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Abel-Grassmann’s groupoid and neutrosophic extended triplet loop are two important algebraic structures that describe two
kinds of generalized symmetries. In this paper, we investigate quasi AG-neutrosophic extended triplet loop, which is a fusion
structure of the two kinds of algebraic structures mentioned above. We propose new notions of AG-(l,r)-Loop and AG-(r,l)-Loop,
deeply study their basic properties and structural characteristics, and prove strictly the following statements: (1) each strong AG-
(l,r)-Loop can be represented as the union of its disjoint sub-AG-groups, (2) the concepts of strong AG-(l,r)-Loop, strong AG-(l,l)-
Loop, and AG-(l,lr)-Loop are equivalent, and (3) the concepts of strong AG-(r,l)-Loop and strong AG-(r,r)-Loop are equivalent.

1. Introduction

)e so-called left almost semigroup (LA-semigroup) was
actually the concept of an Abel-Grassmann’s groupoid (AG-
groupoid), which was put forward by Kazim and Naseer-
uddin [1] at the first time in 1972. Different classes of AG-
groupoids and their concerned characteristics have been
studied in [2–5].

Neutrosophic set (NS) was first put forward by Smar-
andache in [6]. )en, it has been growing promptly over the
previous 15 years. Nowadays, NS theory is widely used in a
couple of sectors such as professional selection [7], integrated
speech and text sentiment analysis [8], finite automata [9],
clusteringmethods [10], and deep learning [11]. Besides, more
new theoretical studies on NS in [12–17] have been conducted
and a few significant results have been gained.

)e concept of Abel-Grassmann’s neutrosophic ex-
tended triplet loop (AG-NET-Loop), which plays a signif-
icant role in neutrosophic triplet algebraic structures, was
proposed in [18], that is, an AG-NET-Loop is both an AG-
groupoid and a neutrosophic extended triplet loop (NET-
Loop). In [19], the concept of neutrosophic triplet elements
(NT-elements) and quasi neutrosophic triplet loops were

introduced. In [20], two kinds of quasi AG-NET-Loops
(AG-(l,l)-Loop and AG-(r,r)-Loop) were proposed and their
basic properties were investigated. As a continuation of [20],
we propose two other kinds of quasi AG-NET-Loops, which
are the AG-(l,r)-Loop and the AG-(r,l)-Loop. We study their
properties and analyze their relationship.

)e rest of this paper is arranged as follows. In Section 2,
some definitions and properties on quasi AG-NET-Loop are
given. Some properties and structures about the AG-(l,r)-
Loop are discussed in Section 3. )e relations among four
kinds of quasi AG-NET-Loops are analyzed in Section 4.
Some properties about the alternative quasi AG-NET-Loops
are discussed in Section 5. Lastly, Section 6 presents the
summary and the direction of future efforts.

2. Preliminaries

A groupoid (G, ∗ ) is called an AG-groupoid if it holds the
left invertive law, that is, for all x, y, z ∈ G,
(x∗y)∗ z � (z∗y)∗x. In an AG-groupoid (G, ∗ ) the
medial law holds, for all x1, x2, x3, x4 ∈ G,
(x1 ∗ x2)∗ (x3 ∗ x4) � (x1 ∗x3)∗ (x2 ∗ x4). An AG-
groupoid (G, ∗ ) is called locally associative if for all
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x ∈ G, (x∗ x)∗x � x∗ (x∗x). In an AG-groupoid (G, ∗ ),
for all x ∈ G, k ∈ Z+, xk is defined as follows: x1 � x, x2 �

x∗ x, x3 � x2 ∗x, x4 � x3 ∗ x, . . . , xk � xk−1 ∗x.

Definition 1 (see [21]). Let G be a nonempty set together
with a binary operation ∗. )en, G is called a neutrosophic
extended triplet set if, for all x ∈ G, there exist a neutral of
”x” and an opposite of ”x” (denoted by neut(x) and anti(x),
respectively), such that neut(x), anti(x) ∈ G, and
neut(x)∗ x � x∗neut(x) � x, anti (x)∗ x � x∗ anti(x) �

neut(x). )e triplet (x, neut(x), anti(x)) is called a neu-
trosophic extended triplet (NET).

Definition 2 (see [18]). An NETset (G, ∗ ) is called an NET-
Loop, if, for all x, y ∈ G, one has x∗y ∈ G.

Definition 3 (see [18]). An AG-groupoid (G, ∗ ) is called an
AG-NET-Loop if it is an NET-Loop.

An AG-NET-Loop G is called a commutative AG-NET-
Loop if for all x, y ∈ G, x∗y � y∗ x.

Theorem 1 (see [18]). Let (G, ∗ ) be an AG-NET-Loop.
-en,

(1) For all x ∈ G, neut(x) is unique
(2) For all x ∈ G, (neut(x))2 � neut(x)

Definition 4 (see [2]). AG-groupoid (G, ∗ ) is called regular
if, for all a ∈ G, there exists m ∈ G, a � (a∗m)∗ a.

Definition 5 (see [20]). Let (G, ∗) be an AG-groupoid.
)en, G is called an AG-(l,l)-Loop if, for all a ∈ G, there exist
a local (l,l)-neutral element of”a” and a local (l,l)-opposite
element of”a” (denoted by nll(a) and oll(a), respectively),
such that nll(a) ∈ G, oll(a) ∈ G, and nll(a) ∗ a � a and
oll(a)∗ a � nll(a).

Definition 6 (see [20]). Let (G, ∗ ) be an AG-groupoid.
)en, G is called an AG-(r,r)-Loop if, for all a ∈ G, there
exist a local (r,r)-neutral element of “a” and a local (r,r)-
opposite element of “a” (denoted by nrr(a) and orr(a),
respectively), such that nrr(a) ∈ G, orr(a) ∈ G, and
a∗ nrr(a) � a and a∗ orr(a) � nrr(a).

Definition 7. Let (G, ∗ ) be an AG-groupoid. )en, G is
called an AG-(l,r)-Loop if, for all a ∈ G, there exist a local
(l,r)-neutral element of “a” and a local (l,r)-opposite element
of ”a” (denoted by nlr(a) and olr(a), respectively), such that
nlr(a) ∈ G, olr(a) ∈ G, and nlr(a)∗ a � a and
a∗ olr(a) � nlr(a).

Remark 1. For quasi AG-NET-Loop, we will use the no-
tations such as AG-NET-Loop. If nlr(a) and olr(a) are not
unique, then the set of all local (l,r)-neutral elements of”a”
and the set of all local (l,r)-opposite elements of “a” are
denoted by nlr(a){ } and olr(a){ }, respectively.

Definition 8. Let (G, ∗ ) be an AG-groupoid. )en, G is
called an AG-(r,l)-Loop if, for all a ∈ G, there exist a local
(r,l)-neutral element of ”a” and a local (r,l)-opposite element
of”a” (denoted by nrl(a) and orl(a), respectively), such that
nrl(a) ∈ G, orl(a) ∈ G, and a∗ nrl(a) � a and orl(a)∗ a

� nrl(a).

Definition 9. Let (G, ∗ ) be an AG-(l,r)-Loop. )en, G is
called an AG-(l,lr)-Loop if, for all a ∈ G, olr(a)∗ a �

a∗ olr(a) � nlr(a).

Definition 10 (see [22]). An AG-groupoid G with a left
identity is called an AG-group if each a ∈ G has an inverse
element a′.

3. AG-(l,r)-Loop and Strong AG-(l,r)-Loop

Theorem 2. Let (G, ∗ ) be a groupoid. -en, G is an AG-
(l,r)-Loop iff it is a regular AG-groupoid.

Proof. Necessity: if G is an AG-(l,r)-Loop, fromDefinition 7,
for all a ∈ G, there exist nlr(a), olr(a) ∈ G, nlr(a)∗ a � a,
and a∗ olr(a) � nlr(a). We have (a∗ olr(a))∗ a � a. By
Definition 4, G is a regular AG-groupoid.

Sufficiency: if G is a regular AG-groupoid, from Defi-
nition 4, for all a ∈ G, there exists m ∈ G and
a � (a∗m)∗ a. Set nlr(a) � a∗m, by Definition 7, G is an
AG-(l,r)-Loop.

Example 1 illustrates that an AG-groupoid may be
neither an AG-(l,l)-Loop nor an AG-(l,r)-Loop nor an AG-
(r,r)-Loop nor an AG-(r,l)-Loop. □

Example 1. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 1. )ere is no
oll(2), olr(2), orr(2), and orl(2) in G. )at is, the element
“2” in G has no local (l,l)-opposite element, no local (l,r)-
opposite element, no local (r,r)-opposite element, and no
local (r,l)-opposite element. From Definitions 5–8, G is
neither an AG-(l,l)-Loop nor an AG-(l,r)-Loop nor an AG-
(r,r)-Loop nor an AG-(r,l)-Loop.

Example 2 illustrates that an AG-(l,r)-Loop may be
neither an AG-(l,l)-Loop nor an AG-(r,r)-Loop nor an AG-
(r,l)-Loop.

Example 2. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 2. FromDefinition 7, G is
an AG-(l,r)-Loop. However, there is no oll(2), nrr(2), and
nrl(2) in G. FromDefinitions 5, 6, and 8, G is neither an AG-
(l,l)-Loop nor an AG-(r,r)-Loop nor an AG-(r,l)-Loop.

Definition 11. An AG-(l,r)-Loop (G, ∗ ) is called a strong
AG-(l,r)-Loop if, for all a ∈ G, nlr(a)2 � nlr(a).

Example 3 illustrates that an AG-(l,r)-Loop is not always
a strong AG-(l,r)-Loop.

Example 3. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 3. FromDefinition 7, G is
an AG-(l,r)-Loop. However, nlr(2) � 3, 3∗ 3 � 1; thus, G is
not a strong AG-(l,r)-Loop.
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Example 4 illustrates that a strong AG-(l,r)-Loop is not
always an AG-NET-Loop.

Example 4. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 4. By Definition 11, G is
a strong AG-(l,r)-Loop. However, since 1∗ 4≠ 4∗ 1, G is not
an AG-NET-Loop.

Theorem 3. Let (G, ∗ ) be a strong AG-(l,r)-Loop. -en,

(1) For all a ∈ G, nlr(a) is unique
(2) For all a ∈ G, nlr(nlr(a)) � nlr(a)

(3) For all a ∈ G and for any
r ∈ olr(a){ }, nlr(a)∗ r ∈ olr(a){ }

(4) For all a, b ∈ G, nlr(a∗ b) � nlr(a)∗ nlr(b)

Proof

(1) If (G, ∗) is a strong AG-(l,r)-Loop, suppose a ∈ G,
there exist nlr1, nlr2 ∈ nlr(a){ }. By Definition 11,
nlr1 ∗ a � a, nlr2 ∗ a � a, nlr1 ∗ nlr1 � nl r1, and

nlr2 ∗ nlr2 � nlr2, and there exist olr1, olr2 ∈ G which
satisfy a∗ olr1 � nlr1 and a∗ olr2 � nlr2. We have

nlr1 ∗ nlr2 � nlr1 ∗ nlr1( 􏼁∗ nlr2

� nlr2 ∗ nlr1( 􏼁∗ nlr1

� nlr2 ∗ nlr1( 􏼁∗ a∗ olr1( 􏼁

� nlr2 ∗ a( 􏼁∗ nlr1 ∗ olr1( 􏼁

(by themedial law)

� nlr1 ∗ a( 􏼁∗ nlr1 ∗ olr1( 􏼁

� nlr1 ∗ nlr1( 􏼁∗ a∗ olr1( 􏼁

(by themedial law)

� nlr1 ∗ nlr1 � nlr1,

nlr2 ∗ nlr1 � nlr2 ∗ nlr2( 􏼁∗ nlr1

� nlr1 ∗ nlr2( 􏼁∗ nlr2

� nlr1 ∗ nlr2( 􏼁∗ a∗ olr2( 􏼁

� nlr1 ∗ a( 􏼁∗ nlr2 ∗ olr2( 􏼁

(by themedial law)

� nlr2 ∗ a( 􏼁∗ nlr2 ∗ olr2( 􏼁

� nlr2 ∗ nlr2( 􏼁∗ a∗ olr2( 􏼁

(by themedial law)

� nlr2 ∗ nlr2 � nlr2,

nlr2 � nlr2 ∗ nlr1

� nlr2 ∗ nlr2( 􏼁∗ nlr1

� nlr1 ∗ nlr2( 􏼁∗ nlr2

� nlr1 ∗ nlr2 � nlr1.

(1)

We know that nlr2 � nlr1, and nlr(a) is unique.

(2) If (G, ∗ ) is a strong AG-(l,r)-Loop, from Definition
11, we have, for all a ∈ G, nlr(a)2 � nlr(a). )us,
nlr(nlr(a)) � nlr(a).

(3) Suppose r ∈ olr(a){ }; then,

a∗ (nlr(a)∗ r) � (nlr(a) ∗ a)∗ (nlr(a) ∗ r)

� (nlr(a) ∗ nlr(a))∗ (a∗ r) (by themedial law)

� nlr(a)∗ nlr(a)

� nlr(a).

(2)

So, we get nlr(a)∗ r ∈ olr(a){ }.

(4) From Definition 11, we have, for all a, b ∈ G,

Table 1: Table of Example 1.
∗ 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1
2 1 1 1 2 1 1 1 1
3 1 1 3 1 1 1 1 1
4 1 2 1 4 1 1 1 1
5 1 1 1 1 5 1 1 1
6 1 1 1 1 1 6 8 8
7 1 1 1 1 1 8 7 8
8 1 1 1 1 1 8 8 8

Table 2: Table of Example 2.
∗ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 4 4 1 1
3 1 1 3 1 3 3 7
4 1 2 1 1 2 1 1
5 1 2 3 4 5 3 7
6 1 1 3 1 3 6 7
7 1 1 7 1 7 7 7

Table 3: Table of Example 3.
∗ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 3 3 1 3 3
3 1 2 1 2 1 2 2
4 1 2 3 4 5 6 7
5 1 1 1 5 5 1 1
6 1 2 3 6 1 6 6
7 1 2 3 7 1 6 7

Table 4: Table of Example 4.
∗ 1 2 3 4 5 6 7
1 1 1 3 4 1 1 1
2 1 2 3 4 1 1 1
3 4 4 1 3 4 4 4
4 3 3 4 1 3 3 3
5 1 1 3 4 5 1 1
6 1 1 3 4 1 6 6
7 1 1 3 4 1 6 7
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a∗ b � (nlr(a)∗ a)∗ (nlr(b)∗ b)

� (nlr(a)∗ nlr(b))∗ (a∗ b),

nlr(a)∗ nlr(b) � (a∗ olr(a)) ∗ (b∗ olr(b))

� (a∗ b)∗ (olr(a)∗ olr(b)).

(3)

)erefore, nlr(a∗ b) � nlr(a)∗ nlr(b). □

Example 5. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 5. It is a strong AG-(l,r)-
Loop. We have (corresponding to the results of )eorem 3)

(1) For all a ∈ G, we can verify that nlr(a) is unique.
(2) Being nlr(nlr(1)) � nlr(1), nlr(nlr(2)) � nlr(2),

nlr(nlr(3)) � nlr(3), nlr(nlr(4)) � nlr(4), nlr(nlr

(5)) � nlr(5), nlr(nlr(6)) � nlr(6), and nlr(nlr(7))

� nlr(7), that is, for all a ∈ G, nlr(nlr(a)) � nlr(a).
(3) For any a ∈ G, let a � 1, and we can get nlr(1) � 1

and olr(1){ } � 1, 2, 5, 6, 7{ }. Being 1∗ 1 � 1∗ 2 �

1∗ 5 � 1∗ 6 � 1∗ 7 � 1 ∈ olr(1){ }, that is, nlr(1)∗ o

lr(1) ∈ olr(1){ }, let a � 3, and we can get nlr(3) � 1,
olr(3) � 3. Being 1∗ 3 � 3 � olr(3), that is,
nlr(3)∗ olr(3) ∈ olr(3){ }, we can verify other cases;
thus, nlr(a)∗ r ∈ olr(a){ }.

(4) For any a, b ∈ G, without loss of generality, let
a � 1 and b � 3; we can get
nlr(1∗ 3) � nlr(1)∗ nlr(3). We can verify other
cases; thus, nlr(a∗ b) � nlr(a)∗ nlr(b).

Theorem 4. Let (G, ∗ ) be a strong AG-(l,r)-Loop. A binary
≈ on G is introduced as follows:

for all a, b ∈ G, a ≈ b⇔nlr(a) � nlr(b). (4)

-en,

(1) -e binary ≈ on G is an equivalence relation, and the
equivalent class contained x is denoted by [x]≈

(2) For all x ∈ G, [x]≈ is a sub-AG-group
(3) G � ∪ x∈G[x]≈, that is, each strong AG-(l,r)-Loop can

be represented as the union of its disjoint sub-AG-
groups

Proof

(1) From the binary ≈ definition, it is easy to verify
that ≈ has the properties of reflexive, symmetric,
and transitive. )us, it is an equivalence relation.

(2) For all a ∈ [x]≈, let nlr(x) � ex, and we have
nlr(a) � nlr(x) � ex. From )eorem 3 (2),
nlr(ex) � ex, and we have ex ∈ [x]≈:

(i) By Definition 11, we have ex ∗ a � nlr(a)∗ a � a;
thus, ex is a left identity of [x]≈.

(ii) For all a, b, c ∈ [x]≈, the left invertive law holds
directly.

(iii) For all a, b ∈ [x]≈, nlr(a) � nlr(b) � ex; from
)eorem 3 (4), nlr(a ∗ b) � nlr(a)∗ nlr(b) � ex;
thus, a∗ b ∈ [x]≈.

(iv) For all a ∈ [x]≈, let nlr(a) � ex, and suppose
p ∈ olr(a){ }, q � nlr(a)∗p; by )eorem 3 (3), we
have q ∈ olr(a){ }, a∗ q � nlr(a) � ex, and

nlr(q) � nlr(nlr(a) ∗p)

� nlr(nlr(a)) ∗ nlr(p) (by Theorem3(4))

� nlr(a)∗ nlr(p) (by Theorem 3(2))

� nlr(a∗p) (by Theorem 3(4))

� nlr(nlr(a))

� nlr(a) (by Theorem3(2))

� ex.

(5)

(v) q∗ a � (nlr(q)∗ q)∗ a � (ex ∗ q)∗ a �

(a∗ q)∗ ex � ex. )us, q ∈ [x]≈ and q is an inverse
element of a. From Definition 10, [x]≈ is a sub-AG-
group of G.

(3) By )eorem 3 (1), for all a ∈ [x]≈, nlr(a) is unique.
)en, G � ∪ x∈G[x]≈. □

Example 6. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 6. [1]≈ � 1, 2, 3, 4{ } and
[5]≈ � 5, 6, 7, 8{ }. G � [1]≈ ∪ [5]≈, and [1]≈ and [5]≈ are sub-
AG-groups of G.

Let G be an AG-groupoid; then, a is an idempotent in G

if a ∈ G, a2 � a. )e set of all idempotents in G is denoted by
E(G). An AG-groupoid G is called an AG-band if G � E(G).

From now on, we assume that G is a strong AG-(l,r)-
Loop, which is the same as)eorem 4. Let Y be an AG-band,
Y ⊂ G, and for any α ∈ Y, the equivalent class [α]≈, which is
defined in )eorem 4, will be denoted by Sα, and the ele-
ments of Sα will be denoted by aα, bα, . . . ,.

Theorem 5. Let (G, ∗) be a groupoid, Y be an AG-band,
Y ⊂ G. G � ∪ α∈YSα, (Sα,∗ ) is a strong AG-(l,r)-Loop with a
left identity eα for each α ∈ Y, and Sα ∩ Sβ � ∅,
α, β ∈ Y and α≠ β. If, for all aα ∈ Sα, for all bβ ∈ Sβ,
aα ∗ bβ � aα ∗ eα, and bβ ∗ aα � aα, then G is a strong AG-
(l,r)-Loop.

Table 5: Table of Example 5.
∗ 1 2 3 4 5 6 7
1 1 1 3 4 1 1 1
2 1 2 3 4 1 1 2
3 4 4 1 3 4 4 4
4 3 3 4 1 3 3 3
5 1 1 3 4 5 1 5
6 1 1 3 4 1 6 1
7 1 2 3 4 5 1 7
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Proof. Suppose G � ∪ α∈YSα is the groupoid, Y is an AG-
band, for each α ∈ Y, and Sα is a strong AG-(l,r)-Loop with a
left identity eα and Sα ∩ Sβ � ∅ if α≠ β in Y.

We first prove that G is an AG-groupoid. Let aα ∈ Sα,
bβ ∈ Sβ, and cc ∈ Sc be arbitrary elements. Since Sα, Sβ, and
Sc are strong AG-(l,r)-Loops, we have

aα ∗ bβ􏼐 􏼑∗ cc � aα ∗ eα( 􏼁∗ cc

� aα ∗ eα( 􏼁∗ eα

� eα ∗ eα( 􏼁∗ aα (by the left invertive law)

� eα ∗ aα � aα,

(6)

where (cc ∗ bβ)∗ aα � bβ ∗ aα � aα � (aα ∗ bβ)∗ cc. Since Sα
is a strong AG-(l,r)-Loop, the left invertive law holds directly
for elements aα, bα, cα ∈ Sα. )us, G is an AG-groupoid.

For any bβ ∈ Sβ, we have nlr(bβ) � eβ and olr(bβ)

∗ bβ � bβ ∗ olr(bβ) � eβ. Let x ∈ G − Sβ, we denote ex is the
left identity in [x]≈, LSβ � x|x∗ bβ � x∗ ex, bβ ∗x � x,􏽮

x ∈ G − Sβ}, and RSβ � x|x∗ bβ � bβ, bβ ∗ x � bβ ∗ eβ, x ∈􏽮

G − Sβ}. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
LSβ ∩ Sβ ∩RSβ � ∅ and LSβ ∪ Sβ ∪RSβ � G.

Depending on Sβ, we have three cases to discuss. □

case 1. LSβ � G − Sβ, RSβ � ∅, x ∈ LSβ, x∗ bβ � x∗ ex, and
bβ ∗ x � x. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
x∗ ex ∈ [x]≈, x∗ bβ ∉ Sβ. )at is, there is no element x ∉ Sβ
such that x∗ bβ � bβ.

case 2. LSβ � ∅, RSβ � G − Sβ, x ∈ RSβ, x∗ bβ � bβ, and bβ
∗ x � bβ ∗ eβ. Being Sα ∩ Sβ � ∅ if α≠ β in Y, we can get
bβ ∗ x � bβ ∗ eβ ∈ Sβ. )at is, there is no element x ∉ Sβ such
that x∗ bβ � bβ and bβ ∗y � x, and there exists y ∈ G − Sβ.

case 3. LSβ ≠∅ andRSβ ≠∅, when x ∈ LSβ, x∗ bβ � x∗
ex ∉ Sβ, and bβ ∗x � x ∉ RSβ; when x ∈ RSβ, x∗ bβ � bβ,

bβ ∗ x � bβ ∗ eβ ∉ RSβ. )at is, there is no element x ∉ Sβ
such that x∗ bβ � bβ and bβ ∗y � x, and there exists
y ∈ G − Sβ.

From all the above cases, bβ has a unique nlr(bβ) � eβ
and olr(bβ)􏽮 􏽯⊆Sβ. Consequently, G is a strong AG-(l,r)-
Loop.

Example 7. Let G � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13{ }, and
the definition of operation ∗ on G is shown in Table 7. An

AG-band Y � 1, 5, 9{ } and S1 � 1, 2, 3, 4{ }, e1 � 1,
S5 � 5, 6, 7, 8{ }, e5 � 5, and S9 � 9, 10, 11, 12, 13{ }, e9 � 9. For
any a1 ∈ S1, b5 ∈ S5, and c9 ∈ S9, without losing generality,
let a1 � 3, b5 � 7, and c9 � 10, and we have 3∗ 7 �

3∗ 1 and 7∗ 3 � 3, 3∗ 10 � 3∗ 1 and 10∗ 3 � 3, 7∗ 10 �

7∗ 5 and 10∗ 7 � 7, and (3∗ 7)∗ 10 � (10∗ 7)∗ 3. )e
other cases can be verified; thus, G is an AG-groupoid.

Let c9 � 10, LS9 � G − S9 � 1, 2, 3, 4, 5, 6, 7, 8{ } andRS9
� ∅; for all x ∈ LS9, there is no element x such that
x∗ 10 � 10. )at is, the element “10” has a unique nlr(10) �

9 and olr(10){ } � 13{ }⊆S9.
Let a1 �3, LS1�∅,RS1�G−S1� 5,6,7,8,9,10,11,12,13{ };

for all x∈RS1, 3∗x�3∗e1�3∗1� 4∉RS1; thus, there is no
element x such that there exists y∈RS1,x∗3�3,3∗y�x.
)at is, the element “3” has a unique nlr(3)�1 and
olr(3){ }� 4{ }⊆S1.

Let b5 � 7, LS5 � 1, 2, 3, 4{ }, andRS5 � 9, 10, 11, 12, 13{ },

when x ∈ LS5, x∗ 7 � x∗ ex ∉ S5, 7∗ x � x ∉ RS5; when
x ∈ RS5, x∗ 7 � 7, 7∗x � 7∗ e5 � 7∗ 5 � 8 ∉ RS5. )at is,
there is no element x ∉ S5 such that x∗ 7 � 7, 7∗y � x, and
there exists y ∈ G − S5. )e element “7” has a unique
nlr(7) � 5 and olr(7){ } � 7{ }⊆S5.

)e other cases can be verified; thus, G is a strong AG-
(l,r)-Loop.

Theorem 6. Let (G, ∗ ) be a groupoid, Y be an AG-band,
Y ⊂ G. G � ∪ α∈YSα, (Sα, ∗ ) be a strong AG-(l,r)-Loop with a
left identity eα for each α ∈ Y, and Sα ∩ Sβ � ∅,
α, β ∈ Y, α≠ β. If, for all aα ∈ Sα, for all bβ ∈ Sβ,
aα ∗ bβ � bβ, bβ ∗ aα � bβ ∗ eβ, then G is a strong AG-(l,r)-
Loop.

Proof. )eorem 6 is proved similarly to )eorem 5.
)e strong AG-(l,r)-Loop constructed by )eorem 5 is

not isomorphic to the strong AG-(l,r)-Loop constructed by
)eorem 6. □

Definition 12 (see [20]). An AG-(l,l)-Loop (G, ∗ ) is called a
strong AG-(l,l)-Loop if for all a ∈ G, nll(a)2 � nll(a).

Example 8 illustrates that an AG-(l,l)-Loop is not always
a strong AG-(l,l)-Loop.

Table 6: Table of Example 6.
∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 1 1 1 1
2 2 1 4 3 2 2 2 2
3 4 3 2 1 4 4 4 4
4 3 4 1 2 3 3 3 3
5 1 2 3 4 5 6 7 8
6 1 2 3 4 6 5 8 7
7 1 2 3 4 8 7 6 5
8 1 2 3 4 7 8 5 6

Table 7: Table of Example 7.
∗ 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 2 3 4 1 1 1 1 1 1 1 1 1
2 2 1 4 3 2 2 2 2 2 2 2 2 2
3 4 3 2 1 4 4 4 4 4 4 4 4 4
4 3 4 1 2 3 3 3 3 3 3 3 3 3
5 1 2 3 4 5 6 7 8 5 5 5 5 5
6 1 2 3 4 6 5 8 7 6 6 6 6 6
7 1 2 3 4 8 7 5 6 8 8 8 8 8
8 1 2 3 4 7 8 6 5 7 7 7 7 7
9 1 2 3 4 5 6 7 8 9 10 11 12 13
10 1 2 3 4 5 6 7 8 10 11 12 13 9
11 1 2 3 4 5 6 7 8 11 12 13 9 10
12 1 2 3 4 5 6 7 8 12 13 9 10 11
13 1 2 3 4 5 6 7 8 13 9 10 11 12
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Example 8. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 8. From Definitions 5
and 7, G is both an AG-(l,l)-Loop and an AG-(l,r)-Loop.
However, nll(1) � nlr(1) � 3, 3∗ 3 � 4≠ 3; thus, it is neither
a strong AG-(l,l)-Loop nor a strong AG-(l,r)-Loop.

Theorem 7. Let (G, ∗) be an AG-groupoid. -en, the fol-
lowing three statements are equivalent:

(1) G is a strong AG-(l,r)-Loop
(2) G is a strong AG-(l,l)-Loop
(3) G is an AG-(l,lr)-Loop

Proof

(1)⟹ (2). Suppose G is a strong AG-(l,r)-Loop; from
Definition 11, for all a ∈ G, there exist
nlr(a), olr(a) ∈ G, nlr(a)∗ a � a, a∗ olr(a) � nlr

(a), and nlr(a)2 � nlr(a). Let d � nlr(a)∗ olr(a),
and we have d∗ a � (nlr(a)∗ olr(a))∗ a � (a∗ olr

(a))∗ nlr (a) � nlr(a)2 � nlr(a). From Definition
12, G is a strong AG-(l,l)-Loop.

(2)⟹ (3). Suppose G is a strong AG-(l,l)-Loop; from
Definition 12, for all a ∈ G, there exist
nll(a), oll(a) ∈ G, nll(a)∗ a � a, oll(a)∗ a � nll(a),
and nll(a)2 � nll(a). So, a∗ oll(a) � (nll(a)∗ a)

∗ oll (a) � (oll(a)∗ a)∗ nll(a) � nll(a)2 � nll(a).
By Definition 9, G is an AG-(l,lr)-Loop.

(3)⟹ (1). If G is an AG-(l,lr)-Loop, from Definition 9,
for all a ∈ G, there exist nlr(a), olr(a) ∈ G,
nlr(a)∗ a � a, and olr(a)∗ a � a∗ olr(a) � nlr(a).
So, nlr(a)∗ nlr(a) � (olr(a)∗ a)∗ nlr(a) � (nlr(a)

∗ a)∗ olr(a) � a∗ olr(a) � nlr(a). By Definition
11, G is a strong AG-(l,r)-Loop.

Figure 1 shows the relationships among AG-(l,l)-Loop
and AG-(l,r)-Loop. Here, A stands for AG-NET-Loop, B
stands for strong AG-(l,r)-Loop shown in Example 4 rather
than AG-NET-Loop, C stands for AG-(l,r)-Loop and AG-
(l,l)-Loop shown in Example 8, which is, however, not strong
AG-(l,r)-Loop, D stands for AG-(l,l)-Loop rather than AG-
(l,r)-Loop, E stands for AG-(l,r)-Loop shown in Example 2
rather than AG-(l,l)-Loop, and F stands for AG-groupoid
shown in Example 1, which is, however, not either AG-(l,l)-
Loop or AG-(l,r)-Loop. A +B stands for strong AG-(l,r)-
Loop, A +B+C+D stands for AG-(l,l)-Loop, A +B+C+E
stands for AG-(l,r)-Loop, and A+B+C+D+E+F stands
for AG-groupoid. □

4. AG-(r,r)-Loop and AG-(r,l)-Loop

Theorem 8. Let (G, ∗ ) be an AG-(r,r)-Loop. -en,

(1) G is an AG-(r,l)-Loop
(2) G is an AG-(l,l)-Loop

Proof

(1) Suppose G is an AG-(r,r)-Loop; from Definition 6,
for all a ∈ G, there exist nrr(a), orr(a) ∈ G,
a∗ nrr(a) � a, and a∗ orr(a) � nrr(a). Let
q � orr(a)∗ nrr(a), and we have q∗ a � (orr(a)

∗ nrr(a))∗ a � (a∗ nrr(a)) ∗ orr(a) � a∗ orr(

a) � nrr(a). By Definition 8, G is an AG-(r,l)-Loop.
(2) Suppose G is an AG-(r,r)-Loop; from Definition 6,

for all a ∈ G, there exist nrr(a), orr(a) ∈ G,
a∗ nrr(a) � a, and a∗ orr(a) � nrr(a). Let
d � nrr(a)2 and q � nrr(a) ∗ orr(a), and we have
d∗a � (nrr(a)∗nrr(a))∗a � (a∗nrr(a))∗nrr(a)

� a ∗nrr(a) � aandq∗a � (nrr(a)∗orr(a))∗a �

(a∗orr(a))∗nrr(a) � nrr(a)∗nrr(a) � d.

By Definition 5, G is an AG-(l,l)-Loop. □

Definition 13. An AG-(r,r)-Loop (G, ∗ ) is called a strong
AG-(r,r)-Loop if for all a ∈ G, nrr(a)2 � nrr(a).

Definition 14. An AG-(r,l)-Loop (G, ∗ ) is called a strong
AG-(r,l)-Loop if for all a ∈ G, nrl(a)2 � nrl(a).

Example 9 illustrates that an AG-(r,r)-Loop is not always
a strong AG-(r,r)-Loop and an AG-(r,l)-Loop is not always a
strong AG-(r,l)-Loop.

Example 9. Let G � 1, 2, 3, 4, 5, 6, 7, 8{ }, and the definition of
operation ∗ on G is shown in Table 9. FromDefinitions 6, 8,
5, and 7, G is both an AG-(r,r)-Loop and an AG-(r,l)-Loop
and an AG-(l,l)-Loop and AG-(l,r)-Loop. However,
nrr(1) � 4, nrl(1) � 4, 4∗ 4 � 3≠ 4; nll(1) � 3, nlr(1) � 3, 3
∗ 3 � 4≠ 3. )us, G is neither a strong AG-(r,r)-Loop nor a

Table 8: Table of Example 8.
∗ 1 2 3 4 5 6 7 8
1 2 4 3 1 7 5 6 8
2 3 1 2 4 6 8 7 5
3 1 3 4 2 8 6 5 7
4 4 2 1 3 5 7 8 6
5 8 6 5 7 6 8 7 5
6 5 7 8 6 7 5 6 8
7 7 5 6 8 5 7 8 6
8 6 8 7 5 8 6 5 7

AB
DCE

F

Figure 1: )e relationships among AG-(l,l)-Loop and AG-(l,r)-
Loop.
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strong AG-(r,l)-Loop nor a strong AG-(l,l)-Loop nor a
strong AG-(l,r)-Loop.

Theorem 9. Let (G, ∗ ) be an AG-groupoid. -en, the fol-
lowing three statements are equivalent:

(1) G is a strong AG-(r,r)-Loop
(2) G is a strong AG-(r,l)-Loop
(3) G is an AG-NET-Loop

Proof

(1)⟹(2). Suppose G is a strong AG-(r,r)-Loop; from
Definition 13, for all a ∈ G, there exist nrr(a),

orr(a) ∈ G, a∗ nrr(a) � a, a∗ orr(a) � nrr(a), and
nrr(a)2 � nrr(a). Let q � orr(a)∗ nrr(a), and we
have q∗ a � (orr(a)∗ nrr(a))∗ a � (a∗ nrr(a))

∗ orr (a) � a∗ orr(a) � nrr(a). By Definition 14, G

is a strong AG-(r,l)-Loop.
(2)⟹(3). Suppose G is a strong AG-(r,l)-Loop; from

Definition 14, for all a ∈ G, there exist
nrl(a), orl(a) ∈ G, a∗ nrl(a) � a,
orl(a)∗ a � nrl(a) , and nrl(a)2 � nrl(a). So,
nrl(a)∗ a � (nrl(a)∗ nrl

(a))∗ a � (a∗ nrl(a))∗ nrl(a) � a∗ nrl(a) � a and
a∗ orl(a) � (nrl(a) ∗ a)∗ orl(a) � (orl(a)∗ a)∗ n

rl(a) � nrl(a)2 � nrl(a). By Definition 3, G is an
AG-NET-Loop.

(3)⟹(1). It is obvious that an AG-NET-Loop is a
strong AG-(r,r)-Loop.

Figure 2 shows the relationships among AG-(r,l)-Loop
and AG-(l,r)-Loop. Here, A stands for AG-NET-Loop, B
stands for AG-(r,l)-Loop and strong AG-(l,r)-Loop shown in
Example 4, which is, however, not AG-NET-Loop, C stands
for AG-(r,l)-Loop and AG-(l,r)-Loop shown in Example 9,
which is, however, not strong AG-(l,r)-Loop, D stands for
AG-(r,l)-Loop rather than AG-(l,r)-Loop, E stands for
strong AG-(l,r)-Loop rather than AG-(r,l)-Loop, F stands for
AG-(l,r)-Loop shown in Example 2, which is, however, not
either AG-(r,l)-Loop or strong AG-(l,r)-Loop, and G stands
for AG-groupoid shown in Example 1, which is, however,
not either AG-(l,r)-Loop or AG-(r,l)-Loop. A +B+E stands
for strong AG-(l,r)-Loop, A+B+C+D stands for AG-(r,l)-
Loop, A +B+C+E+ F stands for AG-(l,r)-Loop, and
A+B+C+D+E+F+G stands for AG-groupoid.

Figure 3 shows the relationships among AG-(r,l)-Loop
and AG-(l,l)-Loop. Here, A stands for AG-NET-Loop, B
stands for AG-(r,r)-Loop and strong AG-(l,l)-Loop shown in
Example 4, which is, however, not AG-NET-Loop, C stands
for AG-(r,r)-Loop shown in Example 9 rather than strong
AG-(l,l)-Loop, D stands for AG-(r,l)-Loop and AG-(l,l)-
Loop rather than AG-(r,r)-Loop, E stands for AG-(r,l)-Loop
rather than AG-(l,l)-Loop, F stands for strong AG-(l,l)-Loop
rather than AG-(r,l)-Loop, and G stands for AG-(l,l)-Loop,
which is, however, not either AG-(r,l)-Loop or a strong AG-
(l,l)-Loop. A +B+C stands for AG-(r,r)-Loop, A+B+F
stands for strong AG-(l,l)-Loop, A +B+C+D+E stands for
AG-(r,l)-Loop, and A+B+C+D+F+G stands for AG-
(l,l)-Loop. □

5. Alternative Quasi AG-NET-Loop

Definition 15. Let (G, ∗ ) be an AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop).
)en, G is called a right alternative AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop) if
b∗ (a∗ a) � (b∗ a)∗ a, for all a, b ∈ G.

Definition 16. Let (G, ∗) be an AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop).
)en, G is called an alternative AG-NET-Loop (AG-(l,l)-
Loop, AG-(l,r)-Loop, AG-(r,r)-Loop, and AG-(r,l)-Loop), if
for all a, b ∈ G, (a∗ a)∗ b � a∗ (a∗ b), a∗ (b∗ b) � (a∗
b)∗ b.

Example 10 illustrates that an AG-NET-Loop is not
always an alternative AG-NET-Loop.

Example 10. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 10. By Definition 3, G is

Table 9: Table of Example 9.

∗ 1 2 3 4 5 6 7 8
1 2 4 3 1 3 1 2 4
2 3 1 2 4 2 4 3 1
3 1 3 4 2 4 2 1 3
4 4 2 1 3 1 3 4 2
5 1 3 4 2 6 8 7 5
6 4 2 1 3 7 5 6 8
7 2 4 3 1 5 7 8 6
8 3 1 2 4 8 6 5 7

AB

D
C

FE

G

Figure 2: )e relationships among AG-(r,l)-Loop and AG-(l,r)-
Loop.

A
B

D
C F

E G

Figure 3: )e relationships among AG-(r,l)-Loop and AG-(l,l)-
Loop.
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an AG-NET-Loop. However, G is not an alternative AG-
NET-Loop because (3∗ 4)∗ 4≠ 3∗ (4∗ 4).

Theorem 10. Let (G, ∗ ) be an AG-NET-Loop. -en, the
following three statements are equivalent:

(1) G is a right alternative AG-NET-Loop
(2) G is a commutative AG-NET-Loop
(3) G is an alternative AG-NET-Loop

Proof

(1) ⇒(2). Suppose G is a right alternative AG-NET-
Loop; from Definition 15, for all a, b ∈ G,

a∗neut(b) � a∗ (neut(b)∗neut(b)) (by Theorem 1 (2))

� (a∗ neut(b))∗ neut(b) (by the right alternative law)

� (neut(b)∗neut(b))∗ a (by the left invertive law)

� neut(b)∗ a,

(7)

so

a∗ b � (neut(a)∗ a)∗ (b∗neut(b))

� (neut(a)∗ b)∗ (a∗neut(b)) (by themedial law)

� (b∗neut(a))∗ (neut(b)∗ a)

� (b∗neut(b))∗ (neut(a)∗ a)

� b∗ a.

(8)

Consequently, G is a commutative AG-NET-Loop.

(2) ⇒(3). If G is a commutative AG-NET-Loop, for all
m, n ∈ G, m∗ (n∗ n) � (n∗ n)∗m � (m∗ n)∗ n

and (m∗m)∗ n �

(n∗m)∗m � m∗ (n∗m) � m∗ (m∗ n). By Defi-
nition 16, G is an alternative AG-NET-Loop.

(3) ⇒(1). It is obvious that an alternative AG-NET-Loop
is a right alternative AG-NET-Loop. □

Theorem 11 (see [23]). Let (G, ∗ ) be a locally associative
AG-groupoid. If G is finite, then there exists a ∈ G, a2 � a.

Theorem 12. Let (G, ∗ ) be a right alternative AG-(r,l)-
Loop. If G is finite, then, for all a ∈ G, there exist
s, p ∈ G, a∗ s � a, p∗ a � s, and s2 � s.

Proof. If G is a finite right alternative AG-(r,l)-Loop. )en,
for all a ∈ G, there exist s, p ∈ G, a∗ s � a, andp∗ a � s,
and we have a∗ s2 � a∗ (s∗ s) � (a∗ s)∗ s � a∗ s � a.

When k ∈ Z+, k> 2,

a∗ s
k

� (a∗ s)∗ s
2 ∗ s

k− 2
􏼐 􏼑

� a∗ s
2

􏼐 􏼑∗ s∗ s
k− 2

􏼐 􏼑 (by themedial law)

� a∗ s
k− 1

� · · · · · ·

� a∗ s
2

� a.

(9)

)us, s, s2, s3, . . . , sk, . . . are all right neutral element.
By )eorem 11, we get that there is an idempotent right

neutral element in G. □

Theorem 13 (see [23]). Let (G, ∗ ) be a finite alternative
AG-(l,l)-Loop. -en, G is a strong AG-(l,l)-Loop.

Theorem 14. Let (G, ∗) be an AG-groupoid. -en, the
following three statements are equivalent:

(1) G is a finite right alternative AG-(r,l)-Loop
(2) G is a finite alternative AG-NET-Loop
(3) G is a finite alternative AG-(l,l)-Loop

Proof

(1) ⇒(2). If G is a finite right alternative AG-(r,l)-Loop,
applying )eorem 12, we get that G is a strong AG-
(r,l)-Loop. From )eorem 9, we get that G is a right
alternative AG-NET-Loop. Applying )eorem 10, G

is a finite alternative AG-NET-Loop.
(2) ⇒(3). It is obvious that a finite alternative AG-NET-

Loop is a finite alternative AG-(l,l)-Loop.
(3) ⇒(1). If G is a finite alternative AG-(l,l)-Loop, ap-

plying)eorem 13, we get that G is a strong AG-(l,l)-
Loop. From Definition 12, for all a ∈ G, there exist
nll(a), oll(a) ∈ G, nll(a)∗ a � a, oll(a) ∗ a � nll(a),
and nll(a)2 � nll(a). We have

Table 10: Table of Example 10.

∗ 1 2 3 4 5 6 7
1 1 4 2 3 3 1 2
2 3 2 4 1 1 3 4
3 4 1 3 2 2 4 3
4 2 3 1 4 4 2 1
5 2 3 1 4 5 2 1
6 1 4 2 3 3 6 2
7 4 1 3 2 2 4 7
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a∗ nll(a) � a∗ (nll(a) ∗ nll(a))

� (a∗ nll(a))∗ nll(a) (by the right alternative law)

� (nll(a)∗ nll(a))∗ a (by the left invertive law)

� nll(a)∗ a � a.

(10)

By Definition 15, G is a finite right alternative AG-(r,l)-
Loop. □

Example 11. Let G � 1, 2, 3, 4, 5, 6, 7{ }, and the definition of
operation ∗ on G is shown in Table 11. We can easily verify
that G satisfies the alternative law. Being each element in G

has a neutral element and an opposite element; by Definition
16, G is a finite alternative AG-NET-Loop. Obviously, a
finite alternative AG-NET-Loop is both a finite right al-
ternative AG-(r,l)-Loop and a finite alternative AG-(l,l)-
Loop. Since for all a, b ∈ G and a∗ b � b∗ a, we have G as a
commutative AG-NET-Loop.

Figure 4 shows the relationships among alternative AG-
NET-Loop and other alternative quasi AG-NET-Loops. In

Table 11: Table of Example 11.

∗ 1 2 3 4 5 6 7
1 2 5 4 1 3 1 1
2 5 3 1 2 4 2 2
3 4 1 5 3 2 3 3
4 1 2 3 4 5 4 4
5 3 4 2 5 1 5 5
6 1 2 3 4 5 6 4
7 1 2 3 4 5 4 7

Alternative AG – NET – Loop

Finite alternative AG – (l, l) – Loop

Commutative AG – NET – LoopRight alternative AG – NET – Loop

Finite alternative AG – NET – LoopFinite right alternative AG – (r, l) – Loop

Figure 4: )e relationships among alternative AG-NET-Loop and other alternative quasi AG-NET-Loops.

Two different composition methods of 
strong AG−(l, r)−Loop are obtained

Commutative AG–NET–Loop, alternative AG–NET–Loop
and right alternative AG–NET–Loop are equivalent

Strong AG−(r, l)−Loop, strong AG−(r, r)−Loop 
and AG−NET−Loop are equivalent

AG−(l, r)−Loop

Strong AG−(l, r)−Loop

AG−NET−Loop

Commutative AG−NET−Loop

Each strong AG−(l, r)−Loop can be represented 
as the union of its disjoint sub−AG−groups

Strong AG−(l, r)−Loop, strong AG−(l, l)−Loop 
and AG−(l, lr)−Loop are equivalent

Figure 5: )e main results of this paper.
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Figure 4, we prove that the right alternative AG-NET-Loop
is equivalent to the commutative AG-NET-Loop, and the
commutative AG-NET-Loop is equivalent to the alternative
AG-NET-Loop. As the finite right alternative AG-(r,l)-Loop
is equivalent to the finite alternative AG-(l,l)-Loop, the finite
alternative AG-(l,l)-Loop is equivalent to the finite alter-
native AG-NET-Loop; therefore, they are equivalent to each
other.

6. Conclusion

In this paper, the AG-(l,r)-Loop and AG-(r,l)-Loop have
been introduced, the structure of the quasi AG-NET-Loops
have been studied further, and some important results have
been obtained. We prove that the strong AG-(l,r)-Loop, the
strong AG-(l,l)-Loop, and the AG-(l,lr)-Loop are equivalent
(see )eorem 7); the strong AG-(r,l)-Loop, the strong AG-
(r,r)-Loop, and the AG-NET-Loop are equivalent (see
)eorem 9); the commutative AG-NET-Loop, the alterna-
tive AG-NET-Loop, and the right alternative AG-NET-Loop
are equivalent (see )eorem 10). Furthermore, the de-
composition theorem of strong AG-(l,r)-Loop (see )eorem
4) and two different ways how to make a strong AG-(l,r)-
Loop are obtained (see )eorem 5 and )eorem 6), thus
illuminating the structure of strong AG-(l,r)-Loop. Figure 5
shows the main results of this paper. Future efforts will be
directed towards discussing the relationship between strong
AG-(l,r)-Loop and other related AG-groupoid bands, such
as root of band, AG-4-band, and AG-3-band (see [24]).
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