t3), T(T(i1, i2), i3), T(T( f1, f2), f3))

= (S(t1, S(t2, t3)), T(i1, T(i2, i3)), T( f1, T( f2, f3)))

= α1 t (α2 t α3)
(5) (α1 t α2)

c = (S(t1, t2), T(i1, i2), T( f1, f2))
c = (T( f1, f2), 1− T(i1, i2), S(t1, t2)).

αc
1 u αc

2 = ( f1, 1− i1, t1) u ( f2, 1− i2, t2)

= (T( f1, f2), S(1− i1, 1− i2), S(t1, t2))

= (T( f1, f2), 1− T(i1, i2), S(t1, t2))

= (α1 t α2)
c

Therefore, we complete the proof.

Based on (5) and (6) in Theorem 1, we have Corollary 1.

Corollary 1. If {Aτ : τ ∈ Λ}(Λ = {1, 2, ..., n}) is a set of SVNNs, then

(1) (tn
τ=1ατ)c = un

τ=1αc
τ ;

(2) (un
τ=1ατ)c = tn

τ=1αc
τ .

Theorem 2. Let α1, α2, α3 be any three SVNNs, for type I dual triangular module, that is T(a, b) =

min(a, b), S(a, b) = max(a, b), the following equations hold.

(1) (α1 tI α2) uI α3 = (α1 uI α3) tI (α2 uI α3);
(2) (α1 uI α2) tI α3 = (α1 tI α3) uI (α2 tI α3).

Proof. According to Definition 9, when T(a, b) = min(a, b), S(a, b) = max(a, b), we obtain
(1) (α1 tI α2) uI α3

= (min{max{t1, t2}, t3}, max{min{i1, i2}, i3}, max{min{ f1, f2}, f3})
= (max{min{t1, t3}, min{t2, t3}}, min{max{i1, i3}, max{i2, i3}},

min{max{ f1, f3}, max{ f2, f3}})
= (α1 uI α3) tI (α2 uI α3).

and
(2) (α1 uI α2) tI α3

= (max{min{t1, t2}, t3}, min{max{i1, i2}, i3}, min{max{ f1, f2}, f3})
= (min{max{t1, t3}, max{t2, t3}}, max{min{i1, i3}, min{i2, i3}},

max{min{ f1, f3}, min{ f2, f3}})
= (α1 tI α3) uI (α2 tI α3).

Therefore, we complete the proof.

For type II-IV dual triangular module, (α1 t α2)u α3 = (α1 u α3)t (α2 u α3) and (α1 u α2)t α3 =

(α1 t α3) u (α2 t α3) do not hold. See Example 1.

Example 1. Let α1 = (0.7, 0.4, 0.1), α2 = (0.5, 0.3, 0.3), α3 = (0.4, 0.8, 0.2) be three SVNNs.
If T(a, b) = ab, S(a, b) = a + b− ab, then



Mathematics 2019, 7, 36 6 of 16

(α1 tI I α2) uI I α3 = (0.34, 0.824, 0.224) 6= (0.424, 0.7568, 0.1232) = (α1 uI I α3) tI I (α2 uI I α3).
(α1 uI I α2) tI I α3 = (0.61, 0.464, 0.074) 6= (0.574, 0.4832, 0.0788) = (α1 tI I α3) uI I (α2 tI I α3).

If T(a, b) = ab
1+(1−a)(1−b) , S(a, b) = a+b

1+ab , then

(α1 tI I I α2) uI I I α3 = (0.3333, 0.4687, 0.2351) 6= (0.3773, 0.7983, 0.101) = (α1 uI I I α3) tI I I (α2 uI I I α3).
(α1 uI I I α2) tI I I α3 = (0.6279, 0.4651, 0.0521) 6= (0.6227, 0.4681, 0.0501) = (α1 tI I I α3) uI I I (α2 tI I I α3).

If T(a, b) = ab
γ+(1−γ)(a+b−ab) , S(a, b) = a+b−ab−(1−γ)ab

1−(1−γ)ab , λ = 4, then

(α1 tIV α2) uIV α3 = (0.3276, 0.832, 0.2131) 6= (0.3077, 0.8497, 0.0857) = (α1 uIV α3) tIV (α2 uIV α3).
(α1 uIV α2) tIV α3 = (0.6471, 0.4665, 0.0354) 6= (0.6948, 0.4323, 0.029) = (α1 tIV α3) uIV (α2 tIV α3).

3.2. A (T, S)-Based Single-Valued Neutrosophic Number Composition Matrix and Its Properties

We introduce the new concept of a (T, S)-based composition matrix and its related
properties below.

Definition 10. Let Pl = (pl
ij)n×n(l = 1, 2) be two SVNNMs, where pl

ij = (tl
ij, il

ij, f l
ij)(i, j = 1, 2, ..., n;

l = 1, 2). Then P = P1 × P2 = (pij)n×n is called a (T, S)-based composition matrix of P1 and P2, where

pij = ∨n
k=1(p1

ik u p2
kj) = (∨n

k=1T(t1
ik, t2

kj),∧
n
k=1S(i1ik, i2kj),∧

n
k=1S( f 1

ik, f 2
kj)).

Based on Definition 10 and the dual triangular modules of the type I-IV, the corresponding
(T, S)-based composition matrix is expressed as: P = P1 ×w P2(w = I, I I, I I I, IV).

By Definitions 11 and 10, some properties of (T, S)-based composition matrix are studied.

Theorem 3. Let Pl = (pl
ij)n×n(l = 1, 2) be two SVNNMs, where pl

ij = (tl
ij, il

ij, f l
ij)(i, j = 1, 2, ..., n; l = 1, 2).

Then the (T, S)-based composition matrix of P1 and P2 is still a SVNNM.

Proof. By
0 ≤ T(tik, tkj) ≤ 1, 0 ≤ S(iik, ikj) ≤ 1, 0 ≤ S( fik, fkj) ≤ 1(k = 1, 2, ..., n),

we have
0 ≤ ∨n

k=1T(tik, tkj) ≤ 1, 0 ≤ ∧n
k=1S(iik, ikj) ≤ 1, 0 ≤ ∧n

k=1S( fik, fkj) ≤ 1.
That means

0 ≤ ∨n
k=1T(tik, tkj) + ∧n

k=1S(iik, ikj)+ ≤ ∧n
k=1S( fik, fkj) ≤ 3,

which completes the proof.

According to Theorem 3, we get Corollary 2.

Corollary 2. Let Pl(l = 1, 2) be any two SVNNSMs. Then the (T, S)-based composition matrix of P1 and P2

is also a SVNNM.

However, the (T, S)-based composition matrix of two SVNNSMs may not be a SVNNSM. See
Example 2.

Example 2. Let

P1 =

 (1, 0, 0) (0.3, 0.4, 0.2) (0.5, 0.4, 0.7)
(0.3, 0.4, 0.2) (1, 0, 0) (0.8, 0.2, 0.1)
(0.5, 0.4, 0.7) (0.8, 0.2, 0.1) (1, 0, 0)


.

P2 =

 (1, 0, 0) (0.1, 0.2, 0.2) (0.4, 0.5, 0.2)
(0.1, 0.2, 0.2) (1, 0, 0) (0.3, 0.3, 0.1)
(0.4, 0.5, 0.2) (0.3, 0.3, 0.1) (1, 0, 0)


.
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Then both P1 and P2 are SVNNSMs. When we choose type I and II dual triangular modules, their
(T, S)-based composition matrix is

P = P1 ×I P2 = P1 ×I I P2 =

 (1, 0, 0) (0.3, 0.2, 0.2) (0.5, 0.4, 0.2)
(0.3, 0.2, 0.2) (1, 0, 0) (0.8, 0.2, 0.1)
(0.5, 0.36, 0.2) (0.8, 0.2, 0.1) (1, 0, 0)


.

p13 6= p31 which means P is not a SVNNSM.

Fortunately, if P is a SVNNSM, then (T, S)-based composition matrix of P and P is still a SVNNSM.

Theorem 4. Let P = (pij)n×n(i, j = 1, 2, ..., n) be a SVNNSM. Then the (T, S)-based composition matrix
P2 = P× P is also a SVNNSM.

Proof. Let P2 = (qij)n×n and pij = (tij, iij, fij)(i, j = 1, 2, ..., n).

(1) By Corollary 2, we know that P2 is a SVNNM.
(2) By Definition 10, for i = 1, 2, ..., n, we have

qii = (∨n
k=1T(tik, tki),∧n

k=1S(iik, iki),∧n
k=1S( fik, fki)).

When k = i, we have pii = (tii, iii, fii) = (1, 0, 0). Since T(1, 1) = 1 and S(0, 0) = 0, we can get
qii = (1, 0, 0)(i = 1, 2, ..., n).

(3) Since P is a SVNNSM, pik = pki, i.e., (tik, iik, fik) = (tki, iki, fki)(i, k = 1, 2, ..., n). Then we have

qij = (∨n
k=1T(tik, tkj),∧n

k=1S(iik, ikj),∧n
k=1S( fik, fkj))

= (∨n
k=1T(tkj, tik),∧n

k=1S(ikj, iik),∧n
k=1S( fkj, fik))

= (∨n
k=1T(tjk, tki),∧n

k=1S(ijk, iki),∧n
k=1S( f jk, fki))

= qji

Thus, P2 is a SVNNSM.

From definition 10 and Theorem 3, we can get Property 1.

Property 1. Let Pl = (pl
ij)n×n(l = 1, 2) be any two SVNNMs. Then P1 × P2 = P2 × P1.

The relationship of SVNNMs is defined in the following:

Definition 11. Let Pl = (pl
ij)n×n(l = 1, 2) be any two SVNNMs, where pl

ij = (tl
ij, il

ij, f l
ij)(i, j = 1, 2, ..., n;

l = 1, 2). If p1
ij ≤ p2

ij, i.e., t1
ij ≤ t2

ij, i1ij ≥ t2
ij, f 1

ij ≥ f 2
ij, then P1 ⊆ P2.

According to Definition 11, Theorem 3 and Lemma 1, we have the following property:

Property 2. Let Pl(l = 1, 2, 3) be any three SVNNMs and P1 ⊆ P2. Then P1 × P3 ⊆ P2 × P3 ⊆ P2 ×I P3.

3.3. (T, S)-SVNNEM and λ-Cutting Matrix

In order to cluster, we develop (T, S)-SVNNEM and λ-cutting matrix. We also investigate their
related properties.

Definition 12. Let P = (pij)n×n be a SVNNM, where pij = (tij, iij, fij)(i, j = 1, 2, ..., n). If P satisfies the
following conditions:

(1) Reflexivity: pii = (1, 0, 0)(i = 1, 2, ..., n);
(2) Symmetry: pij = pji, i.e. (tij, iij, fij) = (tji, iji, f ji)(i, j = 1, 2, ..., n);
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(3) (T, S)-Transitivity: P2 = P × P ⊆ P, i.e. ∨n
k=1T(tik, tkj) ≤ tij, ∧n

k=1S(iik, ikj) ≥ iij,
∧n

k=1S( fik, fkj) ≥ fij.

Then P is called a (T, S)-SVNNEM.

In general, a SVNNSM may not a (T, S)-SVNNEM.

Example 3. Let

P =

 (1, 0, 0) (0.2, 0.4, 0.6) (0.9, 0.5, 0.7)
(0.2, 0.4, 0.6) (1, 0, 0) (0.4, 0.2, 0.5)
(0.3, 0.5, 0.7) (0.4, 0.2, 0.5) (1, 0, 0)


,

then P satisfies reflexivity and symmetry. For dual triangular modules of type I-IV, we obtain

P×I P =

 (1, 0, 0) (0.4, 0.4, 0.6) (0.9, 0.4, 0.6)
(0.4, 0.4, 0.6) (1, 0, 0) (0.4, 0.2, 0.5)
(0.9, 0.4, 0.6) (0.4, 0.2, 0.5) (1, 0, 0)

 6⊆ P

P×I I P =

 (1, 0, 0) (0.36, 0.4, 0.6) (0.9, 0.5, 0.7)
(0.36, 0.4, 0.6) (1, 0, 0) (0.4, 0.2, 0.5)
(0.9, 0.5, 0.7) (0.4, 0.2, 0.5) (1, 0, 0)

 6⊆ P

P×I I I P =

 (1, 0, 0) (0.34, 0.4, 0.6) (0.9, 0.5, 0.7)
(0.36, 0.4, 0.6) (1, 0, 0) (0.4, 0.2, 0.5)
(0.9, 0.5, 0.7) (0.4, 0.2, 0.5) (1, 0, 0)

 6⊆ P

and

P×IV P =

 (1, 0, 0) (0.31, 0.4, 0.6) (0.9, 0.5, 0.7)
(0.36, 0.4, 0.6) (1, 0, 0) (0.4, 0.2, 0.5)
(0.9, 0.5, 0.7) (0.4, 0.2, 0.5) (1, 0, 0)

 6⊆ P

where λ = 4. It shows that P is not a (T, S)-SVNNEM for dual triangular modules of type I-IV.

In order to obtain clustering algorithm, we give the λ-cutting matrix.

Definition 13. Let P = (pij)n×n = (tij, iij, fij)(i, j = 1, 2, ..., n) be a SVNNM and λ be a SVNN. We call
Pλ = ((pij)λ)n×n is a λ-cutting matrix of P, where

(pij)λ = ((tij)λ, (iij)λ, ( fij)λ) =

{
(1, 0, 0), i f λ ⊆ pij,

(0, 1, 1), i f λ 6⊆ pij.

Following, we will study the relationship between SVNNSM and the λ-cutting matrix
of SVNNSM.

Theorem 5. P = (pij)n×n(i, j = 1, 2, ..., n) is a SVNNSM if and only if Pλ is a SVNNSM for any SVNN λ.

Proof. ”⇒ ” Let P be a SVNNSM. Then pii = (1, 0, 0), pij = pji.

(1) Reflexivity: Since pii = (1, 0, 0)(i = 1, 2, ..., n), we have λ ⊆ pii for each SVNN λ.
By Definition 13, we get (pii)λ = (1, 0, 0).

(2) Symmetry: By pij = pji, we can easily get that (pij)λ = (pji)λ(i, j = 1, 2, ..., n) for each SVNN λ.

That is, Pλ is a SVNNSM.
”⇐ ” Let Pλ be a SVNNSM. Then (Pii)λ = (1, 0, 0), (pij)λ = (pji)λ(i, j = 1, 2, ..., n).
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(1) Reflexivity: Since (Pii)λ = (1, 0, 0)(i = 1, 2, ..., n), we know that λ ⊆ pii = (tii, iii, fii) for each
SVNN λ = (t, i, f ), that is t ≤ tii, i≥iii and f≥ fii. Let λ = (1, 0, 0), then pii = (1, 0, 0)(i =

1, 2, ..., n).

(2) Symmetry: If pij 6= pji, then tij 6= tji or iij 6= iji or fij 6= f ji. Suppose tij < tji, λ = (
tij+tji

2 , iji, f ji).

Then tij <
tij+tji

2 < tji. So (pij)λ = (0, 1, 1), (pji)λ = (1, 0, 0). (pij)λ 6= (pji)λ, which is a
contradiction. Therefore, tij = tji(i, j = 1, 2, ..., n).

Analogously, we can prove that iij = iji and fij = f ji should be held simultaneously. It implies
that pij = pji(i, j = 1, 2, ..., n).

That is, P is a SVNNSM.

When the condition and conclusion of Theorem 5 are strengthened, the Theorem 6 holds.

Theorem 6. If Pλ is a (T, S)-SVNNEM for any SVNN λ, then P is a (T, S)-SVNNEM.

Proof. Reflexivity and symmetry are proved in Theorem 5. Following, we prove P satisfies
(T, S)-Transitivity.

(T, S)-Transitivity: Since Pλ = ((pij)λ)n×n = ((tij)λ, (iij)λ, ( fij)λ)(i, j = 1, 2, ..., n) satisfies
(T, S)-Transitivity, we have

∨n
k=1T((tik)λ, (tkj)λ) ≤ (tij)λ, ∧n

k=1S((iik)λ, (ikj)λ) ≥ (iij)λ, ∧n
k=1S(( fik)λ, ( fkj)λ) ≥ ( fij)λ.

Now we will prove that

∨n
k=1T(tik, tkj) ≤ tij, ∧n

k=1S(iik, ikj) ≥ iij, ∧n
k=1S( fik, fkj) ≥ fij.

Assume there exist i0 and j0 such that ∨n
k=1(ti0k ∧ tkj0) > ti0 j0 . Further we know that there exists l

such that ti0l ∧ tl j0 > ti0 j0 . Suppose ti0l ≥ tl j0 > ti0 j0 and λ = (tl j0 , ii0l ∨ il j0 , fi0l ∨ fl j0), then

(pi0l)λ = (pl j0)λ = (1, 0, 0) and (pi0 j0)λ = (0, 1, 1)

hold. These imply that

∨n
k=1T((ti0k)λ, (tkj0)λ) = ∨n

k=1T(1, 1) = 1 > 0 = (ti0 j0)λ,

which produces the contradiction with

∨n
k=1T((tik)λ, (tkj)λ) ≤ (tij)λ.

So we have

∨n
k=1T(tik, tkj) ≤ ∨n

k=1(tik ∧ tkj) ≤ tij.

Assume there exist i1 and j1 such that ∧n
k=1(ii1k ∨ ikj1) < ii1 j1 . Further we know that there exists m

such that ii1m ∨ imj1 < ii1 j1 . Suppose ii1m ≤ imj1 < ii1 j1 and λ = (ti1m ∧ tmj1 , imj1 , fi1m ∨ fmj1), then

(pi1m)λ = (pmj1)λ = (1, 0, 0) and (pi1 j1)λ = (0, 1, 1)

hold. These imply that

∧n
k=1S((ii1k)λ, (ikj1)λ) = ∧n

k=1S(0, 0) = 0 < 1 = (ii1 j1)λ,

which produces the contradiction with

∧n
k=1S((iik)λ, (ikj)λ) ≥ (iij)λ.

So we have

∧n
k=1S(iik, ikj) ≥ ∧n

k=1(iik ∨ ikj) ≥ iij.

Analogously we can prove that ∧n
k=1S( fik, fkj) ≥ fij.

Thus, we can complete the proof.
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Conversely, if P is a (T, S)-SVNNEM, then Pλ may not a (T, S)-SVNNEM. See Example 4, where
we choose dual triangular module of type II for explanation.

Example 4. Let

P =

 (1, 0, 0) (0.3, 0.2, 0.1) (0.6, 0.5, 0.2)
(0.3, 0.2, 0.1) (1, 0, 0) (0.7, 0.4, 0.2)
(0.6, 0.5, 0.2) (0.7, 0.4, 0.2) (1, 0, 0)


be a SVNNSM.

P×I I P =

 (1, 0, 0) (0.3, 0.2, 0.1) (0.6, 0.5, 0.2)
(0.3, 0.2, 0.1) (1, 0, 0) (0.7, 0.4, 0.2)
(0.6, 0.5, 0.2) (0.7, 0.4, 0.2) (1, 0, 0)

 = P.

P satisfies (T, S)-Transitivity, where we choose T(a, b) = ab, S(a, b) = a + b− ab. Therefore, P is a
(T, S)-SVNNEM. When λ = (0.6, 0.5, 0.2), we have

Pλ =

 (1, 0, 0) (0, 1, 1) (1, 0, 0)
(0, 1, 1) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0)


.

Then

P2
λ = Pλ ×I I Pλ =

 (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0)


.

(p2
12)λ = (1, 0, 0) 6≤ (p12)λ = (0, 1, 1). It shows that P2

λ 6⊆ Pλ. So Pλ is not a (T, S)-SVNNEM.

By the idea of Ye in literature [26], we can easily have Theorem 7.

Theorem 7. Let P be a SVNNSM, then after a finite of (T, S)-based compositions: P→ P2 → ...→ P2k → ...,
there exists a positive integer k such that P2k

= P2k+1
. Moreover, P2k

is a (T, S)-SVNNEM.

4. A Algorithm for Single-Valued Neutrosophic Number Clustering

This section proposes a clustering algorithm based on (T, S)-SVNNEM under a single-valued
neutrosophic environment.

Let Y = {y1, y2, ..., yn} be a finite set of alternatives, and X = {x1, x2, ..., xm} be the set of attributes.
Suppose the characteristics of the objects yi(i = 1, 2, ..., n) with respect to the attributes xj(j = 1, 2, ..., m)

are expressed as rij = (tij, iij, fij). The decision matrix R = (rij)n×m is a SVNNM.
Step 1 Calculate the similarity measure for each pair of yi and yk(i, k = 1, 2, ..., n) by

Sik = Sim(rij, rkj) = (Simt(rij, rkj), Simi(rij, rkj), Sim f (rij, rkj))(see literature [11]):

Simt(rij, rkj) = 1−
∑m

j=1 |trij (xi)−trkj (xi)|
∑m

j=1(trij (xi)+trkj (xi))
;

Simi(rij, rkj) =
∑m

j=1 |irij (xi)−irkj (xi)|
∑m

j=1(irij (xi)+irkj (xi))
;

Sim f (rij, rkj) =
∑m

j=1 | frij (xi)− frkj (xi)|
∑m

j=1( frij (xi)+ frkj (xi))
,

where xj ∈ X, j = 1, 2, ..., m. Then a SVNNSM P = (Sik)n×n is constructed.
Step 2 Choose appropriate (T, S) dual triangular modual. Then we verify whether P is a

(T, S)-SVNNEM or not. If not, stop calculating the (T, S)-based compositions P→ P2 → ...→ P2k → ...
until P2k

= P2k+1
. We obtain a (T, S)-SVNNEM P2k

.
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Step 3 Take an appropriate interval of λ, and calculate (P2k
)λ by Definition 13. Based on (P2k

)λ,
if (pij)λ = (ptj)λ(j = 1, 2, ..., n), then yi and yt can be divided into the same category.

5. Illustrative Example and Comparative Analysis

In this section, we give an example to show the effectiveness and rationality of our proposed
method, and demonstrate its superiority by comparing it with other existing methods.

5.1. Illustrative Example

An example is given by adapting from Zhang et al.(2007). We will use this example to illustrate
the effectiveness and rationality of the proposed (T, S)-SVNNEM clustering algorithm.

Consider a car classification problem [19]. There are five new cars yi(i = 1, 2, 3, 4, 5) to be classified.
Every car has six evaluation attributes: (1) x1: Fuel economy; (2) x2: Coefficient of friction; (3) x3: Price;
(4) x4: Comfort; (5) x5: Design; (6) x6: Safety. The characteristics of the five new cars under the six
attributes are represented by the form of SVNNs, shown in Table 1.

Table 1. The characteristics of the five new cars.

x1 x2 x3 x4 x5 x6

y1 (0.3,0.4,0.5) (0.6,0.7,0.1) (0.4,0.4,0.3) (0.8,0.3,0.1) (0.1,0.2,0.6) (0.5,0.2,0.4)
y2 (0.6,0.3,0.3) (0.5,0.1,0.2) (0.6,0.5,0.1) (0.7,0.3,0.1) (0.3,0.2,0.6) (0.4,0.4,0.3)
y3 (0.4,0.2,0.4) (0.8,0.3,0.1) (0.5,0.1,0.1) (0.6,0.1,0.2) (0.4,0.3,0.5) (0.3,0.2,0.2)
y4 (0.2,0.5,0.4) (0.4,0.3,0.1) (0.9,0.2,0.0) (0.8,0.2,0.1) (0.2,0.1,0.5) (0.7,0.3,0.1)
y5 (0.5,0.1,0.2) (0.3,0.4,0.6) (0.6,0.3,0.3) (0.7,0.3,0.1) (0.6,0.4,0.2) (0.5,0.1,0.3)

Step 1 Calculate the similarity measures for each pair of yi and yk(i, k = 1, 2, 3, 4, 5) by
similarity measure Simik = Sim(rij, rkj) = (Simt(rij, rkj), Simi(rij, rkj), Sim f (rij, rkj)), and then get
the SVNNSM P.

P =


(1, 0, 0) (0.83, 0.25, 0.17) (0.81, 0.35, 0.2) (0.81, 0.26, 0.25) (0.78, 0.26, 0.35)

(0.83, 0.25, 0.17) (1, 0, 0) (0.85, 0.4, 0.16) (0.8, 0.29, 0.21) (0.89, 0.35, 0.33)
(0.81, 0.35, 0.2) (0.85, 0.4, 0.16) (1, 0, 0) (0.71, 0.29, 0.11) (0.81, 0.29, 0.44)
(0.81, 0.26, 0.25) (0.8, 0.29, 0.21) (0.71, 0.29, 0.11) (1, 0, 0) (0.78, 0.38, 0.51)
(0.78, 0.26, 0.35) (0.89, 0.35, 0.33) (0.81, 0.29, 0.44) (0.78, 0.38, 0.51) (1, 0, 0)


Step 2 Choose T(a, b) = ab and S(a, b) = a + b− ab, then calculate P2 = P×I I P.

P2 =


(1, 0, 0) (0.83, 0.25, 0.17) (0.81, 0.35, 0.2) (0.81, 0.26, 0.25) (0.78, 0.26, 0.35)

(0.83, 0.25, 0.17) (1, 0, 0) (0.85, 0.4, 0.16) (0.8, 0.29, 0.21) (0.89, 0.35, 0.33)
(0.81, 0.35, 0.2) (0.85, 0.4, 0.16) (1, 0, 0) (0.71, 0.29, 0.11) (0.81, 0.29, 0.4372)
(0.81, 0.26, 0.25) (0.8, 0.29, 0.21) (0.71, 0.29, 0.11) (1, 0, 0) (0.78, 0.38, 0.4707)
(0.78, 0.26, 0.35) (0.89, 0.35, 0.33) (0.81, 0.29, 0.4372) (0.78, 0.38, 0.4707) (1, 0, 0)


Obviously, P2 6⊆ P, continually calculate P4 = P2 ×I I P2.

P4 =


(1, 0, 0) (0.83, 0.25, 0.17) (0.81, 0.35, 0.2) (0.81, 0.26, 0.25) (0.78, 0.26, 0.35)

(0.83, 0.25, 0.17) (1, 0, 0) (0.85, 0.4, 0.16) (0.8, 0.29, 0.21) (0.89, 0.35, 0.33)
(0.81, 0.35, 0.2) (0.85, 0.4, 0.16) (1, 0, 0) (0.71, 0.29, 0.11) (0.81, 0.29, 0.4372)
(0.81, 0.26, 0.25) (0.8, 0.29, 0.21) (0.71, 0.29, 0.11) (1, 0, 0) (0.78, 0.38, 0.4707)
(0.78, 0.26, 0.35) (0.89, 0.35, 0.33) (0.81, 0.29, 0.4372) (0.78, 0.38, 0.4707) (1, 0, 0)


It is clear that P4 = P2, that is, P2 is a (T, S)-SVNNEM.
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Step 3 Let (0.83, 0.25, 0.17) < λ ≤ (1, 0, 0). We have

(P2)λ =


(1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)


Then yi(i = 1, 2, 3, 4, 5) can be divided into five categories: {y1}, {y2}, {y3}, {y4}, {y5}.
Let (0.71, 0.29, 0.29) < λ ≤ (0.83, 0.25, 0.17). We have

(P2)λ =


(1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)


Then yi(i = 1, 2, 3, 4, 5) can be divided into four categories: {y1, y2}, {y3}, {y4}, {y5}.
Let (0, 0.4, 0.29) < λ ≤ (0.71, 0.29, 0.17). We have

(P2)λ =


(1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)


Then yi(i = 1, 2, 3, 4, 5) can be divided into three categories: {y1, y2}, {y3, y4}, {y5}.
Let (0, 1, 0.4707) < λ ≤ (0.71, 0.4, 0.29). We have

(P2)λ =


(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (0, 1, 1)
(0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)


Then yi(i = 1, 2, 3, 4, 5) can be divided into two categories: {y1, y2, y3, y4}, {y5}.
Let (0, 1, 1) ≤ λ ≤ (0.71, 0.4, 0.4707). We have

(P2)λ =


(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)


Then yi(i = 1, 2, 3, 4, 5) can be divided into one category: {y1, y2, y3, y4, y5}.
When T(a, b) = min(a, b), S(a, b) = max(a, b), the clustering results are as Table 2.
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Table 2. Clustering result of (T, S)-SVNNEM of type I.

λ Classification Results

(0.89, 0.33, 0.26) < λ ≤ (1, 0, 0) {y1}, {y2}, {y3}, {y4}, {y5}
(0.85, 1, 0.29) < λ ≤ (0.89, 0.33, 0.26) {y2, y5}, {y1}, {y3}, {y4}
(0.83, 1, 1) < λ ≤ (0.85, 0.33, 0.29) {y2, y3, y5}, {y1}, {y4}
(0.81, 1, 1) < λ ≤ (0.83, 0.33, 0.29) {y1, y2, y3, y5}, {y4}
(0, 1, 1) ≤ λ ≤ (0.81, 0.33, 0.29) {y1, y2, y3, y4, y5}

According to the neutrosophic orthogonal clustering algorithm proposed in literature [28],
the clustering results are as Table 3.

Table 3. Clustering algorithm in literature [28].

λ Classification Results

(1, 0, 0) {y1}, {y2}, {y3}, {y4}, {y5}
(0.6, 0.6, 0.3) {y1, y2}, {y3}, {y4}, {y5}
(0.5, 0.8, 0.4) {y1, y2, y3, y4}, {y5}
(0.2, 0.8, 0.5) {y1, y2, y3, y4, y5}

To compare (T, S)-SVNNEM clustering algorithm with intuitionistic fuzzy equivalent matrix
(IFEM) clustering algorithm in literature [19], we assume the indeterminacy-membership function
iyj(xi) is not considered in a SVNN of yj with respect to the attributes xi. Then this example reduces
to the example in literature [19]. According to the method proposed in literature [19], the clustering
results are as Table 4.

Table 4. Clustering algorithm in literature [19].

λ Classification Results

0.78 < λ ≤ 1 {y1}, {y2}, {y3}, {y4}, {y5}
0.71 < λ ≤ 0.78 {y1, y2, y3}, {y4}, {y5}

0 ≤ λ ≤ 0.71 {y1, y2, y3, y4, y5}

To compare with the fuzzy equivalent matrix (FEM) developed in literature [18], we only consider
the membership degree of SVNN information. According to the method proposed on literature [18],
the clustering results are as Table 5.

Table 5. Clustering algorithm in literature [18].

λ Classification Results

0.7 < λ ≤ 1 {y1}, {y2}, {y3}, {y4}, {y5}
0.6 < λ ≤ 0.7 {y1, y2, y3, y5}, {y4}
0 ≤ λ ≤ 0.6 {y1, y2, y3, y4, y5}

For convenient, we put results of five kinds of clustering algorithms into Table 6 for comparison.

Table 6. Clustering result of five kinds of clustering algorithms.

Class
(T , S)-SVNNEM Clustering Algorithms (T , S)-SVNNEM Clustering Algorithms

SVNN Orthogonal Clustering [28] FEM Clustering Algorithms [18] IFEM Clustering Algorithms [19]
(T(a, b) = min(a, b), S(a, b) = max(a, b)) (T(a, b) = ab, S(a, b) = a + b − ab)

1 {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5} {y1, y2, y3, y4, y5}
2 {y1, y2, y3, y5}, {y4} {y1, y2, y3, y4}, {y5} {y1, y2, y3, y4}, {y5} {y1, y2, y3, y5}, {y4} failed

3 {y2, y3, y5}, {y1}, {y4} {y1, y2}, {y3, y4}, {y5} failed failed {y1, y2, y3}, {y4}, {y5}
4 {y2, y5}, {y1}, {y3}, {y4} {y1, y2}, {y3}, {y4}, {y5} {y1, y2}, {y3}, {y4}, {y5} failed failed

5 {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5} {y1}, {y2}, {y3}, {y4}, {y5}
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5.2. Analysis of Comparative Results

From Table 6, we can see that the clustering results of five clustering methods are different.
The main reason can be given by following comparative analysis.

(1) For the (T, S)-SVNNEM clustering algorithm, when the dual triangular modules of type I and II
are chosen, they can be divided into five classifications with the same classification ability but
different classification results. The reason is the min and max operators (type I) easily overlook
the influence of other SVNN information on the whole.

(2) Compare our method with literatures [18,19], yi(i = 1, 2, 3, 4, 5) can only be divided into
three classifications by the FEM clustering algorithm in literature [18] and the IFEM clustering
algorithm in literature [19]. The reason is that in the clustering process we use the SVNNM
instead of the fuzzy matrix, which can better retain information. The classification results are
more reasonable and comprehensive.

(3) The method in literature [28] does not calculate the equivalence matrix based on the similarity
matrix, but from the classification results, yi(i = 1, 2, 3, 4, 5) can only be divided into four
classifications by SVNN orthogonal clustering algorithm in literature [28], while yi(i =

1, 2, 3, 4, 5) can be divided into five classifications by our clustering algorithm. For the example
given in this paper, it shows that the (T, S)-SVNNEM clustering algorithm classification result
is more accurate than SVNN orthogonal clustering algorithm in literature [28].

(4) Compared our method with the existing methods, as the value of λ changes, the result
remains stable. That is, λ keeps the classification result within a certain range. Such as,
when yi(i = 1, 2, 3, 4, 5) needs to be divided into three classifications, we have (0, 0.4, 0.29) <
λ ≤ (0.71, 0.29, 0.17). The classification results remain unchanged in this interval, while in
literature [18,28] it cannot be divided into three classifications.

6. Conclusions

Currently, SVNS is a generalization of FS and IFS. It is more suitable for dealing with uncertainty,
imprecise, incomplete and inconsistent information. In addition, clustering has attracted more and
more attention. In this paper, the concepts of a (T, S)-based composition matrix and (T, S)-based
single-valued neutrosophic number equivalence matrix have been developed. Further, a clustering
algorithm has been developed. In order to illustrate the effectiveness and superiority of our method,
a comparison example has been given. Finally, the comparative results of an example have been
analyzed which shows the superiority of our method.
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