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Abstract: Keeping in view the importance of new defined and well growing spherical fuzzy sets,
in this study, we proposed a novel method to handle the spherical fuzzy multi-criteria group
decision-making (MCGDM) problems. Firstly, we presented some novel logarithmic operations
of spherical fuzzy sets (SFSs). Then, we proposed series of novel logarithmic operators, namely
spherical fuzzy weighted average operators and spherical fuzzy weighted geometric operators. We
proposed the spherical fuzzy entropy to find the unknown weights information of the criteria. We
study some of its desirable properties such as idempotency, boundary and monotonicity in detail.
Finally, the detailed steps for the spherical fuzzy decision-making problems were developed, and a
practical case was given to check the created approach and to illustrate its validity and superiority.
Besides this, a systematic comparison analysis with other existent methods is conducted to reveal
the advantages of our proposed method. Results indicate that the proposed method is suitable and
effective for the decision process to evaluate their best alternative.

Keywords: spherical fuzzy sets; logarithmic spherical operational laws; logarithmic spherical
aggregation operators; entropy; multi-criteria group decision making (MCGDM) problems

1. Introduction

The complication of a system is growing every day in real life and getting the finest option from
the set of possible ones is difficult for the decision makers. To attain a single objective is difficult
to summarize but not incredible. Many organizations found difficulties with setting motivations,
goals and opinions’ complications. Thus, organizational decisions simultaneously include numerous
objectives, whether they regard individuals or committees. This reflection suggests, according to
criteria solved optionally, restricting each decision maker to attain an ideal solution-optimum under
each criterion involved in practical problems. Consequently, the decision maker is more concentrated
to establish more applicable and reliable techniques to find the best options.

To handle the ambiguity and uncertainty data in decision-making problems, the classical or crisp
methods cannot be always effective. Thus, dealing with such uncertain situations, Zadeh [1] in 1965
presented the idea of the fuzzy set. Zadeh assigns membership grades to elements of a set in the
interval [0,1] by offering the idea of fuzzy sets (FSs). Zadeh’s work in this direction is remarkable as
many of the set theoretic properties of crisp cases were defined for fuzzy sets. Fuzzy set theory got the
attention of researchers and found its applications in decision science [2], artificial intelligence [3], and
medical diagnosis [4], and its enormous applications are discussed in [5].

After many applications of fuzzy set theory, Atanassov observed that there are many shortcomings
in this theory and introduced the notion of intuitionistic fuzzy sets [6] to generalize the concept of

Entropy 2019, 21, 628; doi:10.3390/e21070628 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-8616-8829
http://dx.doi.org/10.3390/e21070628
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/7/628?type=check_update&version=2


Entropy 2019, 21, 628 2 of 36

Zadeh’s fuzzy set. In intuitionistic fuzzy sets, each element is expressed by an ordered pair, and each
pair is characterized by membership and non-membership grades on the condition that the sum of their
grades are less than or equal to 1. During the last few decades, the intuitionistic fuzzy sets (IFSs) are
fruitful and broadly utilized by researchers to grasp the ambiguity and imprecision data. To cumulate
all the executive of criteria for alternatives, aggregation operators play a vital role throughout the
information merging procedure. Xu [7] presented a weighted averaging operator while Xu and
Yager [8] developed a geometric aggregation operator for aggregating the different intuitionistic fuzzy
numbers. Verma [9] in 2015 proposed the generalized Bonferroni mean operator and, in [10], Verma and
Sharma proposed the measure of inaccuracy using intuitionistic fuzzy information. Deschrijver [11]
developed the IFS representation of t-norms and t-conorms. In some decision theories, the decision
makers deal with the situation of particular attributes where values of their summation of membership
degrees exceeds 1. In such conditions, IFS has no ability to obtain any satisfactory result. To overcome
this situation, Yager [12] developed the idea of a Pythagorean fuzzy set (PyFS) as a generalization
of IFS, which satisfies the fact that the value of square summation of its membership degrees is
less then or equal to 1. Clearly, PyFS is more flexible than IFS to deal with the imprecision and
ambiguity in the practical multi-criteria decision-making (MCDM) problems. Zhang and Xu [13]
established an extension of TOPSIS to MCDM with PyFS information. The error for the proof of
distance measure in Zhang and Xu [13] has been pointed out by Yang et al. [14]. For MCDM problems
in a Pythagorean fuzzy environment, Yager and Abbasov [15] developed a series of aggregation
operators. Peng and Yang [16] explained their relationship among these aggregation operators and
established the superiority and inferiority ranking (SIR) for the multi-criteria group decision-making
(MCGDM) method. Using Einstein operation, Garg [17] generalized Pythagorean fuzzy information
aggregation. Gou et al. [18] studied many Pythagorean fuzzy functions and investigated their
fundamental properties such as continuity, derivatively, and differentiability in detail. Zhang [19]
put forward a ranked qualitative flexible (QUALIFLEX) multi-criteria approach with the closeness
index-based ranking methods for multi-criteria Pythagorean fuzzy decision analysis. Zeng et al. [20]
explored a hybrid method for Pythagorean fuzzy MCDM. Zeng [21], applied the Pythagorean fuzzy
probabilistic OWA (PFPOWA) operator for MAGDM problems. For more study, we refer to [22–24].

IFS theory and PyFS theory have been successfully applied in different areas, but there are
situations that cannot be represented by it in real life, such as voting, we may face human opinions
involving more answers of the type: yes, abstain, no and refusal (for example, in a democratic election
station, the council issues’ 500 voting papers for a candidate. The voting results are divided into four
groups accompanied with the number of papers that are vote for (251), abstain (99), vote against
(120) and refusal of voting (30). Here, group abstain means that the voting paper is a white paper
rejecting both agree and disagree for the candidate but still takes the vote, group refusal of voting is
either invalid voting papers or did not take the vote. The candidate is successful because the number
of support papers is over 50% (i.e., 250).

However, at least five people said later on in their blogs that they support the candidate in the
last moment because they find that the support number seems larger than the against number. Such
kind of examples (in which the number of abstains is a key factor and the group refusal of voting
indeed exists) happened in reality and IFS and PyFS could not handle it). Thus, Cuong [25] proposed
a new notion named picture fuzzy sets, which is an extension of fuzzy sets and intuitionistic fuzzy
sets. Picture fuzzy sets give three membership degrees of an element named the positive membership
degree, the neutral membership degree, and the negative membership degree, respectively. The picture
fuzzy set solved the voting problem successfully, and is applied to clustering [26], fuzzy inference [27],
and decision-making [28–35].

The neutrosophic set is another important generalizations of the classic set, fuzzy set, intuitionistic
fuzzy set and picture fuzzy set to deal with uncertainties in decision-making problems. Many authors
contributed in the decision-making theory using neutrosophic information. Ashraf [36] proposed
the logarithmic hybrid aggregation operators for single value neutrosophic sets. Dragan et al. [37]
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proposed the novel approach for the selection of power generation technology using the combinative
distance-based assessment (CODAS) method. Many decision-making approaches like [38,39] make
important contributions using neutrosophic information.

The picture fuzzy set becomes more famous by introducing various kinds of aggregation operators.
However, it has a shortcoming in that it is only valid for the environment whose sum of degrees is
less than or equal to one. However, in day-to-day life, there are many situations where this condition
is ruled out. For instance, if a person giving their preference in the form of positive, neutral and
negative membership degrees towards a particular object is 0.7, 0.3 and 0.5, then clearly this situation
is not handling with picture fuzzy set. In order to resolve it, Ashraf [40] proposed the notion of
the spherical fuzzy set. For instance, corresponding to the above-considered example, we see that
(0.7)2 + (0.3)2 + (0.5)2 = 0.94 and hence a spherical fuzzy set (SFS) is an extension of the existing
extensions of fuzzy set theories. In the spherical fuzzy set, each element can be written in the form of
triplet component, and each pair is categorized by a positive membership degree, a neutral membership
degree and a negative membership degree such that the sum of their square is less than or equal to
one. Ashraf [41] proposed some series of spherical aggregation operators using t-norm and t-conorm
and gave its applications to show the effectiveness of proposed operators. Ashraf in [42] proposed
the GRA method based on a spherical linguistic fuzzy Choquet integral environment and gave its
application. For more study, we refer to [43–45]

The logarithmic operations being good alternatives, compared with the algebraic operations, have
the potential to offer similar smooth estimations as the algebraic operations. However, there is little
investigation on logarithmic operations on the IFSs and PyFSs. Motivated by these ideas, we develop a
spherical fuzzy MCDM method based on the logarithmic aggregation operators, with the logarithmic
operations of the spherical fuzzy sets (SFSs) handling spherical fuzzy MCDM within SFSs.

Thus, the goal of this article is to propose the decision-making method for MCDM problems in
which there exist the interrelationships among the criteria. The contributions of this study are:

• We develop some novel logarithmic operations for spherical fuzzy sets, which can overcome the
weaknesses of algebraic operations and capture the relationship between various SFSs.

• We extend logarithmic operators to logarithmic spherical fuzzy operators, namely logarithmic
spherical fuzzy weighted averaging (L-SFWA), logarithmic spherical fuzzy ordered weighted
averaging (L-SFOWA), logarithmic spherical fuzzy hybrid weighted averaging (L-SFHWA),
logarithmic spherical fuzzy weighted geometric (L-SFWG), logarithmic spherical fuzzy ordered
weighted geometric (L-SFOWG) and logarithmic spherical fuzzy hybrid weighted geometric
(L-SFHWG) to SFSs, which can overcome the algebraic operators’ drawbacks.

• We develop the spherical fuzzy entropy for spherical fuzzy information, which can help to find
the unknown weights information of the criteria.

• We develop an algorithm to deal with multi-attribute decision-making problems using spherical
fuzzy information.

• To show the effectiveness and reliability of the proposed spherical fuzzy logarithmic aggregation
operators, the application of the proposed operator in emerging technology enterprises
is developed.

• Results indicate that the proposed technique is more effective and gives more accurate output as
compared to existing studies.

In order to attain the research goal that has been stated above, the organization of this article is offered
as: Section 2 concentrates on some basic notions and operations of existing extensions of fuzzy set
theories and also some discussion to propose the spherical fuzzy entropy. Section 3 presents some
novel logarithmic operational laws of SFSs. Section 4 defines the logarithmic aggregation operators for
SFNs and discusses its properties. Section 5 presents an approach for handling the spherical fuzzy
MCDM problem based on the proposed logarithmic operators. Section 5.1 uses an application case to
verify the novel method and Section 5.2 presents the comparison study about algebraic and logarithmic
aggregation operators. Section 6 concludes the study.
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2. Preliminaries

The concepts and basic operations of existing extensions of fuzzy sets are recalled in this section,
and they are the foundation of this study.

Definition 1 ([27]). A mapping T̂ : Θ×Θ→ Θ is said to be triangular-norm if each element T̂ satisfies that:
(1) T̂ is commutative, monotonic and associative,
(2) T̂ (v∗, 1) = v∗, each v∗ ∈ T̂,
where Θ = [0, 1] is the unite interval.

Definition 2 ([27]). A mapping Ŝ : Θ×Θ → Θ is said to be triangular-conorm if each element Ŝ satisfies
that
(1) Ŝ is commutative, monotonic and associative,
(2) Ŝ (v∗, 0) = v∗, each v∗ ∈ Ŝ,
where Θ = [0, 1] is the unite interval.

As different norms are the curial elements for proposing aggregation operators in fuzzy set theory,
here we enlist some basic norms operations for fuzzy sets in Figure 1.

t-norm t-conorm Proposed By

min(x, y) max(x, y) Zadeh
x.y x + y− x.y Goguen and Bandler

(x1 ∧ y1, x2 ∧ y2, x3 ∨ y3) (x1 ∨ y1, x2 ∧ y2, x3 ∧ y3) Cuong
(x1 ∧ y1, x2.y2, x3 ∨ y3) (x1 ∨ y1, x2.y2, x3 ∧ y3) Cuong

(x1.y1, x2.y2, x3 + y3 − x3.y3) (x1 + y1 − x1.y1, x2.y2, x3, y3) Cuong

Figure 1. Basic Norms Operations.

Now, we enlist different types of norms with its generators too in Figures 2 and 3.

Name t-norm Additive Generators

Algebric TA (x, y) = xy t(r1) = − log r1
Einstein TA (x, y) = xy

1+(1−x)(1−y) t(r1) = log 2−r1
r1

Hamacher TA (x, y) = xy
γ+(1−γ)(x+y−xy) , γ > 0 t(r1) = log γ+(1−γ)r1

r1
, γ > 0

Frank TA (x, y) = logγ

(
1 + (γx−1)(γy−1)

γ−1

)
, γ > 0

γ = 1, t(r1) = − log r1

γ 6= 1, t(r1) = − log γ−1
γr1−1

Figure 2. T-norm with its Generators.

Name t-conorm Additive Generators

Algebric SA (x, y) = x + y− xy s(r1) = − log (1− r1)

Einstein SA (x, y) = x+y
1+xy s(r1) = log 1+r1

1−r1

Hamacher SA (x, y) = x+y−xy−(1−γ)xy
1−(1−γ)xy , γ > 0 s(r1) = log γ+(1−γ)(1−r1)

1−r1
, γ > 0

Frank SA (x, y) = 1− logγ

(
1 + (γ1−x−1)(γ1−y−1)

γ−1

)
, γ > 0

γ = 1, s(r1) = − log (1− r1)

γ 6= 1, s(r1) = − log γ−1
γ1−r1−1

Figure 3. T-conorm with its Generators.

Definition 3 ([15]). For a set <, by a Pythagorean fuzzy set in <, we mean a structure

ε = {〈Pσ (řγ) , Nσ (řγ)〉 |řγ ∈ <} ,

in which Pσ : < → Θ and Nσ : < → Θ indicate that the positive and negative grades in <, Θ = [0, 1] are the
unit intervals. In addition, the following condition satisfied by ρσ and Nσ is 0 ≤ P2

σ (řγ) + N2
σ (řγ) ≤ 1; for all

řg ∈ <. Then, ε is said to be a Pythagorean fuzzy set in <.
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Definition 4 ([25]). For a set <, by a picture fuzzy set in <, we mean a structure

ε = {〈Pσ (řγ) , Iσ (řγ) , Nσ (řγ)〉 |řγ ∈ <} ,

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θindicate that the positive, neutral and negative grades
in <, Θ = [0, 1] are the unit intervals. In addition, the following condition satisfied by Pσ, Iσ and Nσ is
0 ≤ Pσ (řγ) + Iσ (řγ) + Nσ (řγ) ≤ 1, for all řγ ∈ <. Then, ε is said to be a picture fuzzy set in <.

Definition 5 ([40]). For a set <, by a spherical fuzzy set in <, we mean a structure

ε = {〈Pσ (řγ) , Iσ (řγ) , Nσ (řγ)〉 |řγ ∈ <} ,

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate that the positive, neutral and negative grades
in <, Θ = [0, 1] are the unit intervals. In addition, the following condition satisfies by Pσ, Iσ and Nσ is
0 ≤ P2

σ (řγ) + I2
σ (řγ) + N2

σ (řγ) ≤ 1, for all řγ ∈ <. Then, ε is said to be a spherical fuzzy set in <.

χσ (řγ) =
√

1−
(

P2
σ (řγ) + I2

σ (řγ) + N2
σ (řγ)

)
is said to be a refusal degree of řγ in <, for SFS

{〈Pσ (řγ) , Iσ (řγ) , Nσ (řγ)〉 |řγ ∈ <}, which is triple components 〈Pσ (řγ) , Iσ (řγ) , andNσ (řγ)〉 is said to
SFN denoted by e = 〈Pe, Ie, Ne〉, where Pe, Ie and Ne ∈ [0, 1], with the condition that: 0 ≤ P2

e + I2
e + N2

e ≤ 1.

Ashraf and Abdullah [40] proposed the basic operations of spherical fuzzy set as follows:

Definition 6. For any two SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

and εq =〈
Pξq (řγ) , Iξq (řγ) , Nξq (řγ)

〉
in <. The union, intersection and compliment are proposed as:

(1) ερ ⊆ εq i f f ∀řγ ∈ <, Pξρ (řγ) ≤ Pξq (řγ) , Iξρ (řγ) ≤ Iξq (řγ) and Nξρ (řγ) ≥ Nξq (řγ);
(2) ερ = εq i f f ερ ⊆ εq and εq ⊆ ερ;

(3) ερ ∪ εq =
〈

max
(

Pξρ
, Pξq

)
, min

(
Iξρ

, Iξq

)
, min

(
Nξρ

, Nξq

)〉
;

(4) ερ ∩ εq =
〈

min
(

Pξρ
, Pξq

)
, min

(
Iξρ

, Iξq

)
, max

(
Nξρ

, Nξq

)〉
;

(5) ερ =
〈

Nξρ
, Iξρ

, Pξρ

〉
.

Definition 7. For any two SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

and εq =〈
Pξq (řγ) , Iξq (řγ) , Nξq (řγ)

〉
in < and β ≥ 0; then, the operations of SFNs are proposed as

(1) ερ ⊕ εq =
{√

P2
ξρ
+ P2

ξq
− P2

ξρ
· P2

ξq
, Iξρ
· Iξq , Nξρ

· Nξq

}
;

(2) β · ερ =
{√

1− (1− P2
ξρ
)β, (Iξρ

)β, (Nξρ
)β
}

;

(3) ερ ⊗ εq =
{

Pξρ
· Pξq , Iξρ

· Iξq ,
√

N2
ξρ
+ N2

ξq
− N2

ξρ
· N2

ξq

}
;

(4) ε
β
ρ =

{
(Pξρ

)β, (Iξρ
)β,
√

1− (1− N2
ξρ
)β
}

.

(5) βερ =


(

β

√
1−ρ2

ξρ ,
√

1− β
2Iξρ ,

√
1− β

2Nξρ

)
i f β ∈ (0, 1) ,((

1
β

)√1−ρ2
ξρ ,

√
1−

(
1
β

)2Iξρ ,

√
1−

(
1
β

)2Nξρ

)
i f β ≥ 1.

Ashraf and Abdullah [40] introduced some properties based on Definition 7 as follows:

Definition 8. For any three SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

, εq =
〈

Pξq (řγ) , Iξq (řγ) , Nξq (řγ)
〉

and ε l =
〈

Pσl (řγ) , Iσl (řγ) , Nσl (řγ)
〉

in < and β1, β2 ≥ 0. Then,
(1) ερ ⊕ εq = εq ⊕ ερ;
(2) ερ ⊗ εq = εq ⊗ ερ;
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(3) β1(ερ ⊕ εq) = β1ερ ⊕ β1εq, β1 > 0;
(4) (ερ ⊗ εq)β1 = ερ ⊗ εq, β1 > 0;
(5) β1ερ ⊕ β2ερ = (β1 + β2)ερ, β1 > 0, β2 > 0;
(6) ερ ⊗ ερ = ερ, β1 > 0, β2 > 0;
(7) (ερ ⊕ εq)⊕ ε l = ερ ⊕ (εq ⊕ ε l);
(8) (ερ ⊗ εq)⊗ ε l = ερ ⊗ (εq ⊗ ε l).

Definition 9. For any SFN, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <. Then, score and accuracy values are
defined as
(1) S̃(ερ) =

1
3 (2 + Pξρ

− Iξρ
− Nξρ

) ∈ [0, 1]

(2) Ã(ερ) =
(

Pξρ
− Nξρ

)
∈ [0, 1] .

The score and accuracy values defined above suggest which SFN is greater than other SFNs. The
comparison technique is defined in the next definition.

Definition 10. For any SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2) in <. Then, the comparison

technique is proposed as
(1) If S̃(ε1) < S̃(ε2), then ε1 < ε2,
(2) If S̃(ε1) > S̃(ε2), then ε1 > ε2,
(3) If S̃(ε1) = S̃(ε2), then
(a) Ã(ε1) < Ã(ε2), then ε1 < ε2,
(b) Ã(ε1) > Ã(ε2), then ε1 > ε2,
(c) Ã(ε1) = Ã(ε2), then ε1 ≈ ε2.

Ashraf and Abdullah [40] proposed aggregation operators for SFNs based on different norms:

Definition 11. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of the spherical weighted averaging (SFWA) operator is

SFWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρερ,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.

Definition 12. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of the spherical order weighted averaging (SFOWA) operator is

SFOWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρεη(ρ),

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0, ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value is

εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Definition 13. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of the spherical hybrid weighted averaging (SFHWA) operator is

SFHWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρε∗η(ρ),
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where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0, ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In addition, the

associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

Definition 14. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of spherical weighted geometric (SFWG) operator is

SFWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
ερ

)βρ ,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.

Definition 15. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of the spherical order weighted geometric (SFOWG) operator is

SFOWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
εη(ρ)

)βρ
,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0, ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value is

εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Definition 16. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <. The

structure of spherical hybrid weighted geometric (SFHWG) operator is

SFHWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
ε∗η(ρ)

)βρ
,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0, ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In addition,

associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

3. Entropy

Basically, we familiarize the concept of entropy, when probability measures the discrimination
of criteria being imposed on multi-attribute decision-making problems. Non-probabilistic entropy
firstly approximated by De Luca and Termini [46] also presented some necessities to find intuitive
comprehension of the degree of fuzziness. Many researchers are getting interest in this field and have
done a lot of work such as Scmidt and Kacprzyk [47] proposing some axioms for distance between
intuitionistic fuzzy sets and non-probabilistic entropy measure for them. In this section, we recall the
concept of Shannon entropy, fuzzy entropy, entropy for Pythagorean fyzzy numbers and propose the
entropy for spherical fuzzy numbers.

Definition 17 ([48]). Let δ
(
ηρ

)
ρ ∈ {1, 2, ..., n} be the set of n-complete probability distributions. Shannon

entropy for δ
(
ηρ

)
ρ ∈ {1, 2, ..., n} probability distribution is defined as

Es (δ) = −
n

∑
ρ=1

δ
(
ηρ

)
log δ

(
ηρ

)
.

.
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Definition 18 ([49]). Let F be any fuzzy set in <, fuzzy entropy for the set F, we mean a structure

F (δ) = − 1
n

n

∑
ρ=1

[
P
(
ηρ

)
log P

(
ηρ

)
+
(
1− P

(
ηρ

))
log
(
1− P

(
ηρ

))]
.

Definition 19 ([49]). Let F be any fuzzy set in <, and, for Pythagorean fuzzy entropy for the set F, we mean a
structure

Pyq =

1 + 1
n

n
∑

ρ=1
(Pi log (Pi) + Ni log (Ni))

n
∑

q=1

(
1 + 1

n

n
∑

ρ=1
Pi log (Pi) + Ni log (Ni)

) .

Definition 20. Let F be any fuzzy set in <, spherical fuzzy entropy for the set F, and we mean a structure

γq =

1 + 1
n

n
∑

ρ=1
(Pi log (Pi) + Ii log (Ii) + Ni log (Ni))

n
∑

q=1

(
1 + 1

n

n
∑

ρ=1
Pi log (Pi) + Ii log (Ii) + Ni log (Ni)

) .

4. Spherical Fuzzy Logarithmic Operational Laws

Motivated by the novel concept of spherical fuzzy set, we introduced some novel logarithmic
operational laws for SFNs. As real number system `ogσ0 is meaningless and `ogσ1 is not defined
therefore, in our study, we take nonempty spherical fuzzy sets and σ 6= 1, where σ is any real number.

Definition 21. For any SFN, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <. The logarithmic spherical fuzzy
number is defined as

`ogσερ =

{〈√
1−

(
`ogσPξρ (řγ)

)2
, `ogσ

(√
1− I2

ξρ
(řγ)

)
, `ogσ

(√
1− N2

ξρ
(řγ)

)〉
|řγ ∈ <

}

in which Pσ : < → Θ, Iσ : < → Θ and Nσ : < → Θ indicate that the positive, neutral and negative grades
in <, Θ = [0, 1] are the unit intervals. In addition, the following condition satisfies by Pσ, Iσ and Nσ is
0 ≤ P2

σ (řγ) + I2
σ (řγ) + N2

σ (řγ) ≤ 1 for all řγ ∈ <. Therefore, the membership grade is√
1−

(
`ogσPξρ (řγ)

)2
: < → Θ, such that 0 ≤

√
1−

(
`ogσPξρ (řγ)

)2
≤ 1, ∀řγ ∈ <,

the neutral grade is

`ogσ

(√
1− I2

ξρ
(řγ)

)
: < → Θ, such that 0 ≤ `ogσ

(√
1− I2

ξρ
(řγ)

)
≤ 1, ∀řγ ∈ <,

and the negative grade is

`ogσ

(√
1− N2

ξρ
(řγ)

)
: < → Θ, such that 0 ≤ `ogσ

(√
1− N2

ξρ
(řγ)

)
≤ 1, ∀řγ ∈ <.

Therefore,

`ogσερ =

{〈√
1−

(
`ogσPξρ (řγ)

)2
, `ogσ

(√
1− I2

ξρ
(řγ)

)
, `ogσ

(√
1− N2

ξρ
(řγ)

)〉
|řγ ∈ <

}
0 < σ ≤ min

{
Pξρ

,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
≤ 1, σ 6= 1
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is SPN.

Definition 22. For any SFN, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <. If

`ogσερ =




√

1−
(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 0 < σ ≤ min

{
Pξρ

,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1,


√

1−
(
`og 1

σ
Pξρ (řγ)

)2
,

`og 1
σ

(√
1− I2

ξρ
(řγ)

)
,

`og 1
σ

(√
1− N2

ξρ
(řγ)

)
 0 < 1

σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1,

σ 6= 1,

then the function `ogσερ is known to be a logarithmic operator for a spherical fuzzy set, and its value is called
logarithmic SFN (L-SFN). Here, we take `ogσ0 = 0, σ > 0, σ 6= 1.

Theorem 1. For any SFN, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <, then `ogσερ is also a spherical
fuzzy number.

Proof. Since any SFN ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <, which means that Pσ : < → Θ, Iσ : < →
Θ and Nσ : < → Θ indicate that the positive, neutral and negative grades in <, Θ = [0, 1] are the
unit intervals. In addition, the following condition satisfied by Pσ, Iσ and Nσ is 0 ≤ P2

σ (řγ) + I2
σ (řγ) +

N2
σ (řγ) ≤ 1. The following two cases happen.

Case-1 When 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1 and since `ogσερ is a

decreasing function w.r.t σ. Thus, 0 ≤ `ogσPξρ
, `ogσ

(√
1− I2

ξρ

)
, `ogσ

(√
1− N2

ξρ

)
≤ 1 and hence

0 ≤
√

1−
(
`ogσPξρ (řγ)

)2
≤ 1, 0 ≤ `ogσ

(√
1− I2

ξρ
(řγ)

)
≤ 1, 0 ≤ `ogσ

(√
1− N2

ξρ
(řγ)

)
≤ 1 and

0 ≤
√

1−
(
`ogσPξρ (řγ)

)2
+ `ogσ

(√
1− I2

ξρ
(řγ)

)
+ `ogσ

(√
1− N2

ξρ
(řγ)

)
≤ 1. Therefore, `ogσερ is

SFN.
Case-2 When σ > 1, 0 < 1

σ < 1 and 1
σ ≤ min

{
Pξρ

,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
; similar to the above,

we can find that `ogσερ is SFN. Thus, the procedure is eliminated here.

Example 1. Suppose that, for any SFN, ερ = 〈0.8, 0.5, 0.3〉 in < with σ = 0.4, then

`ogσερ =

(√
1− (`og0.4 (0.8))2, `og0.4

(√
1− (0.5)2

)
, `og0.4

(√
1− (0.3)2

))
= (0.969, 0.156, 0.051) .

In addition, if σ = 8, then it follows:

`og 1
σ

ερ =

(√
1−

(
`og 1

8
(0.8)

)2
, `og 1

8

(√
1− (0.5)2

)
, `og 1

8

(√
1− (0.3)2

))
= (0.994, 0.069, 0.022) .

Now, we give some discussion on the basic properties of the L-SFN.
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Theorem 2. For any SFN, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉

in <. If 0 < σ ≤

min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1 then

(1) σ`ogσερ = ερ;
(2) `ogσσερ = ερ.

Proof. (1) According to Definitions 7 and 22, we obtain

σ`ogσερ =

σ

√√√√1−
(√

1−
(
`ogσρξρ

)2
)2

,

√
1− σ

2`ogσ

√
1−I2

ξρ ,

√
1− σ

2`ogσ

√
1−N2

ξρ


=

σ

√
1−
(

1−
(
`ogσρξρ

)2
)

,
√

1−
(

1− I2
ξρ

)
,
√

1−
(

1− N2
ξρ

)
=

(
σ
`ogσρξρ , Iξρ

, Nξρ

)
=

(
ρξρ

, Iξρ
, Nξρ

)
= ερ.

(2) According to Definition 22, we obtain

`ogσσερ = `ogσ

(
σ

√
1−ρ2

ξρ ,
√

1− σ
2Iξρ ,

√
1− σ

2Nξρ

)

=



√
1−

(
`ogσσ

√
1−ρ2

ξρ

)2

, `ogσ

√1−
(√

1− σ
2Iξρ

)2
 ,

`ogσ

√1−
(√

1− σ
2Nξρ

)2




=


√

1−
(

1− ρ2
ξρ

)
, `ogσ

(√
1−

(
1− σ

2Iξρ

))
,

`ogσ

(√
1−

(
1− σ

2Nξρ

))


=
(

ρξρ
, Iξρ

, Nξρ

)
= ερ.

Definition 23. For any two L-SFNs, `ogσερ =


√

1−
(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 and `ogσεq =


√

1−
(
`ogσPξq (řγ)

)2
,

`ogσ

(√
1− I2

ξq
(řγ)

)
,

`ogσ

(√
1− N2

ξq
(řγ)

)
 in < and β ≥ 0, then the logarithmic operations of L-SFNs are proposed:

(1) `ogσερ ⊕ `ogσεq =



√
1−

(
`ogσPξρ (řγ)

)2
·
(
`ogσPξq (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
· `ogσ

(√
1− I2

ξq
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
· `ogσ

(√
1− N2

ξq
(řγ)

)
 ;
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(2) β · `ogσερ =



√
1−

(
`ogσPξρ (řγ)

)2β
,(

`ogσ

(√
1− I2

ξρ
(řγ)

))β
,(

`ogσ

(√
1− N2

ξρ
(řγ)

))β


;

(3) `ogσερ ⊗ `ogσεq =



√
1−

(
`ogσPξρ (řγ)

)2
·
√

1−
(
`ogσPξq (řγ)

)2
,√

1−
(

1− `ogσ

(√
1− I2

ξρ
(řγ)

))2
·
(

1− `ogσ

(√
1− I2

ξq
(řγ)

))2
,√

1−
(

1− `ogσ

(√
1− N2

ξρ
(řγ)

))2
·
(

1− `ogσ

(√
1− N2

ξq
(řγ)

))2


;

(4)
(
`ogσερ

)β
=



(√
1−

(
`ogσPξρ (řγ)

)2
)β

,√
1−

(
1−

(
`ogσ

(√
1− I2

ξρ
(řγ)

))2
)β

,√
1−

(
1−

(
`ogσ

(√
1− I2

ξρ
(řγ)

))2
)β


.

Theorem 3. For any two L-SFNs, `ogσερ =


√

1−
(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 (ρ = 1, 2) in <, with 0 < σ ≤

min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then,

(1) `ogσε1 ⊕ `ogσε2 = `ogσε2 ⊕ `ogσε1,
(2)`ogσε1 ⊗ `ogσε2 = `ogσε2 ⊗ `ogσε1.

Proof. This is straightforward from Definition 23, so the procedure is eliminated here.

Theorem 4. For any two L-SFNs, `ogσερ =


√

1−
(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 (ρ = 1, 2, 3) in <, with

0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then,

(1) (`ogσε1 ⊕ `ogσε2)⊕ `ogσε3 = `ogσε1 ⊕ (`ogσε2 ⊕ `ogσε3) ,
(2)(`ogσε1 ⊗ `ogσε2)⊗ `ogσε3 = `ogσε1 ⊗ (`ogσε2 ⊗ `ogσε3) .

Proof. This is straightforward from Definition 23, so the procedure is eliminated here.

Theorem 5. For any two L-SFNs, `ogσερ =


√

1−
(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 (ρ = 1, 2) in <, with 0 < σ ≤

min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1, β, β1, β2 > 0 be any real numbers. Then,

(1) β (`ogσε1 ⊕ `ogσε2) = β`ogσε1 ⊕ β`ogσε2;
(2) (`ogσε1 ⊗ `ogσε2)

β = (`ogσε1)
β ⊗ (`ogσε2)

β ;
(3) β1`ogσε1 ⊕ β2`ogσε1 = (β1 + β2) `ogσε1;
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(4) (`ogσε1)
β1 ⊗ (`ogσε1)

β2 = (`ogσε1)
(β1+β2) ;

(5)
(
(`ogσε1)

β1
)β2

= (`ogσε1)
β1β2 .

Proof. (1) Since, from Definition 23, we have

`ogσε1 ⊕ `ogσε2 =


√

1−
(
`ogσPξ1

)2 ·
(
`ogσPξ2

)2,

`ogσ

(√
1− I2

ξ1

)
· `ogσ

(√
1− I2

ξ2

)
,

`ogσ

(√
1− N2

ξ1

)
· `ogσ

(√
1− N2

ξ2

)
 ,

for any real number β > 0, we obtain

β (`ogσε1 ⊕ `ogσε2) =



√
1−

((
`ogσPξ1

)2 ·
(
`ogσPξ2

)2
)β

,(
`ogσ

(√
1− I2

ξ1

)
· `ogσ

(√
1− I2

ξ2

))β
,(

`ogσ

(√
1− N2

ξ1

)
· `ogσ

(√
1− N2

ξ2

))β



=



√
1−

((
`ogσPξ1

)2
)β

,(
`ogσ

(√
1− I2

ξ1

))β
,(

`ogσ

(√
1− N2

ξ1

))β


⊕



√
1−

((
`ogσPξ2

)2
)β

,(
`ogσ

(√
1− I2

ξ2

))β
,(

`ogσ

(√
1− N2

ξ2

))β


= β`ogσε1 ⊕ β`ogσε2.

(2) Since, from Definition 23, we have

`ogσε1 ⊗ `ogσε2

=



√
1−

(
`ogσPξ1

)2 ·
√

1−
(
`ogσPξ2

)2,√
1−

(
1− `ogσ

(√
1− I2

ξ1

))2
·
(

1− `ogσ

(√
1− I2

ξ2

))2
,√

1−
(

1− `ogσ

(√
1− N2

ξ1

))2
·
(

1− `ogσ

(√
1− N2

ξ2

))2


,

for any real number β > 0, we obtain

(`ogσε1 ⊗ `ogσε2)
β

=



(√
1−

(
`ogσPξ1

)2
)β

·
(√

1−
(
`ogσPξ2

)2
)β

√
1−

(
1−

(
`ogσ

(√
1− I2

ξ1

))2
)β

·
(

1−
(
`ogσ

(√
1− I2

ξ2

))2
)β

√
1−

(
1−

(
`ogσ

(√
1− N2

ξ1

))2
)β

·
(

1−
(
`ogσ

(√
1− N2

ξ2

))2
)β


= (`ogσε1)

β ⊗ (`ogσε2)
β ;

(3) and (4) are similarly as above, so the procedure is eliminated here.
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(5) Since, from Definition 23, we have

(
(`ogσε1)

β1
)β2

=



(√
1−

(
`ogσPξ1

)2
)β1

√
1−

(
1−

(
`ogσ

(√
1− I2

ξ1

))2
)β1

√
1−

(
1−

(
`ogσ

(√
1− N2

ξ1

))2
)β1



β2

=



(√
1−

(
`ogσPξ1

)2
)β1β2

√
1−

(
1−

(
`ogσ

(√
1− I2

ξ1

))2
)β1β2

√
1−

(
1−

(
`ogσ

(√
1− N2

ξ1

))2
)β1β2


= (`ogσε1)

β1β2 ,

this is therefore proved.

Definition 24. For any L-SFN, `ogσερ =



√
1−

(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 in <. Then, score and accuracy

values are defined as

(1) S̃(`ogσερ) =

(
1−

(
`ogσPξρ (řγ)

)2
)
−
(
`ogσ

(√
1− I2

ξρ
(řγ)

))2
−
(
`ogσ

(√
1− N2

ξρ
(řγ)

))2
,

(2) Ã(`ogσερ) =

(
1−

(
`ogσPξρ (řγ)

)2
)
+
(
`ogσ

(√
1− N2

ξρ
(řγ)

))2
.

The score and accuracy values defined above suggest which L-SFN is greater than other L-SFNs.
The comparison technique is defined in the next definition.

Definition 25. For any L-SFN, `ogσερ =



√
1−

(
`ogσPξρ (řγ)

)2
,

`ogσ

(√
1− I2

ξρ
(řγ)

)
,

`ogσ

(√
1− N2

ξρ
(řγ)

)
 (ρ = 1, 2) in <. Then, the

comparison technique is proposed as
(1) If S̃(`ogσε1) < S̃(`ogσε2), then `ogσε1 < `ogσε2,
(2) If S̃(`ogσε1) > S̃(`ogσε2), then `ogσε1 > `ogσε2,
(3) If S̃(`ogσε1) = S̃(`ogσε2), then
(a) Ã(`ogσε1) < Ã(`ogσε2), then `ogσε1 < `ogσε2,
(b) Ã(`ogσε1) > Ã(`ogσε2), then `ogσε1 > `ogσε2,
(c) Ã(`ogσε1) = Ã(`ogσε2), then `ogσε1 ≈ `ogσε2.

5. Logarithmic Aggregation Operators for L-SFNs

Now, we propose novel spherical fuzzy logarithmic aggregation operators for L-SFNs based on
defined spherical fuzzy logarithmic operations laws as follows:
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5.1. Logarithmic Averaging Operators

Definition 26. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of logarithmic spherical weighted

averaging (L-SFWA) operator is

L− SFWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρ`ogσρ
ερ,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.

Theorem 6. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 26,

L− SFWA is defined as

L− SFWA (ε1, ε2, ..., εn) ,

=





√
1−

n
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



√
1−

n
∏

ρ=1

(
`og 1

σρ
Pξρ

)2βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− I2

ξρ

))βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− N2

ξρ

))βρ


0 < 1

σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.

Proof. Using mathematical induction to prove Theorem 6, we therefore proceed as follows:
(a) For n = 2, since

β1`ogσ1 ε1 =



√
1−

((
`ogσ1 Pξ1

)2
)β1

,(
`ogσ1

(√
1− I2

ξ1

))β1
,(

`ogσ1

(√
1− N2

ξ1

))β1


and

β2`ogσ2 ε2 =



√
1−

((
`ogσ2 Pξ2

)2
)β2

,(
`ogσ2

(√
1− I2

ξ2

))β2
,(

`ogσ2

(√
1− N2

ξ2

))β2

 .
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Then,

L− SFWA (ε1, ε2) = β1`ogσ1 ε1 ⊕ β2`ogσ2 ε2

=



√
1−

((
`ogσ1 Pξ1

)2
)β1

,(
`ogσ1

(√
1− I2

ξ1

))β1
,(

`ogσ1

(√
1− N2

ξ1

))β1

⊕


√
1−

((
`ogσ2 Pξ2

)2
)β2

,(
`ogσ2

(√
1− I2

ξ2

))β2
,(

`ogσ2

(√
1− N2

ξ2

))β2



=



√
1−

((
`ogσ1 Pξ1

)2
)β1 ·

((
`ogσ2 Pξ2

)2
)β2

,(
`ogσ1

(√
1− I2

ξ1

))β1 ·
(
`ogσ2

(√
1− I2

ξ2

))β2
,(

`ogσ1

(√
1− N2

ξ1

))β1 ·
(
`ogσ2

(√
1− N2

ξ2

))β2



=



√
1−

2
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


.

(b) Now, Theorem 6 is true for n = k,

L− SFWA (ε1, ε2, ..., εk) =



√
1−

k
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

k
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

k
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


.

(c) Now, we prove that Theorem 6 for n = k + 1, which is

L− SFWA (ε1, ε2, ..., εk, εk+1) =
k

∑
ρ=1

βρ`ogσρ ερ + βk+1`ogσk+1 εk+1

L− SFWA (ε1, ε2, ..., εk, εk+1)

=



√
1−

k
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

k
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

k
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


⊕



√
1−

(
`ogσk+1 Pξk+1

)2βk+1
,(

`ogσk+1

(√
1− I2

ξk+1

))βk+1
,(

`ogσk+1

(√
1− N2

ξk+1

))βk+1



=



√
1−

k+1
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

k+1
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

k+1
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


.
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Thus, Theorem 6 is true for n = z + 1. Hence, it is satisfied for all n. Therefore,

L− SFWA (ε1, ε2, ..., εn) =



√
1−

n
∏

ρ=1

(
`ogσρ Pξρ

)2βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− I2

ξρ

))βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− N2

ξρ

))βρ


.

In a similar way, if 0 < 1
σρ
≤ min

{
ρξρ

,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1, we can also obtain

L− SFWA (ε1, ε2, ..., εn) =



√
1−

n
∏

ρ=1

(
`og 1

σρ
Pξρ

)2βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− I2

ξρ

))βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− N2

ξρ

))βρ


,

which completes the proof.

Remark 1. If σ1 = σ2 = σ3 = ... = σn = σ, that is 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1,

then the L− SFWA operator is reduced as follows:

L− SFWA (ε1, ε2, ..., εn) =



√
1−

n
∏

ρ=1

(
`ogσPξρ

)2βρ
,

n
∏

ρ=1

(
`ogσ

(√
1− I2

ξρ

))βρ
,

n
∏

ρ=1

(
`ogσ

(√
1− N2

ξρ

))βρ
.

Properties: The L− SFWA operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in

<. Then, if the collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) is identical,

L− SFWA (ε1, ε2, ..., εn) = ε.

(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ ρξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ Pξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <,

therefore
ε−ρ ⊆ L− SFWA (ε1, ε2, ..., εn) ⊆ ε+ρ .

(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.If

ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFWA (ε1, ε2, ..., εn) ⊆ L− SFWA (ε∗1, ε∗2, ..., ε∗n) .
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Definition 27. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of the logarithmic spherical ordered

weighted averaging (L-SFOWA) operator is

L− SFOWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρ`ogσρ εη(ρ),

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Theorem 7. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 27,

L− SFOWA is defined as

L− SFOWA (ε1, ε2, ..., εn) (1)

=





√
1−

n
∏

ρ=1

(
`ogσρ Pξη(ρ)

)2βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1− I2

ξη(ρ)

))βρ

,

n
∏

ρ=1

(
`ogσρ

(√
1− N2

ξη(ρ)

))βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



√
1−

n
∏

ρ=1

(
`og 1

σρ
Pξη(ρ)

)2βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− I2

ξη(ρ)

))βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1− N2

ξη(ρ)

))βρ


0 < 1

σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Proof. The proof is similar to Theorem 6. Thus, the procedure is eliminated here.

Remark 2. If σ1 = σ2 = σ3 = ... = σn = σ, that is, 0 < σ ≤ min
{

ρξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1,

then the L− SFOWA operator is reduced as follows:

L− SFOWA (ε1, ε2, ..., εn) =



√
1−

n
∏

ρ=1

(
`ogσPξη(ρ)

)2βρ
,

n
∏

ρ=1

(
`ogσ

(√
1− I2

ξη(ρ)

))βρ

,

n
∏

ρ=1

(
`ogσ

(√
1− N2

ξη(ρ)

))βρ


.

Properties: The L− SFOWA operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in

<.Then, if a collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) is identical, that is,

L− SFOWA (ε1, ε2, ..., εn) = ε.
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(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ Pξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ Pξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <;

therefore,
ε−ρ ⊆ L− SFOWA (ε1, ε2, ..., εn) ⊆ ε+ρ .

(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

If ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFOWA (ε1, ε2, ..., εn) ⊆ L− SFOWA (ε∗1, ε∗2, ..., ε∗n) .

Definition 28. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of a logarithmic spherical hybrid

weighted averaging (L-SFHWA) operator is

L− SFHWA (ε1, ε2, ..., εn) =
n

∑
ρ=1

βρ`ogσρ ε∗η(ρ),

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted

value is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In

addition,associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

Theorem 8. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 28,

L− SFHWA is defined as

L− SFHWA (ε1, ε2, ..., εn) , (2)

=





√
1−

n
∏

ρ=1

(
`ogσρ P∗ξη(ρ)

)2βρ
,

n
∏

ρ=1

(
`ogσρ

(√
1−

(
I∗ξη(ρ)

)2
))βρ

,

n
∏

ρ=1

(
`ogσρ

(√
1−

(
N∗ξη(ρ)

)2
))βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



√
1−

n
∏

ρ=1

(
`og 1

σρ
P∗ξη(ρ)

)2βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1−

(
I∗ξη(ρ)

)2
))βρ

,

n
∏

ρ=1

(
`og 1

σρ

(√
1−

(
N∗ξη(ρ)

)2
))βρ


0 < 1

σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted

value is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In addition,

associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

Proof. This proof issimilar to Theorem 6, so the procedure is eliminated here.
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Remark 3. If σ1 = σ2 = σ3 = ... = σn = σ, that is, 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1,

then the L− SFHWA operator reduces to

L− SFHWA (ε1, ε2, ..., εn) =



√
1−

n
∏

ρ=1

(
`ogσP∗ξη(ρ)

)2βρ
,

n
∏

ρ=1

(
`ogσ

(√
1−

(
I∗ξη(ρ)

)2
))βρ

,

n
∏

ρ=1

(
`ogσ

(√
1−

(
N∗ξη(ρ)

)2
))βρ


.

Properties: The L− SFHWA operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in <.

Then, if a collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) are identical, that is,

L− SFHWA (ε1, ε2, ..., εn) = ε.

(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ Pξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ Pξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <;

therefore,
ε−ρ ⊆ L− SFHWA (ε1, ε2, ..., εn) ⊆ ε+ρ .

(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.If

ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFHWA (ε1, ε2, ..., εn) ⊆ L− SFHWA (ε∗1, ε∗2, ..., ε∗n) .

5.2. Logarithmic Geometric Operators

Definition 29. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of logarithmic spherical weighted

geometric (L-SFWG) operator is

L− SFWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
`ogσρ ερ

)βρ
,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.
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Theorem 9. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 29,

L− SFWG is defined as

L− SFWG (ε1, ε2, ..., εn)

=





n
∏

ρ=1

(√
1−

(
`ogσρ Pξρ

)2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



n
∏

ρ=1

√1−
(
`og 1

σρ
Pξρ

)2
βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− I2

ξρ

))2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− N2

ξρ

))2
)βρ


0 < 1

σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1.

Proof. Using mathematical induction to prove Theorem 9, we proceed as follows:
(a) For n = 2, since

(`ogσ1 ε1)
β1 =



(√
1−

(
`ogσ1 Pξ1

)2
)β1

√
1−

(
1−

(
`ogσ1

(√
1− I2

ξ1

))2
)β1

√
1−

(
1−

(
`ogσ1

(√
1− N2

ξ1

))2
)β1


and

(`ogσ2 ε2)
β2 =



(√
1−

(
`ogσ2 Pξ2

)2
)β2

√
1−

(
1−

(
`ogσ2

(√
1− I2

ξ2

))2
)β2

√
1−

(
1−

(
`ogσ2

(√
1− N2

ξ2

))2
)β2


,
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then

L− SFWG (ε1, ε2) = (`ogσ1 ε1)
β1 ⊗ (`ogσ2 ε2)

β2

=



(√
1−

(
`ogσ1 Pξ1

)2
)β1

√
1−

(
1−

(
`ogσ1

(√
1− I2

ξ1

))2
)β1

√
1−

(
1−

(
`ogσ1

(√
1− N2

ξ1

))2
)β1


⊕



(√
1−

(
`ogσ2 Pξ2

)2
)β2

√
1−

(
1−

(
`ogσ2

(√
1− I2

ξ2

))2
)β2

√
1−

(
1−

(
`ogσ2

(√
1− N2

ξ2

))2
)β2



=



(√
1−

(
`ogσ1 Pξ1

)2
)β1

·
(√

1−
(
`ogσ2 Pξ2

)2
)β2

√
1−

(
1−

(
`ogσ1

(√
1− I2

ξ1

))2
)β1

·
(

1−
(
`ogσ2

(√
1− I2

ξ2

))2
)β2

√
1−

(
1−

(
`ogσ1

(√
1− N2

ξ1

))2
)β1

·
(

1−
(
`ogσ2

(√
1− N2

ξ2

))2
)β2



=



2
∏

ρ=1

(√
1−

(
`ogσρ Pξρ

)2
)βρ

√
1−

2
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

2
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ


.

(b) Now, Theorem 9 is true for n = k,

L− SFWG (ε1, ε2, ..., εk) =



k
∏

ρ=1

(√
1−

(
`ogσρ Pξρ

)2
)βρ

√
1−

k
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

k
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ


.

(c) Now, we prove that Theorem 9 for n = k + 1, that is,

L− SFWG (ε1, ε2, ..., εk, εk+1) =
k

∏
ρ=1

(
`ogσρ ερ

)βρ
⊗
(
`ogσk+1 εk+1

)βk+1
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L− SFWG (ε1, ε2, ..., εk, εk+1)

=



k
∏

ρ=1

(√
1−

(
`ogσρ Pξρ

)2
)βρ

√
1−

k
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

k
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ



⊗



(√
1−

(
`ogσk+1 Pξk+1

)2
)βk+1

√
1−

(
1−

(
`ogσk+1

(√
1− I2

ξk+1

))2
)βk+1

√
1−

(
1−

(
`ogσk+1

(√
1− N2

ξk+1

))2
)βk+1



=



k+1
∏

ρ=1

(√
1−

(
`ogσρ ρξρ

)2
)βρ

√
1−

k+1
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

k+1
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ


.

Thus, Theorem 9 is true for n = z + 1. Hence, it is satisfied for all n. Therefore,

L− SFWG (ε1, ε2, ..., εn) =



n
∏

ρ=1

(√
1−

(
`ogσρ Pξρ

)2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξρ

))2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξρ

))2
)βρ


.

In a similar way, if 0 < 1
σρ
≤ min

{
ρξρ

,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1, we can also obtain

L− SFWG (ε1, ε2, ..., εn) =



n
∏

ρ=1

√1−
(
`og 1

σρ
Pξρ

)2
βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− I2

ξρ

))2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− N2

ξρ

))2
)βρ


,

which completes the proof.
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Remark 4. If σ1 = σ2 = σ3 = ... = σn = σ, that is, 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1,

then the L− SFWG operator reduces to

L− SFWG (ε1, ε2, ..., εn) =



n
∏

ρ=1

(√
1−

(
`ogσPξρ

)2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσ

(√
1− I2

ξρ

))2
)βρ

√
1−

n
∏

ρ=1

(
1−

(
`ogσ

(√
1− N2

ξρ

))2
)βρ


.

Properties: The L− SFWG operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in

<.Then, if a collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) are identical, that is,

L− SFWG (ε1, ε2, ..., εn) = ε.

(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ ρξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ Pξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <,

therefore
ε−ρ ⊆ L− SFWG (ε1, ε2, ..., εn) ⊆ ε+ρ .

(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.If

ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFWG (ε1, ε2, ..., εn) ⊆ L− SFWG (ε∗1, ε∗2, ..., ε∗n) .

Definition 30. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of logarithmic spherical ordered

weighted geometric (L-SFOWG) operator is

L− SFOWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
`ogσρ εη(ρ)

)βρ
,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Theorem 10. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 30,

L− SFOWG defined as
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L− SFOWG (ε1, ε2, ..., εn)

=





n
∏

ρ=1

(√
1−

(
`ogσρ Pξη(ρ)

)2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− I2

ξη(ρ)

))2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`ogσρ

(√
1− N2

ξη(ρ)

))2
)βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



n
∏

ρ=1

√1−
(
`og 1

σρ
Pξη(ρ)

)2
βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− I2

ξη(ρ)

))2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`og 1

σρ

(√
1− N2

ξη(ρ)

))2
)βρ


0 < 1

σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is εη(ρ) consequently by total order εη(1) ≥ εη(2) ≥ ... ≥ εη(n).

Proof. This proof is similar to Theorem 9, so the procedure is eliminated here.

Remark 5. If σ1 = σ2 = σ3 = ... = σn = σ, that is, 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1,

then L− SFOWG operator reduces to

L− SFOWG (ε1, ε2, ..., εn) =



n
∏

ρ=1

(√
1−

(
`ogσPξη(ρ)

)2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`ogσ

(√
1− I2

ξη(ρ)

))2
)βρ

√√√√1−
n
∏

ρ=1

(
1−

(
`ogσ

(√
1− N2

ξη(ρ)

))2
)βρ


.

Properties: The L− SFOWG operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in

<.Then, if the collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) is identical, that is,

L− SFOWG (ε1, ε2, ..., εn) = ε.

(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ Pξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ Pξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <,

therefore
ε−ρ ⊆ L− SFOWG (ε1, ε2, ..., εn) ⊆ ε+ρ .
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(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

If ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFOWG (ε1, ε2, ..., εn) ⊆ L− SFOWG (ε∗1, ε∗2, ..., ε∗n) .

Definition 31. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with

0 < σρ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. The structure of logarithmic spherical hybrid

weighted geometric (L-SFHWG) operator is

L− SFHWG (ε1, ε2, ..., εn) =
n

∏
ρ=1

(
`ogσρ ε∗η(ρ)

)βρ
,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted

value is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In addition,

associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

Theorem 11. For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <, with 0 <

σρ ≤ min
{

ρξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1. Then, by using logarithmic operations and Definition 31,

L− SFHWG is defined as

L− SFHWG (ε1, ε2, ..., εn) (3)

=





n
∏

ρ=1

(√
1−

(
`ogσρ P∗ξη(ρ)

)2
)βρ

√√√√√1−
n
∏

ρ=1

1−
(
`ogσρ

(√
1−

(
I∗ξη(ρ)

)2
))2

βρ

√√√√√1−
n
∏

ρ=1

1−
(
`ogσρ

(√
1−

(
N∗ξη(ρ)

)2
))2

βρ


0 < σρ ≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,



n
∏

ρ=1

√1−
(
`og 1

σρ
P∗ξη(ρ)

)2
βρ

√√√√√1−
n
∏

ρ=1

1−
(
`og 1

σρ

(√
1−

(
I∗ξη(ρ)

)2
))2

βρ

√√√√√1−
n
∏

ρ=1

1−
(
`og 1

σρ

(√
1−

(
N∗ξη(ρ)

)2
))2

βρ



0 < 1
σρ
≤ min


Pξρ

,√
1− I2

ξρ
,√

1− N2
ξρ

 < 1,

σ 6= 1,

where βρ (ρ = 1, 2, ..., n) are weight vectors with βρ ≥ 0 and ∑n
ρ=1 βρ = 1 and the ρth biggest weighted value

is ε∗
η(ρ)

(
ε∗

η(ρ) = nβρεη(ρ), ρ ∈ N
)

consequently by total order ε∗
η(1) ≥ ε∗

η(2) ≥ ... ≥ ε∗
η(n). In addition, the

associated weights are ω = (ω1, ω2, ..., ωn) with ωρ ≥ 0, Σn
ρ=1ωρ = 1.

Proof. This proof is similar to Theorem 9. Thus, the procedure is eliminated here.
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Remark 6. If σ1 = σ2 = σ3 = ... = σn = σ, that is, 0 < σ ≤ min
{

Pξρ
,
√

1− I2
ξρ

,
√

1− N2
ξρ

}
< 1, σ 6= 1;

then, L− SFHWG operator reduces to

L− SFHWG (ε1, ε2, ..., εn) =



n
∏

ρ=1

(√
1−

(
`ogσP∗ξη(ρ)

)2
)βρ

√√√√√1−
n
∏

ρ=1

1−
(
`ogσ

(√
1−

(
I∗ξη(ρ)

)2
))2

βρ

√√√√√1−
n
∏

ρ=1

1−
(
`ogσ

(√
1−

(
N∗ξη(ρ)

)2
))2

βρ


.

Properties: The L− SFHWG operator satisfies some properties that are listed below:
(1) Idempotency: For any collection of SFNs, ερ =

〈
Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)

〉
(ρ = 1, 2, ..., n) in <.

Then, if collection of SFNs ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) are identical, that is,

L− SFHWG (ε1, ε2, ..., εn) = ε.

(2) Boundedness: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

ε−ρ =
〈

minρ Pξρ
, maxρ Iξρ

, maxρ Nξρ

〉
and ε+ρ =

〈
maxρ ρξρ

, minρ Iξρ
, minρ Nξρ

〉
(ρ = 1, 2, ..., n) in <,

therefore
ε−ρ ⊆ L− SFHWG (ε1, ε2, ..., εn) ⊆ ε+ρ .

(3) Monotonically: For any collection of SFNs, ερ =
〈

Pξρ (řγ) , Iξρ (řγ) , Nξρ (řγ)
〉
(ρ = 1, 2, ..., n) in <.

If ερ ⊆ ε∗ρ for (ρ = 1, 2, ..., n) , then

L− SFHWG (ε1, ε2, ..., εn) ⊆ L− SFHWG (ε∗1, ε∗2, ..., ε∗n) .

6. Proposed Technique for Solving Decision-Making Problems

In this section, we propose a new approach to decision-making based on the spherical fuzzy set.
This approach will use data information provided by the decision problem only and does not need
any additional information provided by decision makers, in order to avoid the effect of subjective
information influencing the decision results. In the following, we will introduce a spherical fuzzy set
decision-making matrix as indicated below.

Step 1: Let H = (h1, h2, ..., hm) be a distinct set of m probable alternatives and Y = (y1, y2, ..., yn) be a
finite set of n criteria, where hi indicates the ith alternatives and yj indicates the jth criteria. Let
D = (d1, d2, ..., dt) be a finite set of t experts, where dk indicates the kth expert. The expert dk
supplies her appraisal of an alternative hi on an attribute yj as a SFNs (i = 1, 2, ..., m; j = 1, 2, ..., n).
The experts’ information is represented by the spherical fuzzy set decision-making matrix
Ds =

[
E(s)

iρ

]
m×n

. Assume that βρ(ρ = 1, 2, ..., m) is a weight vector of the attribute yj such that

0 ≤ βρ ≤ 1,
n
∑

ρ=1
βρ = 1 and ψ = (ψ1, ψ2, ..., ψm) is the weight vector of the decision makers dk

such that ψk ≤ 1,
n
∑

k=1
ψk = 1.

When we construct the spherical fuzzy decision-making matrices, Ds =
[

E(s)
iρ

]
m×n

for decisions.

Basically, criteria have two types: one is benefit criteria and the other one is cost criteria. If
the spherical fuzzy decision matrices have cost type criteria matrices, Ds =

[
Es

iρ

]
m×n

can
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be converted into the normalized spherical fuzzy decision matrices, řs =
[
ř(s)iρ

]
m×n

, where

řs
ip =

{
Es

iρ, for benefit criteria Ap

Es
iρ, for cost criteria Ap,

j = 1, 2, ..., n, and Es
iρ is the complement of Es

iρ. If all the

criteria have the same type, then there is no need for normalization.
Taking the decision information from the given matrix řk and using the SFWA/SFWG operator,
the individual total spherical fuzzy preference value řk

i of the alternative hi is derived as follows:

řk
i = L− SFWA(εk

i1, εk
i2, ..., εk

in), (i = 1, 2, ..., m; k = 1, 2, ..., t),

where β = (β1, β2, ..., βn)T is the weight vector of the attribute.

Step 2: In this step, we find the collective spherical information using a spherical fuzzy weighted
averaging aggregation operator.

Step 3: In this step, we find the weights of each of the criteria by using the spherical fuzzy entropy:

γq =

1 + 1
n

n
∑

ρ=1
(Pi log (Pi) + Ii log (Ii) + Ni log (Ni))

n
∑

q=1

(
1 + 1

n

n
∑

ρ=1
Pi log (Pi) + Ii log (Ii) + Ni log (Ni)

) .

Step 4: In this step, we calculate the aggregated information using all the logarithmic aggregation
operators of spherical fuzzy sets.

Step 5: We find the score value S̃(`ogσερ) and the accuracy value Ã(`ogσερ) of the cumulative overall
preference value hi (i = 1, 2, ..., m).

Step 6: By the definition, rank the alternatives hi (i = 1, 2, ..., m) and choose the best alternative that
has the maximum score value.

The Algorithmic Steps are shown in Figure 4.

6.1. Numerical Example

Assume that there is a committee that selects five applicable emerging technology enterprises
Hg(g = 1, 2, 3, 4, 5), which are given as follows:
(1) Augmented Reality (H1),
(2) Personalized Medicine (H2) ,
(3) Artificial Intelligence (H3),
(4) Gene Drive (H4),
(5) Quantum Computing (H5

To assess the possible rising technology enterprises according to the four attributes, which are
(1) Advancement (D1),
(2) market risk (D2),
(3) financial investments (D3) and
(4) progress of science and technology (D4).

To avoid the conflict between them, the decision makers gives the weight β = (0.314, 0.355, 0.331)T .
Construct the spherical fuzzy set decision making matrices as shown in Tables 1–3:



Entropy 2019, 21, 628 28 of 36

Figure 4. Algorithmic Steps

Table 1. Emerging technology Eenterprises F1.

D1 D2 D3 D4

H1 (0.84, 0.34, 0.40) (0.43, 0.39, 0.78) (0.67, 0.50, 0.30) (0.31, 0.21, 0.71)
H2 (0.60, 0.11, 0.53) (0.23, 0.35, 0.59) (0.72, 0.31, 0.41) (0.11, 0.25, 0.82)
H3 (0.79, 0.19, 0.39) (0.11, 0.21, 0.91) (0.71, 0.41, 0.13) (0.34, 0.25, 0.51)
H4 (0.63, 0.51, 0.13) (0.49, 0.33, 0.42) (0.61, 0.43, 0.45) (0.49, 0.37, 0.59)
H5 (0.57, 0.36, 0.29) (0.50, 0.15, 0.60) (0.70, 0.32, 0.40) (0.33, 0.44, 0.65) .

Table 2. Emerging technology enterprises F2.

D1 D2 D3 D4

H1 (0.61, 0.15, 0.53) (0.16, 0.35, 0.62) (0.61, 0.35, 0.47) (0.55, 0.17, 0.74)
H2 (0.66, 0.11, 0.51) (0.43, 0.23, 0.77) (0.93, 0.08, 0.09) (0.02, 0.06, 0.99)
H3 (0.88, 0.09, 0.07) (0.05, 0.06, 0.89) (0.56, 0.17, 0.44) (0.43, 0.13, 0.61)
H4 (0.59, 0.32, 0.34) (0.24, 0.48, 0.51) (0.68, 0.53, 0.39) (0.34, 0.21, 0.61)
H5 (0.71, 0.31, 0.24) (0.35, 0.41, 0.69) (0.73, 0.44, 0.21) (0.22, 0.49, 0.74)

Table 3. Emerging technology enterprises F3.

D1 D2 D3 D4

H1 (0.85, 0.25.0.15) (0.14, 0.23, 0.88) (0.78, 0.38, 0.18) (0.29, 0.39, 0.83)
H2 (0.94, 0.04, 0.07) (0.39, 0.19, 0.61) (0.63, 0.18, 0.35) (0.48, 0.49, 0.56)
H3 (0.73, 0.13, 0.46) (0.19, 0.39, 0.88) (0.87, 0.35, 0.18) (0.41, 0.13, 0.81)
H4 (0.82, 0.12, 0.43) (0.55, 0.21, 0.63) (0.53, 0.33, 0.47) (0.46, 0.23, 0.51)
H5 (0.61, 0.33, 0.29) (0.28, 0.41, 0.63) (0.74, 0.34, 0.14) (0.37, 0.32, 0.65)
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Since D1, D3 are benefit type criteria and D2, D4 is cost type criteria, we need to have normalized
the decision matrices. Normalized decision matrices are shown in Tables 4–6:

Table 4. Emerging technology enterprises ř1.

D1 D2 D3 D4

H1 (0.84, 0.34, 0.40) (0.78, 0.39, 0.43) (0.67, 0.50, 0.30) (0.71, 0.21, 0.31)
H2 (0.60, 0.11, 0.53) (0.59, 0.35, 0.23) (0.72, 0.31, 0.41) (0.82, 0.25, 0.11)
H3 (0.79, 0.19, 0.39) (0.91, 0.21, 0.11) (0.71, 0.41, 0.13) (0.51, 0.25, 0.34)
H4 (0.63, 0.51, 0.13) (0.42, 0.33, 0.49) (0.61, 0.43, 0.45) (0.59, 0.37, 0.49)
H5 (0.57, 0.36, 0.29) (0.60, 0.15, 0.50) (0.70, 0.32, 0.40) (0.65, 0.44, 0.33)

Table 5. Emerging technology enterprises ř2.

D1 D2 D3 D4

H1 (0.61, 0.15, 0.53) (0.62, 0.35, 0.16) (0.61, 0.35, 0.47) (0.74, 0.17, 0.55)
H2 (0.66, 0.11, 0.51) (0.77, 0.23, 0.43) (0.93, 0.08, 0.09) (0.99, 0.06, 0.02)
H3 (0.88, 0.09, 0.07) (0.89, 0.06, 0.05) (0.56, 0.17, 0.44) (0.61, 0.13, 0.43)
H4 (0.59, 0.32, 0.34) (0.51, 0.48, 0.24) (0.68, 0.53, 0.39) (0.61, 0.21, 0.34)
H5 (0.71, 0.31, 0.24) (0.69, 0.41, 0.35) (0.73, 0.44, 0.21) (0.74, 0.49, 0.22)

Table 6. Emerging technology enterprises ř3.

D1 D2 D3 D4

H1 (0.85, 0.25.0.15) (0.88, 0.23, 0.14) (0.78, 0.38, 0.18) (0.83, 0.39, 0.29)
H2 (0.94, 0.04, 0.07) (0.61, 0.19, 0.39) (0.63, 0.18, 0.35) (0.56, 0.49, 0.48)
H3 (0.73, 0.13, 0.46) (0.88, 0.39, 0.19) (0.87, 0.35, 0.18) (0.81, 0.13, 0.41)
H4 (0.82, 0.12, 0.43) (0.63, 0.21, 0.55) (0.53, 0.33, 0.47) (0.51, 0.23, 0.46)
H5 (0.61, 0.33, 0.29) (0.63, 0.41, 0.28) (0.74, 0.34, 0.14) (0.65, 0.32, 0.37)

Step 2: Use the SFWA operator to aggregate all the individual normalized spherical fuzzy decision
matrices. The aggregated spherical fuzzy decision matrix is shown in Table 7.

Table 7. Collective spherical fuzzy decision information matrix ř.

D1 D2 D3 D4

H1 (0.788, 0.229, 0.319) (0.785, 0.315, 0.208) (0.696, 0.402, 0.297) (0.767, 0.239, 0.371)
H2 (0.807, 0.078, 0.279) (0.674, 0.246, 0.342) (0.818, 0.160, 0.227) (0.919, 0.188, 0.097)
H3 (0.814, 0.128, 0.223) (0.893, 0.165, 0.099) (0.748, 0.284, 0.223) (0.677, 0.159, 0.393)
H4 (0.702, 0.267, 0.271) (0.533, 0.324, 0.395) (0.615, 0.424, 0.433) (0.573, 0.258, 0.421)
H5 (0.639, 0.331, 0.271) (0.644, 0.298, 0.363) (0.724, 0.365, 0.224) (0.685, 0.411, 0.296)

Step 3: The entropy of each attribute can be calculated by the following equation:

γq =

1 + 1
n

n
∑

ρ=1
(Pi log (Pi) + Ii log (Ii) + Ni log (Ni))

n
∑

q=1

(
1 + 1

n

n
∑

ρ=1
Pi log (Pi) + Ii log (Ii) + Ni log (Ni)

)

and the calculated weights are

W = {w1 = 0.256, w2 = 0.248, w3 = 0.245, w4 = 0.251} .
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Step 4: Now, we apply all the proposed logarithmic aggregation operators to collective spherical
fuzzy information to find the aggregated information as follows:
Case-1: Using logarithmic spherical fuzzy weighted averaging aggregation operator, we obtained

Aggregated information using L-SFWA Operator

H1 (0.91958, 0.06259, 0.06493)
H2 (0.95991, 0.01743, 0.03415)
H3 (0.94502, 0.02250, 0.03299)
H4 (0.70096, 0.07377, 0.10852)
H5 (0.82221, 0.09375, 0.06097) .

Case-2: Using a logarithmic spherical fuzzy ordered weighted averaging aggregation operator, we obtained

Aggregated information using the L-SFOWA Operator

H1 (0.91927, 0.06301, 0.06474)
H2 (0.96015, 0.01779, 0.03378)
H3 (0.94556, 0.02260, 0.03256)
H4 (0.70099, 0.07411, 0.10850)
H5 (0.82340, 0.09389, 0.06056) .

Case-3: Using a logarithmic spherical fuzzy hybrid weighted averaging aggregation operator, we obtained

Aggregated information using the L-SFHWA Operator

H1 (0.99067, 0.002598, 0.00418)
H2 (0.99894, 0.00017, 0.000327)
H3 (0.99191, 0.000335, 0.001807)
H4 (0.81516, 0.003897, 0.010210)
H5 (0.960757, 0.007889, 0.002174) .

Case-4: Using a logarithmic spherical fuzzy weighted geometric aggregation operator, we obtained

Aggregated information using the L-SFWG Operator

H1 (0.91282, 0.07890, 0.07579)
H2 (0.92862, 0.02762, 0.05696)
H3 (0.91705, 0.03351, 0.06621)
H4 (0.62676, 0.08927, 0.12240)
H5 (0.81260, 0.10000, 0.06923) .

Case-5: Using a logarithmic spherical fuzzy ordered weighted geometric aggregation operator, we obtained

Aggregated information using the L-SFOWG Operator

H1 (0.91238, 0.07945, 0.07551)
H2 (0.92843, 0.02780, 0.05688)
H3 (0.91729, 0.03354, 0.06613)
H4 (0.62644, 0.08963, 0.12237)
H5 (0.81366, 0.10007, 0.06891) .
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Case-6: Using a logarithmic spherical fuzzy hybrid weighted geometric aggregation operator, we obtained

Aggregated information using the L-SFHWG Operator

H1 (0.99151, 0.00543, 0.00525)
H2 (0.99837, 0.00037, 0.00121)
H3 (0.98317, 0.00118, 0.00641)
H4 (0.76785, 0.00679, 0.01147)
H5 (0.97567, 0.00868, 0.00233) .

Step 5: We find the score value S̃(`ogσερ) and the accuracy value Ã(`ogσερ) of the cumulative overall
preference value hi (i = 1, 2, 3, 4, 5).
Case-1: Score of aggregated information for the L-SFWA Operator, and we obtained

Score of aggregated information for the L-SFWA Operator

S̃(`og0.5H1) 0.985356
S̃(`og0.5H2) 0.996515
S̃(`og0.5H3) 0.993345
S̃(`og0.5H4) 0.737170
S̃(`og0.5H5) 0.920198

Ã(`og0.5H1) 0.985391
Ã(`og0.5H2) 0.996516
Ã(`og0.5H3) 0.993347
Ã(`og0.5H4) 0.737347
Ã(`og0.5H5) 0.920293

Case-2: Score of aggregated information for the L-SFOWA Operator, and we obtained

Score of aggregated information for the L-SFOWA Operator

S̃(`og0.5H1) 0.985236
S̃(`og0.5H2) 0.996558
S̃(`og0.5H3) 0.993479
S̃(`og0.5H4) 0.737233
S̃(`og0.5H5) 0.921374

Ã(`og0.5H1) 0.985271
Ã(`og0.5H2) 0.99656
Ã(`og0.5H3) 0.99348
Ã(`og0.5H4) 0.73741
Ã(`og0.5H5) 0.92147.

Case-3: Score of aggregated information for the L-SFHWA Operator, and we obtained

Score of aggregated information for the L-SFHWA Operator

S̃(`og0.5H1) 0.999817
S̃(`og0.5H2) 0.999998
S̃(`og0.5H3) 0.999863
S̃(`og0.5H4) 0.913067
S̃(`og0.5H5) 0.996664

Ã(`og0.5H1) 0.999817
Ã(`og0.5H2) 0.999998
Ã(`og0.5H3) 0.999863
Ã(`og0.5H4) 0.913067
Ã(`og0.5H5) 0.996664.

Case-4: Score of aggregated information for the L-SFWG Operator, and we obtained

Score of aggregated information for the L-SFWG Operator

S̃(`og0.5H1) 0.982645
S̃(`og0.5H2) 0.988581
S̃(`og0.5H3) 0.984383
S̃(`og0.5H4) 0.545559
S̃(`og0.5H5) 0.910307

Ã(`og0.5H1) 0.98272
Ã(`og0.5H2) 0.988593
Ã(`og0.5H3) 0.984404
Ã(`og0.5H4) 0.545863
Ã(`og0.5H5) 0.910436.
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Case-5: Score of aggregated information for the L-SFOWG Operator, and we obtained

Score of aggregated information for L-SFOWG Operator

S̃(`og0.5H1) 0.982461
S̃(`og0.5H2) 0.988519
S̃(`og0.5H3) 0.984477
S̃(`og0.5H4) 0.544563
S̃(`og0.5H5) 0.911435

Ã(`og0.5H1) 0.982537
Ã(`og0.5H2) 0.98853
Ã(`og0.5H3) 0.984498
Ã(`og0.5H4) 0.544868
Ã(`og0.5H5) 0.911564

Case-6: Score of aggregated inf ormation for the L-SFHWG Operator, and we obtained

Score of aggregated information for the L-SFHWG Operator

S̃(`og0.5H1) 0.999914
S̃(`og0.5H2) 0.999997
S̃(`og0.5H3) 0.999657
S̃(`og0.5H4) 0.91689
S̃(`og0.5H5) 0.999278

Ã(`og0.5H1) 0.999914
Ã(`og0.5H2) 0.999997
Ã(`og0.5H3) 0.999657
Ã(`og0.5H4) 0.91689
Ã(`og0.5H5) 0.999278

Step 6: We find the best (suitable) alternative that has the maximum score value from set of alternatives
hi (i = 1, 2, 3, 4, 5). Overall preference value and ranking of the alternatives are summarized in Table 8.

Table 8. Overall preference value and ranking of the alternatives for σ = 0.5 > 0.

S̃(`ogσ H1) S̃(`ogσ H2) S̃(`ogσ H3) S̃(`ogσ H4) S̃(`ogσ H5) Ranking

L-SFWA 0.985356 0.996515 0.993345 0.737170 0.920198 H2 > H3 > H1 > H5 > H4
L-SFOWA 0.985236 0.996558 0.993479 0.737233 0.921374 H2 > H3 > H1 > H5 > H4
L-SFHWA 0.999817 0.999998 0.999863 0.913067 0.996664 H2 > H3 > H1 > H5 > H4
L-SFWG 0.982645 0.988581 0.984383 0.545559 0.910307 H2 > H3 > H1 > H5 > H4

L-SFOWG 0.982461 0.988519 0.984477 0.544563 0.911435 H2 > H1 > H3 > H5 > H4
L-SFHWG 0.999914 0.999997 0.999657 0.91689 0.999278 H2 > H1 > H3 > H5 > H4

The ranking of the alternatives are shown in the Figure 5.

Figure 5. Ranking of Alternatives.

6.2. Sensitivity Analysis and Comparison Discussion

In this section, we give the comparison analysis on how our proposed logarithmic aggregation
operators are effective and reliable to aggregate the spherical fuzzy information. Ashraf [40,41]
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proposed the spherical aggregation operators to aggregate the spherical fuzzy informatio; in this
part of our study, we give a comparison between proposed and novel logarithmic spherical fuzzy
aggregation operators. We take the spherical fuzzy information from [40] as follows:

Collective spherical fuzzy information matrix (Ashraf, (2018))

H1 (0.658, 0.427, 0.294) (0.574, 0.361, 0.339) (0.492, 0.548, 0.436)
H2 (0.733, 0.489, 0.290) (0.452, 0.677, 0.249) (0.658, 0.307, 0.499)
H3 (0.388, 0.663, 0.441) (0.684, 0.276, 0.273) (0.443, 0.266, 0.670)
H4 (0.765, 0.332, 0.443) (0.571, 0.564, 0.367) (0.314, 0.349, 0.632)

Now, we utilized a logarithmic spherical fuzzy weighted averaging operator to choose the best
alternative as follows:

Aggregated information using the L-SFWA Operator

H1 (0.802348, 0.128406, 0.073504)
H2 (0.887498, 0.116768, 0.072182)
H3 (0.585977, 0.092906, 0.144143)
H4 (0.793431, 0.084318, 0.154080)

Oρeřatoř S̃(`ogσ H1) S̃(`ogσ H2) S̃(`ogσ H3) S̃(`ogσ H4) Ranking

L-SFWA 0.94215 0.98297 0.659605 0.936043 H2 > H1 > H4 > H3

The ranking of the alternatives using Ashraf [40] information is shown in the Figure 6.

Figure 6. Comparison Ranking.

The bast alternative is H2. The obtained result utilizing a logarithmic spherical fuzzy weighted
averaging operator is the same as results shown by Ashraf [40]. Hence, this study proposed the novel
logarithmic aggregation operators to aggregate the spherical fuzzy information. This study gives a
more reliable technique to aggregate and to deal with uncertainties in decision-making problems using
spherical fuzzy sets. Utilizing proposed spherical fuzzy logarithmic aggregation operators, we find the
best alternative from a set of alternatives given by the decision maker. Hence, the proposed MCGDM
technique based on spherical fuzzy logarithmic aggregation operators gives another technique to find
the best alternative as an application in decision support systems.
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7. Conclusions

In this paper, we have revealed a novel logarithmic operation of SFSs with the real base number
σ. Additionally, we have analyzed their properties and relationships. In view of these logarithmic
operations, we built up the weighted averaging and geometric aggregation operators named L-SFWA,
L-SFOWA, L-SFHWA, L-SFWG, L-SFOWG and L-SFHWG. A spherical fuzzy MCDM problem with
interactive criteria, an approach based on the proposed operators, was proposed. Finally, this method
was applied to MCDM problems. From the decision results displayed in numerical examples, we can
find that our created approach can overcome the drawbacks of existing algebraic aggregation operators.
In the succeeding work, we shall combine the proposed operator with some novel fuzzy sets, such as
type-2 fuzzy sets, neutrosophic sets, and so on. In addition, we may investigate our created approach
in the field of different areas, such as personnel evaluation, medical artificial intelligence, energy
management and supplier selection evaluation. In addition, we can develop more decision-making
approaches like GRA, TODAM, TOPSIS, VIKOR and so on to deal with uncertainties in the form of
spherical fuzzy information.
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