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In recent years, research on recycled aggregate concrete has become a hot issue in the field of civil engineering. .is paper mainly
studies the size effects on compressive and tensile strengths of the recycled aggregate concrete. Firstly, four sets of recycled
concrete cube specimens with different sizes are produced in the laboratory. Secondly, the experiments on compressive and tensile
strengths are carried out to obtain the rules of the strength value with the change of the specimen size. .irdly, a standard
neutrosophic number is proposed and used in modelling the size effect law more reasonably. According to the experimental
results, it was found that the compressive and tensile strengths of recycled concrete both have obvious size effects. In general, the
strength value decreases gradually with the increase of specimen size. Using the standard neutrosophic number, the proposed new
formula on size effect law is more suitable for tackling the indeterminacy in the experimental data. It has been shown that the size
effect law based on the standard neutrosophic number is more realistic than the existing size effect law. .e results may be useful
for the engineering application of the recycled concrete and can be extended to other types of size effect laws in the future.

1. Introduction

Demanding by environmental protection, some research on
recycled aggregate concrete (RAC) has been carried on in
many countries in recent years. At present, the research on
recycled aggregate concrete mainly focuses on its mechanical
properties or durability. Barhmaiah et al. [1] investigated the
effect of recycled aggregate on strength of concrete and the
results were compared with virgin aggregate concrete. Wu
and Jin [2] studied the compressive fatigue behavior of
compound concrete containing demolished concrete lumps
and recycled aggregate concrete. It was found that satis-
factory compressive strength can be attained when the total
waste content in RLAC reaches 54.6%. Akono et al. [3]
investigated the basic creep and fracture response of fine
recycled aggregate concrete using nanoscale mechanical
characterization modules integrated with nonlinear

micromechanical modelling and machine learning methods.
It has been shown that the fracture toughness of fine recycled
aggregate concrete is 8% lower than that of plain concrete.
Sasanipour et al. [4] investigated the effects of the surface
pretreatment method by soaking recycled concrete aggre-
gates in silica fume slurry on the mechanical and durability
properties of recycled aggregate concrete. Results revealed
that using pretreated recycled aggregates significantly im-
proved the durability properties of mixes especially chloride
ion penetration and electrical resistivity. Zhu et al. [5] in-
vestigate the long-term performance of recycled aggregate
concrete beams for a period of 3045 days and the bending
behavior of test beams after the sustained load is removed. It
was found that the RAC beams exhibit more significant
stiffness degradation characteristics in the flexural test. Mi
et al. [6] studied the influences of the compressive strength
ratio between original concrete and recycled aggregate
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concrete on the slump, compressive strength, and carbon-
ation resistance of recycled aggregate concrete. Results
revealed that adjusting the compressive strength ratio can
furnish different slump, compressive strength, and car-
bonation depth values, while also reducing mortar inho-
mogeneities. Wang et al. [7] studied the influences and
mechanisms of the single and coupled effect of carbonation,
dry-wet cycles, and freeze-thaw cycles on the durability of
three types of recycled aggregate concrete. .e results
showed that carbonation and dry-wet cycles can improve the
pore tortuosity and reduce the connectivity of pores.

As is well known, the strength of quasibrittle materials
like concrete and rock is size dependent due to the het-
erogeneity [8–11]. Generally, the geometrically similar
samples will not behave similarly for different sizes; this is
named as size effect (or scale effect). In the past few decades,
the size effect problem has been widely investigated by many
scientists and engineers. Overall, the existing scale effect laws
can be divided into three types: (1) statistical size effect
[12,13], (2) energetic size effect [14–18], and (3) fractal size
effect [19,20]. Additionally, some researchers used the ar-
tificial neural network (ANN) technique to forecast the size
effect of concrete strength [21,22]. In these laws, the ener-
getic size effect proposed by Bazant [11,14–18,23–29] has
been shown very effective and promising for those quasi-
brittle materials. Although much progress has been made in
the size effect mechanism, much further research is needed
for new type concrete and recycled aggregate concrete. On
the other hand, it is well known that most of the physical
quantities in engineering practice cannot be correctly
expressed by using crisp numbers due to the limitation of
experimental test techniques and the complexity of objective
things. Apparently, the tested concrete strength is just the
physical quantity that always fluctuates within a certain
range. It is difficult to express these strength parameters only
by using determined values. As a result, it is very necessary to
extend the existing size effect law to tackle the indeterminacy
in the tested strength data.

To handle indeterminate information in practice,
Smarandache [30–32] presented the concept of a neu-
trosophic number for the first time. .e neutrosophic
number, which consists of a determinate part and an in-
determinate part, is very suitable for the expression of data
with indeterminacy. However, little progress has been made
for handling indeterminate problems by neutrosophic
numbers in scientific and engineering areas in the past two
decades. Recently, Ye [33,34] used the neutrosophic number
as a tool for solving the group decision-making and fault
diagnosis problems, respectively. It has been shown that the
neutrosophic number can effectively deal with real problems
with indeterminacy. In this paper, a standard neutrosophic
number is firstly proposed for the improvement of the
multiplication of neutrosophic numbers to a certain extent.
And then the standard neutrosophic number is used to
modify the size effect laws on the compressive and tensile
strengths of the recycled aggregate concrete. .e proposed
size effect law based on the standard neutrosophic number
provides a simple and effective way to tackle the indeter-
minacy in the strength parameters.

.e presentation of this work is organized as follows:
Section 2 presents the size effect experimental scheme and
material properties used in the recycled aggregate concrete.
Section 3 gives the testing results of the compressive and
tensile strengths for the cube specimens. In Section 4, the
neutrosophic number is briefly reviewed and a standard
neutrosophic number is developed and used to improve the
size effect law for reflecting the indeterminacy in data. Fi-
nally, the conclusions of this work are summarized in
Section 5.

2. Experimental Scheme and
Material Properties

As shown in Figure 1, four sets of recycled concrete cube
specimens with different sizes are designed to investigate the
strength-size effect. Each group has six test blocks (three for
compressive test, three for splitting tensile test) and the total
number of these specimens is 24. .e side lengths of these
cube specimens are 70mm, 100mm, 150mm, and 200mm,
respectively.

Tables 1–3 present the main material properties of the
cement, fine aggregate, and recycled coarse aggregate used in
this experiment, respectively. .e cement is the ordinary
PM32.5 Portland cement and the fine aggregate is the
natural river sand..e recycled coarse aggregate as shown in
Figure 2 is manufactured from the waste concrete in the
process of old building dismantling.

Table 4 gives the mixture ratio, water-cement ratio,
and replacement ratio of recycled coarse aggregate used in
the experiment. In all these factors, the mixture ratio
design is the key factor to determine the strength grade of
concrete.

Finally, these recycled concrete cube specimens as shown
in Figure 3 are produced in the laboratory. After curing in
water for 28 days, the compressive and splitting tensile
strength tests are carried out.

3. Experiment Test and Result Analysis

Figure 4 presents the experiment equipment used for the
compressive and splitting tensile strengths, respectively. .e
experiment equipment is called the STYE-3000E automatic
pressure testing machine. .e detailed testing steps strictly
complied with the norms of “standard for test methods of
mechanical properties of ordinary concrete (GB/T
50081–2002)” [35].

Table 5 and Figure 5 present the test results of the
compressive strengths, respectively. Table 6 and Figure 6
present the test results of the splitting tensile strengths,
respectively.

From Tables 5 and 6, it has been shown that the com-
pressive and tensile strengths of recycled concrete both have
obvious size effects. In general, the mean value of strength
decreases gradually with the increase of specimen size.
Taking the specimens with a side length of 70mm as the
reference group, the degrees of size effect for other groups
can be computed as
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Figure 1: Cube specimen geometry size (unit: mm).

Table 1: Main properties of PM32.5 cement.

Number Properties Value
1 Density (kg/m3) 3051

2 Set time Initial set/min 172
Final set/min 225

3 Compressive strength 3d/MPa 17.8
28d/MPa 35

4 Rupture strength 3d/MPa 3.9
28d/MPa 7.1

Table 2: Main properties of fine aggregate.

Number Properties Condition or value
1 Fine aggregate River sand
2 Grain diameter/mm <5
3 Apparent density (kg/m3) 2548
4 Bulk density (kg/m3) 1211
5 Water ratio (%) 6.8
6 Gradation III
7 Modulus of finenessμf 1.83
8 Water absorption (%) 2.9

Table 3: Main properties of recycled coarse aggregate.

Number Properties Value
1 Apparent density (kg/m3) 2481
2 Bulk density (kg/m3) 1240
3 Water absorption (%) 6.3
4 Water ratio (%) 2.2
5 Crush value index (%) 19.9
6 Cavity ratio (%) 5.7
7 Porosity (%) 51.0
8 Incubation rate (%) 42.9

(a) (b)

Figure 2: Recycled coarse aggregate.
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Table 4: .e mixture ratio, water-cement ratio, and replacement ratio of recycled coarse aggregate.

Number Properties Value
1 Water–cement ratio 0.37
2 Replacement ratio of recycled coarse aggregate 100%

3 Material consumption

Cement (kg) 71.984
Water (kg) 27.210

Fine aggregate (kg) 61.037
Recycled coarse aggregate (kg) 103.843

4 .e mixture ratio Cement : water : fine aggregate : recycled coarse aggregate 1 : 0.378 : 0.848 :1.443

(a) (b)

Figure 3: Recycled concrete cube specimens.

(a) (b)

Figure 4: Experiment equipment for compressive and splitting tensile strengths.

Table 5: Mean values and standard deviations of compressive strengths.

Side length of cube specimen (mm)
Compressive strength (Sc) (MPa)

Standard deviation (δ) Coefficient of variation
Block 1 Block 2 Block 3 Mean value

70 32.250 52.189 55.415 46.618 10.244 0.220
100 34.618 32.401 33.509 33.510 0.905 0.027
150 36.580 28.586 30.449 31.871 3.415 0.107
200 36.443 24.047 27.491 29.327 5.224 0.178
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Figure 6: Splitting tensile strength values of cube specimens.
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Figure 5: Compressive strength values of cube specimens.

Table 6: Mean values and standard deviations of splitting tensile strength values.

Side length of cube specimen (mm)
Splitting tensile strength (St) (MPa)

Standard deviation (δ) Coefficient of variation
Block 1 Block 2 Block 3 Mean value

70 4.657 5.838 3.034 4.510 1.149 0.255
100 2.882 4.695 4.158 3.912 0.760 0.194
150 4.304 2.919 3.188 3.470 0.600 0.173
200 2.777 2.287 3.355 2.806 0.436 0.155
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Dc,100 �
46.618 − 33.51

46.618
× 100% � 28.12%,

Dc,150 �
46.618 − 31.871

46.618
× 100% � 31.63%,

Dc,200 �
46.618 − 29.327

46.618
× 100% � 37.09%,

Dt,100 �
4.51 − 3.912

4.51
× 100% � 13.26%,

Dt,150 �
4.51 − 3.47

4.51
× 100% � 23.06%,

Dt,200 �
4.51 − 2.806

4.51
× 100% � 37.78%.

(1)

From Tables 5 and 6, it was found that the discreteness
of data of the compressive strength is far greater than that
of the splitting tensile strength. .e possible reasons for
this phenomenon are as follows: (1) the compressive
strength of the test block is closely related to that of
recycled aggregate. It is known that the compressive
strengths of recycled aggregates in different specimens
fluctuate greatly. .is leads to the great discreteness of
compressive strength data. (2) .e splitting tensile
strength is mainly affected by the cohesive force between
cement and aggregate. At this point, there is no obvious
difference for different recycled aggregates.

4. Size Effect Law Using the Standard
Neutrosophic Number

4.1. .e Neutrosophic Number and Its Standard Form. As
stated before, the above strength values always contain some
randomness due to the limitation of experimental tech-
niques and the complexity of objective things. In order to
better describe the randomness in data, the neutrosophic
number will be introduced in this work to describe strength
since it is a powerful tool for the expression of data with
indeterminacy. Smarandache defined a neutrosophic
number for the first time in neutrosophic probability
[30–32]. A neutrosophic number, which can be divided into
a determinate part and an indeterminate part, is expressed as

N � x + yI, (2)

in which x and y are real numbers, I is indeterminacy, such
that I2 � I, 0 · I � 0, and I/I� undefined. In a sense, a
neutrosophic number can be treated as an interval number.
For example, assume that a neutrosophic number is
N � 2 + 3I, where I ∈ [0, 0.5]. .en, it is equivalent to an
interval numberN � [1.7, 2.3]. Compared with the interval
number, the advantages of the neutrosophic number are as
follows: (1) .e neutrosophic number more highlights the
determinate part, which is the common concerned point in
engineering application. (2) .e neutrosophic number is
similar to the imaginary number in form. .us, the oper-
ational rule of the neutrosophic number is more convenient
to implement. Letting N1 � x1 + y1I and N2 � x2 + y2I be
two neutrosophic numbers, the operational relations of
neutrosophic numbers are given by Smarandache [30–32] as

N1 + N2 � x1 + x2 + y1 + y2( 􏼁I,

N1 − N2 � x1 − x2 + y1 − y2( 􏼁I,

N1 × N2 � x1x2 + x1y2 + y1x2 + y1y2( 􏼁I,

N
2
1 � x1 + y1I( 􏼁

2
� x

2
1 + 2x1y1 + y

2
1􏼐 􏼑I,

N1

N2
�
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�

x1

x2
+

x2y1 − x1y2

x2 x2 + y2( 􏼁
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􏽰
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(3)
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However, the above operations may have potential
conflicts with those operations for interval numbers. For
example, assume that two neutrosophic numbers are N1 �

3 + 2I and N2 � 4 + 3I, where I ∈ [2, 3]. .en, they are
equivalent to two interval numbersN1 � [7, 9] and
N2 � [10, 13], respectively. According to the multiplication
of neutrosophic numbers, one has

N1 × N2 � 3 × 4 +(3 × 3 + 2 × 4 + 2 × 3)I

� 12 + 23I � [58, 81].
(4)

On the other hand, the following result can be obtained
by using the multiplication of interval numbers as

N1 × N2 � [7, 9] ×[10, 13] � [7 × 10, 9 × 13] � [70, 117].

(5)

Obviously, the results in equations (4) and (5) are dif-
ferent. In order to eliminate such conflicts, we propose some
improvement on the multiplication of neutrosophic num-
bers in this section. In the first place, we define the standard
form of a neutrosophic number as

N
s

� x
s

+ y
s
Is, Is ∈ [0, 1]. (6)

Accordingly, the multiplication includes the following
steps. First, we transform the arbitrary neutrosophic number
into its standard form Ns � xs + ysIs, where Is ∈ [0, 1]. For
example, the above two neutrosophic numbers N1 � 3 + 2I

and N2 � 4 + 3I (I ∈ [2, 3]) can be rewrote as Ns
1 � 7 + 2Is

and Ns
2 � 10 + 3Is, respectively. .en, one can obtain

N1 × N2 � N
s
1 × N

s
2 � 7 × 10 +(7 × 3 + 2 × 10 + 2 × 3)Is

� 70 + 47Is � [70, 117].

(7)

Apparently, the same result is achieved by equations (5)
and (7). .erefore, it is important to transform an arbitrary
neutrosophic number into its standard form in practice. For
an arbitrary neutrosophic number N � x + yI, I ∈ [z1, z2],
the conversion formula is given as

N
s

� N � x + yz1( 􏼁 + yz2 − yz1( 􏼁 · Is, Is � [0, 1]. (8)

Similarly, the conversion formula between an arbitrary
interval number [x1, x2] and the standard neutrosophic
number is expressed as

x1, x2􏼂 􏼃 � x1 + x2 − x1( 􏼁 · Is, Is � [0, 1]. (9)

Next, we use the proposed standard neutrosophic number
to describe the strength data as shown in Tables 5 and 6. As is
well known, the standard deviation δ in Tables 5 and 6 is a
commonly used measure of the degree to which a variable is
dispersed around its mean value. .en, the strength data of
these recycled concrete cubic specimens can be considered as
a set of interval numbers [Sc − δ, Sc + δ] and [St − δ, St + δ].
Using equation (9), these interval numbers can be trans-
formed into the standard neutrosophic numbers as

Sc − δ, Sc + δ􏼂 􏼃 � Sc − δ( 􏼁 + 2δ · Is, Is � [0, 1],

St − δ, St + δ􏼂 􏼃 � St − δ( 􏼁 + 2δ · Is, Is � [0, 1].
(10)

For example, the cubic compressive strength for the
specimens with the side length of 100mm in Table 5 can be
expressed as an interval number [33.51–0.905, 33.51 + 0.905]
or a standard neutrosophic number 32.605 + 1.81Is. Table 7
shows all the compressive and tensile strengths of these cubic
specimens using the form of standard neutrosophic
numbers.

4.2. Improved Size Effect Law. .e size effect law denotes the
strength-size functional relationship. In this section, the
existing size effect laws have been improved in two areas: one
is using a new ridge estimation method to compute the
fitting coefficients of the formula for size effect law, the other
is using the standard neutrosophic number to reflect the
indeterminacy. For the compressive strength, the commonly
used size effect law is

Sc � ε1d
−2/5

+ ε0, (11)

where d is the side length of the concrete cube block ε0 and ε1
are the two constants which can be determined by providing
fits to experimental data. For the splitting tensile strength,
the common formula of size effect law is

St � S∞ 1 +
d0

d
􏼠 􏼡, (12)

where S∞ denotes the nominal strength when the specimen
size tends to infinity and d0 denotes the characteristic size.
.eoretically, S∞ is an independent value of the specimen
size. From the point of view of dimensional homogeneity, it
is more reasonable to replace the side length d with the side
length ratio r, wherer is the ratio of the cube specimen size to
the minimum size in the experiment, that is, r � d/dmin..at
is because r is a dimensionless parameter. .en, the size
effect law for the compressive strength can be rewritten as

Sc � ε1r
−2/5

+ ε0. (13)

Similarly, the size effect law for the splitting tensile
strength is revised as

St � S∞ 1 +
r0

r
􏼒 􏼓. (14)

For a particular size ratio r, a unique strength value can
be calculated by any one of equations (13) and (14). Gen-
erally, the least squares estimate (LSE) [36] is used to obtain
the fitting coefficients in equations (13) and (14). However,
the ill condition of the equation may lead to serious dis-
tortion of the fitting results. To solve this problem, a new
ridge estimation method is used to compute the fitting
coefficients. Taking equation (13) as an example, the fol-
lowing linear regression model can be obtained from
equation (13) with the test data of the specimens as

Advances in Civil Engineering 7



A · ε{ } � Sc􏼈 􏼉, (15)

A �

1 r
−2/5
1

⋮ ⋮
1 r

−2/5
m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

ε{ } �
ε0
ε1

􏼨 􏼩,

Sc􏼈 􏼉 �

Sc1

⋮
Scm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(16)

As stated before, LSE is often used for solving equation
(15) to obtain the fitting coefficients; that is,

ε{ }lse � B
−1

· z, B � A
T
A, z � A

T
y, z � A

T
y. (17)

As is well known, LSE is very inaccurate if the coefficient
matrix of the equation is ill-conditioned. .e ridge esti-
mation (RE) [37–40] method is often used to solve the ill-
conditioned equation. For equation (15), the RE solution is

ε{ }re � (B + λE)
−1

· z, (18)

where E is the identity matrix and λ is the ridge parameter that
can be determined by the L-curve method [37–40]. In general,
the determination process of ridge parameter requires complex
calculation and it is difficult to obtain the optimal ridge pa-
rameter. .us, a new ridge estimation (NRE) method is
proposed in this section to solve the ill-posed least squares
problem. .e main formulas of NRE are derived as follows.

Letting bij denotes the (i, j)th element in the matrix B,
one has

B �

b11 b12 · · · b1n

b21 b22 · · · b2n

⋮ ⋮ ⋱ ⋮

bn1 bn2 . . . bnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Assume bmax is the maximum value in all the diagonal
elements of B, that is,

bmax � max bii( 􏼁, i � 1 ∼ n. (20)

.en, a new regularization matrix R used in NRE is
designed as

R � ς · bmax ·

2 b11/bmax( )− 1 0 · · · 0

0 2 b22/bmax( )− 1
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 2 bnn/bmax( )− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where ς is an adjustable parameter (ς ⊂ [0, 0.2]), which can
be adjusted according to the condition number of coefficient
matrix B. ς � 0.1 is used in this work. Finally, the NRE of ε{ }

can be obtained as

ε{ }nre � (B + R)
−1

· z. (22)

Compared with RE, the advantages of NRE lie in the
following aspects. (1) .e complex operation of ridge pa-
rameter selection is avoided. (2) .e calculation accuracy is
further improved by automatically adjusting diagonal elements
as shown in equation (21). Using NRE and the data in Tables 5
and 6, the size effect laws for the compressive and tensile
strengths in this experiment can be obtained by data fitting as

Sc � 16.03 + 21.71 × r
−2/5

, (23)

St � 2.1 × 1 +
1.03

r
􏼒 􏼓. (24)

As stated before, the standard neutrosophic number
Ns � xs + ysIs, which consists of a determinate part xs and
an indeterminate part ysIs(Is ∈ [0, 1]), is very suitable for
expressing those parameters with indeterminacy in practice.
In view of this, we further improve the above size effect laws
by using the standard neutrosophic number in order to
reflect the indeterminacy in data.

For the compressive strength, letting ε0 � x0 + y0Is and
ε1 � x1 + y1Is be two neutrosophic numbers for
x0, y0, x1, y1 ∈ [0, +∞), equation (13) can be rewritten as

Sc � x0 + x1r
− 2/5

􏼐 􏼑 + y0 + y1r
− 2/5

􏼐 􏼑Is. (25)

For the splitting tensile strength, letting S∞ � x2 + y2Is

and r0 � x3 + y3Is be two neutrosophic numbers for
x2, y2, x3, y3 ∈ [0, +∞), equation (14) can be rewritten as

St � x2 + y2Is( 􏼁 1 +
x3 + y3Is

r
􏼒 􏼓 � x2 1 +

x3

r
􏼒 􏼓

+ y2 +
x2y3 + x3y2 + y2y3

r
􏼒 􏼓Is.

(26)

In equations (25) and (26), the positive constants
x0, y0, x1, y1, x2, y2, x3, y3 can be determined by the pro-
posed NRE method. Equations (27) and (28) present the
results obtained after fitting as

Sc � 14.25 + 18.04 · r
−2/5

􏼐 􏼑 + 3.57 + 7.25 · r
−2/5

􏼐 􏼑Is, (27)

St � 1.80 +
1.52

r
􏼒 􏼓 + 0.60 +

1.29
r

􏼒 􏼓Is. (28)

For comparison, Figures 7 and 8 present the fitting
curves of size effect laws for the compressive and tensile

Table 7: Strength values expressed by the standard neutrosophic
numbers (“CS” denotes the compressive strength; “TS” denotes the
tensile strength).

Specimen number Strengths expressed
by the standard neutrosophic numbers

CS-70 36.374 + 20.288Is

CS-100 32.605 + 1.81Is

CS-150 28.456 + 6.83Is

CS-200 24.103 + 10.448Is

TS-70 3.361 + 2.298Is

TS-100 3.152 + 1.52Is

TS-150 2.87 + 1.2Is

TS-200 2.37 + 0.872Is
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strengths, respectively. In Figure 7, the black curves and
the scatter points indicated by “∗” are obtained by
equation (23) and the data in the fifth column of Table 5.
.e red curve and the green curve in Figure 7 indicate the
lower boundary and the upper boundary obtained from
equation (27). In Figure 8, the black curves and the scatter
points indicated by “∗” are obtained by equation (24) and
the data in the fifth column of Table 6. .e red curve and
the green curve in Figure 8 indicate the lower boundary
and the upper boundary obtained from equation (28). One
can see from Figures 7 and 8 that the size effect laws in the
form of the standard neutrosophic number can provide a
certain range of the strength value for a particular size.
Obviously, the size effect law based on the standard
neutrosophic number is more realistic than the existing
size effect law.

Comparing equations (12) and (11), one can find that the
two size effect formulas for the compressive and tensile
strengths seem to be similar. It may be valuable to propose a
unified formula of the size effect. In this paper, a unified
formula for size effect law is proposed as

S � δ1d
−δ3 + δ0, (29)

where S denotes the physical quantity such as compressive
and tensile strengths and δ0 and δ1 are the two constants
which can be determined by providing fits to experimental
data. δ3 is called the fractal dimension, which is mainly
determined by the characteristics of thematerial itself. δ3 can
also be obtained from a large number of test data statistics. In
this work, δ3 � 0.4 is used for the compressive strength and
δ3 � 1 is used for the splitting tensile strength. Equation (29)
can be used for other types of size effect laws.

5. Conclusion

In this study, four sets of recycled concrete cube specimens
with different sizes are produced in the laboratory. .e
experiments on compressive and tensile strengths are car-
ried out to obtain the rules of the strength value with the
change of the specimen size. According to the experimental
results, it was found that the compressive and tensile
strengths of recycled concrete both have obvious size effects.
In general, the strength value decreases gradually with the
increase of specimen size. To reflect the uncertainty in the
data, a standard neutrosophic number is proposed to im-
prove the multiplication of neutrosophic numbers to a
certain degree. Subsequently, the proposed standard neu-
trosophic number is used for modifying the size effect law on
the compressive and tensile strengths. It has been shown that
the size effect law based on the neutrosophic number is more
realistic than the existing size effect law. .e proposed
method in this paper provides a simple and effective way to
handle the indeterminacy in the testing data and can be
extended to other types of size effect laws, which are our
future research directions.
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