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Abstract: Data clustering is an important field in pattern recognition and machine learning.
Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is
an extension of the fuzzy set, has received extensive attention in solving many real-life problems of
inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering
algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means,
picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function,
which is depicted as a constrained minimization problem based on a single-valued neutrosophic set,
is built, and the Lagrange multiplier method is used to solve the objective function. We do several
experiments with some benchmark datasets, and we also apply the method to image segmentation
using the Lena image. The experimental results show that the given algorithm can be considered as
a promising tool for data clustering and image processing.

Keywords: single-valued neutrosophic set; fuzzy c-means; picture fuzzy clustering; Tsallis entropy

1. Introduction

Data clustering is one of the most important topics in pattern recognition, machine learning and
data mining. Generally, data clustering is the task of grouping a set of objects in such a way that objects
in the same group (cluster) are more similar to each other than to those in other groups (clusters). In the
past few decades, many clustering algorithms have been proposed, such as k-means clustering [1],
hierarchical clustering [2], spectral clustering [3], etc. The clustering technique has been used in many
fields, including image analysis, bioinformatics, data compression, computer graphics and so on [4-6].

The k-means algorithm is one of the typical hard clustering algorithms that is widely used in
real applications due to its simplicity and efficiency. Unlike hard clustering, the fuzzy c-means (FCM)
algorithm [7] is one of the most popular soft clustering algorithms in which each data point belongs to
a cluster to some degree that is specified by membership degrees in [0, 1], and the sum of the clusters
for each of the data should be equal to one. In recent years, many improved algorithms for FCM have
been proposed. There are three main ways to build the clustering algorithm. First is extensions of
the traditional fuzzy sets. In this way, numerous fuzzy clustering algorithms based on the extension
fuzzy sets, such as the intuitionistic fuzzy set, the Type-2 fuzzy set, etc., are built. By replacing
traditional fuzzy sets with intuitionistic fuzzy set, Chaira introduced the intuitionistic fuzzy clustering
(IFC) method in [8], which integrated the intuitionistic fuzzy entropy with the objective function.
Hwang and Rhee suggested deploying FCM on (interval) Type-2 fuzzy set sets in [9], which aimed to
design and manage uncertainty for fuzzifier m. Thong and Son proposed picture fuzzy clustering based
on the picture fuzzy set (PFS) in [10]. Second, the kernel-based method is applied to improve the fuzzy
clustering quality. For example, Graves and Pedrycz presented a kernel version of the FCM algorithm,
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namely KFCM in [11]. Ramathilagam et al. analyzed the Lung Cancer database by incorporating the
hyper tangent kernel function [12]. Third, adding regularization terms to the objective function is
used to improve the clustering quality. For example, Yasuda proposed an approach to FCM based on
entropy maximization in [13]. Of course, we can use these together to obtain better clustering quality.

The neutrosophic set was proposed by Smarandache [14] in order to deal with real-world
problems. Now, the neutrosophic set is gaining significant attention in solving many real-life
problems that involve uncertainty, impreciseness, incompleteness, inconsistency and indeterminacy.
A neutrosophic set has three membership functions, and each membership degree is a real standard
or non-standard subset of the nonstandard unit interval |[0~,17[= 0~ U[0,1]U1". Wang et al. [15]
introduced single-valued neutrosophic sets (SVNSs), which are an extension of intuitionistic fuzzy
sets. Moreover, the three membership functions are independent, and their values belong to the unit
interval [0,1]. In recent years, the studies of SVNSs have been rapidly developing. For example,
Majumdar and Samanta [16] studied the similarity and entropy of SVNSs. Ye [17] proposed correlation
coefficients of SVNSs and applied them to single-valued neutrosophic decision-making problems, etc.
Zhang et al. in [18] proposed a new definition of the inclusion relation of neutrosophic sets (which is
also called the Type-3 inclusion relation), and a new method of ranking neutrosophic sets was given.
Zhang et al. in [19] studied neutrosophic duplet sets, neutrosophic duplet semi-groups and cancelable
neutrosophic triplet groups.

The clustering methods by the neutrosophic set have been studied deeply. In [20], Ye proposed
a single-valued neutrosophic minimum spanning tree (SVNMST) clustering algorithm, and he also
introduced single-valued neutrosophic clustering methods based on similarity measures between
SVNSs [21]. Guo and Sengur introduced the neutrosophic c-means clustering algorithm [22], which
was inspired by FCM and the neutrosophic set framework. Thong and Son did significant work on
clustering based on PFS. In [10], a picture fuzzy clustering algorithm, called FC-PFS, was proposed.
In order to determine the number of clusters, they built an automatically determined most suitable
number of clusters based on particle swarm optimization and picture composite cardinality for
a dataset [23]. They also extended the picture fuzzy clustering algorithm for complex data [24].
Unlike the method in [10], Son presented a novel distributed picture fuzzy clustering method on the
picture fuzzy set [25]. We can note that the basic ideas of the fuzzy set, the intuitionistic fuzzy set and
the SVNS are consistent in the data clustering, but there are differences in the representation of the
objects, so that the clustering objective functions are different. Thus, the more adequate description can
be better used for clustering. Inspired by FCM, FC-PFS, SVNS and the maximization entropy method,
we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm based on
Tsallis entropy maximization (SVNCA-TEM), in this paper, and the experimental results show that the
proposed algorithm can be considered as a promising tool for data clustering and image processing.

The rest of paper is organized as follows. Section 2 shows the related work on FCM, IFC and
FC-PFS. Section 3 introduces the proposed method, using the Lagrange multiplier method to solve
the objective function. In Section 4, the experiments on some benchmark UCI datasets indicate that
the proposed algorithm can be considered as a useful tool for data clustering and image processing.
The last section draws the conclusions.

2. Related Works

In general, suppose dataset D = {Xj, X, -, X,} includes n data points, each of the data
X; = {xi1;;xio; - - - ; %14} € R? is a d-dim feature vector. The aim of clustering is to get k disjoint clusters
{Gil,j = 1,2,---,k}, satisfying C; Ny»; C; = @ and D = u};lcj. In the following, we will briefly
introduce three fuzzy clustering methods, which are FCM, IFC and FC-PFS.

2.1. Fuzzy c-Means

The FCM was proposed in 1984 [7]. FCM is a data clustering technique wherein each data point
belongs to a cluster to some degree that is specified by a membership grade. A data point X; of cluster
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C; is denoted by the term y;;, which shows the fuzzy membership degree of the i-th data point in the
jthcluster. We use V = {V1,V,, - - -, Vi } to describe the cluster centroids of the clusters, and V; € R4
is the cluster centroid of C;. The FCM is based on the minimization of the following objective function:

nk )
Z Y- ultllxi = VilI?, (1)
i=1j=1
where m represents the fuzzy parameter and m > 1. The constraints for (1) are,
k
Zl’lil = 1’ l’llj € [0/1]/ i= 112/"' N, ]: 1/2/"' /k- (2)
I=1

Using the Lagrangian method, the iteration scheme to calculate cluster centroids V; and the fuzzy
membership degrees y;; of the objective function (1) is as follows:

n m
i—1 M Xi
Vj:rlil]mr]zlrzr"'/k' )
i=1 Hij
Z ||X VH m>71. 121,2,,71 ]:1,2,/k (4)
X =il

The iteration will not stop until it reaches the maximum iterations or |J() — J(*=1)| < ¢, where J(*
and =1 are the objection function value at ()-th and (¢ — 1)-th iterations, and € is a termination
criterion between zero and 0.1. This procedure converges to a local minimum or a saddle point of J.
Finally, each data point is assigned to a different cluster according to the fuzzy membership value,
that is X; belongs to C; if p;; = max(uit, Hio, - - -, fik)-

2.2. Intuitionistic Fuzzy Clustering

The intuitionistic fuzzy set is an extension of fuzzy sets. Chaira proposed intuitionistic fuzzy
clustering (IFC) [8], which integrates the intuitionistic fuzzy entropy with the objective function of
FCM. The objective function of IFS is:

n k k *
ZZZ X — ViR + Y et (5)
j=1

i=1j=1

where n]’f = % Y Ttij, and Tj is the hesitation degree of X; for C]-. The constraints of IFC are similar
to (2). Hesitation degree 77 is initially calculated using the following form:

mip=1—p;—(1- u])l/"‘, where « € [0,1], (6)

and the intuitionistic fuzzy membership values are obtained as follows:
Hij = Hij + T 7)
where ,uf]- (mij) denotes the intuitionistic (conventional) fuzzy membership of the i-th data in the j-th

class. The modified cluster centroid is:

n *m .
_ Li=1 Vij i
Vj - n *m 7
ij

:1/2/"’/k' (8)



Axioms 2018, 7, 57 40f12

*(t)

The iteration will not stop until it reaches the maximum iterations or the difference between y; i

*(t—1)

and y; i is not larger than a pre-defined threshold ¢, that is max; ; | ‘u;}(t) - yz(t71)| <e.

2.3. Picture Fuzzy Clustering

In [26], Cuong introduced the picture fuzzy set (which is also called the standard neutrosophic
set [27]), which is defined on a non-empty set S, A = {(x, 114 (x),17,4(x),7,4(x))|x € S}, where p ;(x)
is the positive degree of each element x € X, 1 (x) is the neutral degree and 1 4 (x) is the negative
degree satisfying the constraints,

HAx)y MAG)y Yaw) € [01], Vx€S. o
Hi) THAx) T YA <1, VxeS.
The refusal degree of an element is calculated as:
Calx) =1—(ui(x) +ni(x) +74(x),Vx €S (10)

In [10], Thong and Son proposed picture fuzzy clustering (FC-PFS), which is related to
neutrosophic clustering. The objective function is:

n k
= Z Z ,”11 (2— (:zj )X — V||2+ Z 27711 logﬂl] +§1]) (11)

i=1j=1 i=1j=1

wherei=1,---,n,j=1,--- k. Wij, i and gij are the positive, neutral and refusal degrees, respectively,
for which each data point X; belongs to cluster C;. Denote y, 17 and ¢ as the matrices whose elements
are i, 1;; and ¢;;, respectively. The constraints for FC-PFS are defined as follows:

uij, 1ij, &ij € 0,1],
uij+ 1+ Gij <1,
Ty (ua(2— &) =
(i + Ea/k) = 1.

(12)

Using the Lagrangian multiplier method, the iteration scheme to calculate y;;, 75, ¢;; and V;j for
the model (11,12) is as the following equations:

Gij =1~ (pij+1ij) — (1= (uig +mip)")V/*, whereaw € [0,1], (i=1,---,nj=1,-- k), (13)

1

Hij = V] — (=1 ,nj=1-- k), (14)
E?:l(z_gij)(ﬂx V1H>
—Gij
e .
= S kZQz (i=1-,mj=1, k), (15)

Zl 1 e~ éll
v — Yy (i (2 = &))" X
Y (i (2 = &)™
The iteration will not stop until it reaches the maximum iterations or ||u(*) — (=1 + ||®) —

nE 4+ 180 =gt <.

G=1- k). (16)

3. The Proposed Model and Solutions

Definition 1. [15] Set U as a space of points (objects), with a generic element in U denoted by u. A SVNS
A in U is characterized by three membership functions, a truth membership function T, an indeterminacy
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membership function 1, and a falsity-membership function Fa, where Vu € U, Ta(u), Io(u), Fa(u) € [0,1].
That is, Ty : U — [0,1],14 : U — [0,1] and F4 : U — [0,1]. There is no restriction on the sum of
Ta(u), Ly(u) and Fa(u); thus, 0 < Ta(u) + L4(u) + Fa(u) < 3.

Moreover, the hesitate membership function is defined as H4 : U — [0,3] and Vu € U, T (u) +
Ia(u) + Fa(u) + Ha(u) = 3.

Entropy is a key concept in the uncertainty field. It is a measure of the uncertainty of a system or
a piece of information. It is an improvement of information entropy. The Tsallis entropy [28], which is
a generalization of the standard Boltzmann-Gibbs entropy;, is defined as follows.

Definition 2. [28] Let X be a finite set and X be 11 a random variable taking values x € X, with distribution
p(x). The Tsallis entropy is defined as Sy, (X) = 715 (1 — Lyex p(x)™), where m > 0 and m # 1.

For FCM, p;; denotes the fuzzy membership degree of X; to C;, and supports Z;‘ 1 yl] = 1.

From Definition 2, the Tsallis entropy of y can be described by Sy (1) = L q -15(1 Z 1 ]/ll])
n being a fixed number, Yasuda [13] used the following formulary to describe the the Tsallis entropy
of u:

Sm(ﬂ - _ 1 2 2 ‘ulj N (17)
i=1j=
The maximum entropy principle has been widely applied in many fields, such as spectral
estimation, image restoration, error handling of measurement theory, and so on. In the following,
the maximum entropy principle is applied to the single-valued neutrosophic set clustering. After the
objection function of clustering is built, the maximum fuzzy entropy is used to regularize variables.
Suppose that there is a dataset D consisting of n data points in d dimensions. Let y;j, 7ij, 17ij
and §;; be the truth membership degree, falsity-membership degree, indeterminacy membership
degree and hesitate membership degree, respectively, that each data point X; belongs to cluster
Cj. Denote p,y, 1 and ¢ as the matrices, the elements of which are Hijs Yijs ij and Cij/ respectively,
where ¢;; = 3 — pjj — 7vij — 1ij. The single-valued neutrosophic clustering based on Tsallis entropy
maximization (SVNC-TEM) is the minimization of the following objective function:

] = 2?21 Z;‘Czl(l’lij(zl_ Cz] 71]))mHX VH2 7(21 1 &= 1(”1/(4 Yij — gij))m - 1) (18)
+ Z?:l Z;'(:l Uij(log ’71] + 61]/3)1
The constraints are given as follows:
wijvij i € 0,185 €[0,3], (i=1,2,--+ ,n,j=1,2,--- k) (19)
k
Z( 11(4 Yil — gil)) =1, (i:1,2,~~ ,n), (20)
=1
k
Z ni+ G/ (3xk) =1,(i=12,---,n) (21)

The proposed model in Formulary (18)—(21) is applied to the maximum entropy principle of the
SVNS. Now, let us summarize the major points of this model as follows.

o  The first term of the objection function (18) describes the weighted distance sum of each data
point X; to the cluster center V;. y;; being from the positive aspect and (4 — &;; — 7;j) (four is
selected in order to guarantee ;; € [0,1] in the iterative calculation) from the negative aspect,
denoting the membership degree for X; to V;, we use p;j(4 — {;; — 7ij) to represent the “integrated
true” membership of the i-th data point in the j-th cluster. From the maximum entropy principle,
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the best to represent the current state of knowledge is the one with largest entropy, so the
second term of the objection function (18) describes the negative Tsallis entropy of u(4 — vy —¢),
which means that the minimization of (18) is the maximum Tsallis entropy. p is the regularization
parameter. If ¥ = 7 = ¢ = 0, the proposed model returns the FCM model.

e  Formulary (19) guarantees the definition of the SVNS (Definition 1).
Formulary (20) implies that the “integrated true” membership of a data point X; to the
cluster center V; satisfies the sum-row constraint of memberships. For convenience, we set
Ti; = pij(4 — Gij — 7ij), and X; belongs to class C; if Tj = max(T;1, Tip, - - -, Tix)-

e  Equation (21) guarantees the working of the SVNS since at least one of two uncertain factors,
namely indeterminacy membership degree and hesitate membership degree, always exists in
the model.

Theorem 1. The optimal solutions of the systems (18-21) are:

Yy (i (4 = vij — Gip) )" X

V= , 22
T (uij(4 = i — &)™ 22)
1

Hij = 1% VPt L (23)

Vi (4 =i — Cij)(W) -t

1
Yij =4—Cij — P o (24)
Wij = 1(W)’”‘1
S @)
Nij = Zir) — 25
k Zl 1 gzl

Gij = 3 — Mij — Yij — ij- (26)

Proof. The Lagrangian multiplier of the optimization model (18-21) is:

] = n =1 ;( 1(“1](4 Yij — 61] mHX VH2 ( 12;c 1(”1](4 Yij — écz])) -1)
Z =1 Z:] 1 771] (log 7]1] + 61]/3) + Z (ijl l’ll] (4 71] gl]) ) - 1) (27)
+ 21:1 Xl(Z]:l (771] + 51] (3k)) )
where A; and x; are Lagrangian multipliers.

3] —

In order to get V}, taking the derivative of the objective function with respect to V;, we have v =
Z?:l(l’ll](él = %ij — §ij))m(—2Xi + ZVJ) Since % =0, so0 Z:l 1(]41](4 —Nij — gl])) ( 2X; + ZV) =
i (i (A=mi—Cij) )" X,
S Vg (nii(4— 771']‘ —Gip))" X = Xl (mij(4d —mij — &))"V & Vi = Zﬁl(’jl]@; ,;l] él]))
Similarly, ;2 ay = mpg~ Y4 =g — i)™ I1X — Vi|I2 + aTh Ya—¢i—mip)™) + Ai(d =i —mij) =

- 1 2 1 A
06 i (4 =75 — &))" (| Xi = V|2 + #25) + A = 06y = s G )
From (20), we can get lel (W)m =1, thatis A; = ():ﬁ1 1 )1, s0

1
m, 1
(]| XV |24 oy ) =T

i = — S thus, (23) holds.
Yiq(4=Gij—mij)(

m Iym=1
l1x;- vlu2+ 2 )

1 o= 4 Fe —
i
kfl( L] mpl)m—l
=M x-v12+

From (23), we can also get pii(4 — vij — &ij)

o Vluz —; thus, (24) holds.

1 )mfl

1

Uij Zl 1(
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Similarly, 3%‘ = lognj+1—xi+¢j = 0« 15 = elx; — Gij), From (21), we have
q_z _ _F _ T &
Tl el o g Y g G =1 e 12[:1e b =1- g T 8ne e = 27@ Therefore,

we have ;= (1= £y &) -
Finally, from Definition 1, we can get &;j = 3 — pjj — vij — 17;j- Thus, (26) holds. [

Theorem 1 guarantees the convergence of the proposed method. The detailed descriptions of
SVNC-TEM algorithm are presented in the following Algorithm 1:

Algorithm 1: SVNC-TEM

Input: Dataset D = {X1, Xp, -+, Xu} (n elements, d dimensions), number of clusters k,
maximal number of iterations (Max-Iter), parameters: m, €, p
Output: Cluster result
1:t=0;
2: Initialize p, v, ¢, satisfies Constraints (19) and (20);
3: Repeat
4. t=t+1;
5:  Update V( ) ,(j=1,2,--- k) using Equation (22);
6 (i=12---,n,j=1,2,---,k) using Equation (23);
7:  Update v, t), (i=12---,n,j=1,2,---,k) using Equation (24);
8 Updatey;’, (i=1,2,---,n,j=1,2,--- k) using Equation (25);
9 Update (j H ,(i=12,---,n,j=1,2,--- k) using Equation (26);
t Oy /s .
10: Update l<]) = ﬂl(])(4 - ()/l(]) - él(]))’ (1 = 1/2/' N = 1/2/' o /k)/
11:  Update () using Equation (18);
12: Until |[J® — J¢=1| < € or Max-Iter is reached.
13: Assign X;(i =1,2,- -, n) to the I-th class if Tj; = max(Tj1, T, - - -, Tix)-

Compared to FCM, the proposed algorithm needs additional time to calculate y, y,# and ¢ in
order to more precisely describe the object and get better performance. If the dimension of the given
dataset is d, the number of objects is 11, the number of clusters is ¢ and the number of iterations
is t, then the computational complexity of the proposed algorithm is O(dnct). We can see that the
computational complexity is very high if d and » are large.

4. Experimental Results

In this section, some experiments are intended to validate the effectiveness of the proposed
algorithm SVNC-TEM for data clustering. Firstly, we used an artificial dataset to show that SVNC-TEM
can cluster well. Secondly, the proposed clustering method was used in image segmentation using
an example. Lastly, we selected five benchmark datasets, and SVNC-TEM was compared to four
state-of-the-art clustering algorithms, which were: k-means, FCM, IFC and FS-PFS.

In the experiments, the parameter m was selected as two and € = 10°. The maximum iterations
(Max-Iter) = 100. The selected datasets have class labels, so the number of cluster kK was known in
advance. All the codes in the experiments were implemented in MATLAB R2015b.

4.1. Artificial Data to Cluster by the SVNC-TEM Algorithm

The activities of the SVNC-TEM algorithm are illustrated to cluster artificial data, which was
two-dimensional data and had 100 data points, into four classes. We use an example to show the
clustering process of the proposed algorithm. The distribution of data points is illustrated in Figure 1a.
Figure 1b—e shows the cluster results when the number of iterations was t = 1, 5, 10, 20, respectively.
We can see that the clustering result was obtained when t = 20. Figure 1f shows the final results of
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the clustering; the number of iterations was 32. We can see that the proposed algorithm gave correct

clustering results from Figure 1.
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Figure 1. The demonstration figure of the clustering process for artificial data. (a) The original data.
(b—e) The clustering figures when the number of iterations t = 1, 5, 10, 20, respectively. (f) The final

clustering result.

4.2. Image Segmentation by the SVNC-TEM Algorithm

In this subsection, we use the proposed algorithm for image segmentation. As a simple example,
the Lena image was used to test the proposed algorithm for image segmentation. Through this example,
we wish to show that the proposed algorithm can be applied to image segmentation. Figure 2a is the
original Lena image. Figure 2b shows the segmentation images when the number of clusters was k = 2,
and we can see that the quality of the image was greatly reduced. Figure 2c—f shows the segmentation
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images when the number of clusters was k = 5, 8, 11 and 20, respectively. We can see that the quality
of segmentation image was improved very much with the increase of the clustering number.

(b) k=2 (k=5

(dk=8 (&) k=11 (f) k=20

Figure 2. The image segmentation for the Lena image. (a) The original Lena image. (b—f) The clustering
images when the number of clusters k = 2, 5, 8, 11 and 20, respectively.

The above two examples demonstrate that the proposed algorithm can be effectively applied
to clustering and image processing. Next, we will further compare the given algorithm to other
state-of-art clustering algorithms on benchmark datasets.

4.3. Comparison Analysis Experiments

In order to verify the clustering performance, in this subsection, we experiment with five
benchmark datasets of the UCI Machine Learning Repository, which are IRIS, CMC, GLASS, BALANCE
and BREAST. These datasets were used to test the performance of the clustering algorithm. Table 1
shows the details of the characteristics of the datasets.

Table 1. Description of the experimental datasets.

Dataset No. of Elements No. of Attributes No. of Classes Elements in Each Classes

IRIS 150 4 3 (50, 50, 50]
CMC 1473 9 3 [629, 333, 511]
GLASS 214 9 6 [29, 76, 70, 17, 13, 9]
BALANCE 625 4 3 [49, 288, 288]
BREAST 277 9 2 [81, 196]

In order to compare the performance of the clustering algorithms, three evaluation criteria were
introduced as follows.

Given one data point X;, denote p; as the truth class and g; as the predicted clustering class.
The clustering accuracy (ACC) measure is evaluated as follows:

ACC — Yiog J(Pi;map(%)) ) (28)
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where 7 is the total number of data points, d(x,y) = 1 if x = y; otherwise, d(x,y) = 0. map(e) is the
best permutation mapping function that matches the obtained clustering label to the equivalent label
of the dataset. One of the best mapping functions is the Kuhn—-Munkres algorithm [29]. The higher the
ACC was, the better the clustering performance was.

Given two random variables X and Y, MI(X;Y) is the mutual information of X and Y. H(X) and
H(Y) are the entropies of P and Q, respectively. We use the normalized mutual information (NMI)
as follows:

MI(X;Y)

NMI(X;Y) = TEOAT

(29)

The clustering results C = {(fj};‘:l and the ground truth classes C = {C; };‘:1 are regarded as two
discrete random variables. Therefore, NMI is specified as follows:

R 3 L [CGinCjllog ”‘fﬁf}"
NMI(C;C) = = . (30)
k A Ci IC‘
(T Cit0g S (EE G 10g )
The higher the NMI was, the better the clustering performance was.
The Rand index is defined as,
2(a+d)
Rl = —/———% 1

where 4 is the number of pairs of data points belonging to the same class in C and to the same cluster
in C. d is the number of pairs of data points belonging to the different class and to the different cluster.
n is the number of data points. The larger the Rand index is, the better the clustering performance is.

We did a series of experiments to indicate the performance of the proposed method for
data clustering. In the experiments, we set the parameters of all approaches in the same way
to make the experiments fair enough, that is for parameter p, we set p = {0.01,0.05,0.07,
0.1,0.15,0.5,1,2,5,8,9,15,20,50}. For a, we set « = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For each
parameter, we ran the given method 50 times and selected the best mean value to report. Tables 2—4
show the results with the different evaluation measures. In these tables, we use bold font to indicate
the best performance.

Table 2. The ACC for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.8803 0.8933 0.9000 0.8933 0.9000
CMC 0.3965 03917 0.3958  0.3917 0.3985
GLASS 0.3219 0.2570  0.3636  0.2935 0.3681
BALANCE 0.5300 0.5260 0.5413  0.5206 0.5149
BREAST 0.6676 0.5765 0.6595  0.6585 0.6686

Bold format: the best performance.

Table 3. The NMI for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.7514 0.7496 0.7102  0.7501 0.7578
CMC 0.0320 0.0330 0.0322  0.0334 0.0266
GLASS 0.0488 0.0387 0.0673  0.0419 0.0682
BALANCE 0.1356 0.1336 0.1232  0.1213 0.1437
BREAST 0.0623 0.0309 0.0285  0.0610 0.0797

Bold format: the best performance.
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We analyze the results from the dataset firstly. For IRIS dataset, the proposed method obtained
the best performance for ACC, NMI and RI. For the CMC dataset, the proposed method had the best
performance for ACC and RI. For the GLASS and BREAST datasets, the proposed method obtained
the best performance for ACC and NMI. For the BALANCE dataset, the proposed method had the
best performance for NMI and RI. On the other hand, from the three evaluation criteria, for ACC and
NMI, the proposed method beat the other methods for four datasets. For RI, SVNC-TEM beat the other
methods for three datasets. From the experimental results, we can see that the proposed method had
better clustering performance than the other algorithms.

Table 4. The RI for different algorithms on different datasets.

Dataset k-Means FCM IFC FC-PFS SVNC-TEM

IRIS 0.8733 0.8797 0.8827  0.8797 0.8859
CMC 0.5576 0.5582 0.5589  0.5582 0.5605
GLASS 0.5373 0.6294 04617  0.5874 0.4590
BALANCE 0.5940 0.5928 0.5899  0.5904 0.5999
BREAST 0.5708 0.5159 0.5732  0.5656 0.5567

Bold format: the best performance.

5. Conclusions

In the paper, we consider the truth membership degree, the falsity-membership degree,
the indeterminacy membership degree and hesitate membership degree in a comprehensive way for
data clustering by the single-valued neutrosophic set. We propose a novel data clustering algorithm,
SVNC-TEM, and the experimental results showed that the proposed algorithm can be considered
as a promising tool for data clustering and image processing. The proposed algorithm had better
clustering performance than the other algorithms such as k-means, FCM, IFC and FC-PFS. Next, we
will consider the proposed method to deal with outliers. Moreover, we will consider the clustering
algorithm combined with spectral clustering and other clustering methods.
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