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As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain,
imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have
been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems
regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this
paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on
the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN
aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems
is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method
is provided and a comparison with some other methods is made.
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1. Introduction

Zadeh (1965) proposed the theory of fuzzy sets (FSs) to
solve different types of uncertainties. Since then, this the-
ory has been applied successfully in various fields (Bell-
man & Zadeh, 1970; Pedrycz, 1990; Yager, 1977; Zadeh,
1968, 1975). As the traditional FSs use one single value
μA(x) ∈ [0, 1] to represent the degree of membership of
the fuzzy set A, which is defined on a universal scale, they
cannot handle certain cases where it is hard to define μA by
one specific value. In order to overcome the lack of knowl-
edge of non-membership degrees, Atanassov introduced in-
tuitionistic fuzzy sets (IFSs) (Atanassov, 1986, 1994, 1999,
2000), which are an extension of Zadeh’s FSs. Moreover,
Gau and Buehrer (1993) defined vague sets. Bustince and
Burillo (1996) subsequently pointed out that these vague
sets and Atanassov’s IFSs are mathematically equivalent
objects. To date, IFSs have been widely applied in solving
multi-criteria decision-making (MCDM) problems (Chen,
2010; Liu & Wang, 2007; Xu, 2012; Zeng & Su, 2011; Zhi
& Li, 2012), neural networks (Sotirov, Sotirova, & Orozova,
2009), medical diagnosis (Shinoj & Sunil, 2012), colour re-
gion extraction (Chaira, 2010, 2011) and market prediction
(Joshi & Kumar, 2012).

IFSs take into account the membership degree, non-
membership degree and degree of hesitation simultane-
ously. Therefore, they are more flexible and practical when
addressing fuzziness and uncertainty than traditional FSs.
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Moreover, in some actual cases, the membership degree,
non-membership degree and hesitation degree of an ele-
ment in IFSs may be not a specific number. Hence, they
were extended to interval-valued intuitionistic fuzzy sets
(Atanassov & Gargov, 1989). Furthermore, in order to han-
dle the situations where people are hesitant when expressing
their preferences regarding objects in the decision-making
process, hesitant fuzzy sets were introduced by Torra and
Narukawa (2009) and Torra (2010).

Although the FSs theory has been developed and gen-
eralised, it cannot deal with all uncertainty in different real-
life problems. For instance, certain types of uncertainty,
such as indeterminate and inconsistent information, cannot
be dealt with. For example, when an expert is asked for his
or her opinion about a certain statement, he or she may say
that the possibility that the statement is true is 0.5, that it is
false is 0.6 and the degree that he or she is not sure is 0.2
(Wang, Smarandache, Zhang, & Sunderraman, 2010). This
issue is beyond the scope of FSs and IFSs, therefore some
new theories are required.

Smarandache (1999, 2003) proposed neutrosophic logic
and neutrosophic sets (NSs). An NS is a set where each
element of the universe has the degrees of truth, inde-
terminacy and falsity and it lies in ]0−, 1+[, the non-
standard unit interval (Rivieccio, 2008). Clearly, this is an
extension of the standard interval [0, 1] of IFSs. More-
over, the uncertainty presented here, i.e., the indeterminacy
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factor, is independent of truth and falsity values, while the
incorporated uncertainty is dependent on the degree of be-
longingness and non-belongingness of IFSs (Majumdar &
Samant, 2014). Furthermore, the aforementioned example
of NSs can be expressed as x(0.5, 0.2, 0.6).

However, without a specific description, NSs are dif-
ficult to apply in real-life situations. Hence, single-valued
neutrosophic sets (SVNSs) were proposed, which are a vari-
ation of NSs (Majumdar & Samant, 2014). Furthermore, the
information energy of SVNSs, their correlation and cor-
relation coefficient and the decision-making method that
used them were also proposed (Ye, 2013). Additionally, Ye
(2014a) also introduced the concept of simplified neutro-
sophic sets (SNSs), which can be described by three real
numbers in the real unit interval [0,1], and proposed an
MCDM method using the aggregation operators of SNSs.
Moreover, Majumdar and Samant (2014) introduced a mea-
sure of entropy of an SVNS. Wang, Smarandache, Zhang,
and Sunderraman (2005) and Lupiáñez (2009) proposed
the concept of interval neutrosophic sets (INSs) and pro-
posed the set-theoretic operators of INSs. Furthermore, Ye
(2013b, 2014c) proposed the similarity measures between
SVNSs and INSs, which were based on the relationship
between similarity measures and distances.

However, in some cases, the SNSs’ operations (Ye,
2014a) may be impractical. For instance, the sum of
any element and the maximum value should be equal
to the maximum value, but this does not occur when
using the SNSs’ operations (Ye, 2014a). Therefore, the
operations and comparison approach between simplified
neutrosophic numbers (SNNs) and the aggregation op-
erators for SNNs are re-defined in this paper. More-
over, a multi-criteria group decision-making (MCGDM)
method is subsequently established based on the proposed
operators.

The rest of paper is organised as follows. In Section 2,
the properties of the t-norm and t-conorm as well as the
concepts and operations of NSs and SNSs are briefly in-
troduced. In Section 3, the operations and comparison ap-
proach for SNNs are defined on the basis of IFSs. In Sec-
tion 4, the aggregation operators of SNNs are provided and
a decision-making method making use of them is devel-
oped for SNSs. In Section 5, an illustrative example is pre-
sented to test the proposed method, and a sensitivity anal-
ysis and comparison analysis are also provided. Finally, in
Section 6, the conclusions are drawn.

2. Preliminaries

In this section, some basic concepts and definitions related
to NSs, including the t-norm and t-conorm, and the defini-
tions and operations of NSs and SNSs are introduced. All
of these will be utilised in this paper.

2.1. The t-norm and t-conorm

The t-norm and its dual, the t-conorm, play an important
role in constructing the operations and average operators of
NSs. Here, some related basic concepts are introduced.

Definition 1 (Klement & Mesiar, 2005; Nguyen & Walker,
1997): A function T : [0, 1] × [0, 1] → [0, 1] is called a
t-norm if it satisfies the following conditions:

(1) ∀x ∈ [0, 1], T (1, x) = x;
(2) ∀x, y ∈ [0, 1], T (x, y) = T (y, x);
(3) ∀x, y, z ∈ [0, 1], T (x, T (y, z)) = T (T (x, y), z);
(4) If x ≤ x ′, y ≤ y ′, then T (x, y) ≤ T (x ′, y ′).

Definition 2 (Klement & Mesiar, 2005; Nguyen & Walker,
1997): A function S : [0, 1] × [0, 1] → [0, 1] is called a t-
conorm if it satisfies the following conditions:

(1) ∀x ∈ [0, 1], S(0, x) = x;
(2) ∀x, y ∈ [0, 1], S(x, y) = S(y, x);
(3) ∀x, y, z ∈ [0, 1], S(x, S(y, z)) = S(S(x, y), z);
(4) If x ≤ x ′, y ≤ y ′, then S(x, y) ≤ S(x ′, y ′).

Definition 3 (Klement & Mesiar, 2005; Nguyen & Walker,
1997): A t-norm function T (x, y) is called an Archimedean
t-norm if it is continuous and T (x, x) < x for all x ∈ (0, 1).
An Archimedean t-norm is called a strictly Archimedean
t-norm if it is strictly increasing in each variable for
x, y ∈ (0, 1). A t-conorm function S(x, y) is called an
Archimedean t-conorm if it is continuous and S(x, x) > x

for all x ∈ (0, 1). An Archimedean t-conorm is called a
strictly Archimedean t-conorm if it is strictly increasing in
each variable for x, y ∈ (0, 1).

It is well known (Klement & Mesiar, 2005; Klir & Yuan,
1995) that a strict Archimedean t-norm is expressed via
its additive generator k as T (x, y) = k−1(k(x) + k(y)), and
similarly, applied to its dual t-conorm S(x, y) = l−1(l(x) +
l(y)) with l(t) = k(1 − t). It has been observed that an ad-
ditive generator of a continuous Archimedean t-norm is a
strictly decreasing function k : [0, 1] → [0,∞).

There are also some Archimedean t-conorms and
t-norms (Beliakov, Pradera, & Calvo, 2007).

(1) Let k(t) = − log t , l(t) = − log(1 − t), k−1(t) =
e−t and l−1(t) = 1 − e−t . Then an algebraic t-
conorm and t-norm are obtained: S(x, y) = 1 −
(1 − x)(1 − y) and T (x, y) = xy.

(2) Let k(t) = log( 2−t
t

), l(t) = log( 2−(1−t)
1−t

), k−1(t) =
2

et+1 and l−1(t) = 1 − 2
et+1 . Then an Einstein t-

conorm and t-norm are obtained: S(x, y) = x+y
1+xy

and T (x, y) = xy
1+(1−x)(1−y) .
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2.2. NSs and SNSs

In this section, the definitions and operations of NSs and
SNSs are introduced.

Definition 4 (Smarandache, 1999): Let X be a space of
points (objects), with a generic element in X, denoted by x.
An NS A in X is characterised by a truth-membership func-
tion TA(x), an indeterminacy-membership function IA(x)
and a falsity-membership function FA(x). TA(x), IA(x) and
FA(x) are standard or non-standard subsets of ]0−, 1+[,
that is, TA(x) : X →]0−, 1+[, IA(x) : X →]0−, 1+[ and
FA(x) : X →]0−, 1+[. There is no restriction on the sum
of TA(x), IA(x) and FA(x), therefore 0− ≤ sup TA(x) +
sup IA(x) + sup FA(x) ≤ 3+.

Definition 5 (Smarandache, 1999): An NS A is con-
tained in another NS B, denoted by A ⊆ B, if and only if
inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x), inf IA(x) ≥
inf IB(x), sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x)
and sup FA(x) ≥ sup FB(x) for x ∈ X.

Since it is difficult to apply NSs to practical prob-
lems, Ye (2014a) reduced NSs of non-standard intervals
into SNSs of standard intervals that would preserve the
operations of NSs.

Definition 6 (Ye, 2014a): Let X be a space of points (ob-
jects), with a generic element in X, denoted by x. An NS A

in X is characterised by TA(x), IA(x) and FA(x), which
are subintervals/subsets in the standard interval [0, 1],
that is, TA(x) : X → [0, 1], IA(x) : X → [0, 1] and FA(x) :
X → [0, 1]. Then, a simplification of A is denoted by

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X},

which is called an SNS. In particular, if X has only one ele-
ment, A =< TA(x), IA(x), FA(x) > is called an SNN. For
convenience, an SNN is denoted by A =< TA, IA, FA >.
Clearly, SNSs are a subclass of NSs.

Definition 7 (Ye, 2014a): An SNS A is contained in another
SNS B, denoted by A ⊆ B, if and only if TA(x) ≤ TB(x),
IA(x) ≥ IB(x) and FA(x) ≥ FB(x) for any x ∈ X.

The operations of SNSs are also defined in Ye (2014a).

Definition 8 (Ye, 2014a): Let A and B be two SNSs. For
any x ∈ X, the following operations are defined:

(1) A + B = 〈
TA(x) + TB(x) −

TA(x) · TB(x), IA(x) + IB(x)
− IA(x) · IB(x), FA(x) + FB(x) − FA(x) · FB(x)

〉
;

(2) A · B =〈TA(x)·TB(x), IA(x)·IB (x), FA(x)·FB(x)〉;
(3) λ · A = 〈

1 − (1 − TA(x))λ, 1 − (1 − IA(x))λ,
1 − (1 − FA(x))λ

〉
, λ > 0;

(4) Aλ = 〈
T λ

A (x), I λ
A(x), F λ

A(x)
〉
, λ > 0.

There are some limitations related to Definition 8 and
these are now outlined.

(1) In some situations, operations, such as A + B and
A · B, might be impractical. This can be demon-
strated in the example below.

Example 1: Let A =< 0.5, 0.5, 0.5 > and B =
< 1, 0, 0 > be two SNNs. Clearly, B =< 1, 0, 0 > is the
larger of these SNNs. Theoretically, the sum of any number
and the maximum number should be equal to the maxi-
mum one. However, according to Definition 8, A + B =<

1, 0.5, 0.5 > �= B; therefore, the operation ‘ + ’ cannot be
accepted. Similar contradictions exist in other operations
of Definition 8, and thus those defined above are incorrect.

(1) The correlation coefficient of SNSs (Ye, 2013),
which is based on the operations of Definition 8,
cannot be accepted in some special cases.

Example 2: Let A1 =< 0.8, 0, 0 > and A2 =
< 0.7, 0, 0 > be two SNNs, and B =< 1, 0, 0 > be the
largest one of the SNNs. According to the correlation co-
efficient of SNSs (Ye, 2013), W1(A1, B) = W2(A2, B) = 1
can be obtained, but this does not indicate which one is the
best. However, it is clear that A1 is superior to A2.

(1) In addition, the similarity measure for SNSs (Ye,
2014b), which is based on the operations of Defi-
nition 8, cannot be accepted in special cases.

Example 3: Let A1 =< 0.1, 0, 0 > and A2 =
< 0.9, 0, 0 > be two SNSs, and B =< 1, 0, 0 > be the
largest one of the SNSs. According to the cosine similarity
measure for SNSs (Ye, 2014b), S1(A1, B) = S2(A2, B) = 1
can be obtained, which indicates that A1 is equal to A2. Yet,
it is not possible to discern which one is the best. Since
TA2 (x) > TA1 (x), IA2 (x) > IA1 (x) and FA2 (x) > FA1 (x), it
is clear that A2 is superior to A1.

(1) If IA = IB , then A and B are both reduced to two
intuitionistic fuzzy numbers (IFNs). However, the
operations above are not in accordance with the
laws of two IFNs (Beliakov, Bustince, Goswami,
Mukherjee, & Pal, 2011; Xu, 2007, 2008, 2010;
Yager, 2009).

3. The operations and comparison method for SNNs

In this section, the novel operations and comparison method
for SNNs are developed based on t-norm and t-conorm.
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3.1. The operations for SNNs

According to the operations of IFNs, which are based on
the algebraic t-norm and t-conorm (Beliakov et al., 2011;
Xu, 2007) and Einstein t-norm and t-conorm (Wang &
Liu, 2011, 2012), it can be seen that these operations
are all based on different t-norms and t-conorms; there-
fore, the novel operations of two SNNs can be defined as
follows.

Definition 9: Let A =< TA, IA, FA > and B =
< TB, IB, FB > be two SNNs, and λ > 0. The operations
for SNNs are defined based on the Archimedean t-conorm
and t-norm and are as follows:

(1) λA =< l−1(λl(TA)), k−1(λk(IA)), k−1(λk(FA)) >;
(2) Aλ =< k−1(λk(TA), l−1(λl(IA)), l−1(λl(FA)) >;
(3) A ⊕ B =< l−1(l(TA) + l(TB)), k−1(k(IA) +

k(IB)), k−1(k(FA) + k(FB)) >;
(4) A ⊗ B =< k−1(k(TA) + k(TB)), l−1(l(IA) +

l(IB)), l−1(l(FA) + l(FB)) >.

If their generator k is assigned a specific form, then the
specific operations of SNNs will be obtained. Let k(x) =
− log(x), therefore

(5) λA =< 1 − (1 − TA)λ, (IA)λ, (FA)λ >;
(6) Aλ =< (TA)λ, 1 − (1 − IA)λ, 1 − (1 − FA)λ >;
(7) A ⊕ B =< TA + TB − TA · TB, IA · IB, FA ·

FB >;
(8) A ⊗ B =< TA · TB, IA + IB − IA · IB, FA +

FB − FA · FB] >.

Example 4: Based on Example 1 and the operations
in Definition 9, let k(x) = − log(x), k−1(x) = e−x, l(x) =
−log(1 − x) and l−1(x) = 1 − e−x , and then the following
results are obtained:

A ⊕ B = < 0.5 + 1 − 0.5 × 1, 0.5 × 0, 0.5 × 0 >

= < 1, 0, 0 >= B,

which can overcome the drawbacks outlined
earlier.

Apparently, SNSs are the extension of IFSs. Let
IA = 0, IB = 0 and TA + FA ≤ 1. Then two SNNs A =<

TA, IA, FA > and B =< TB, IB, FB > are reduced to IFNs.
According to Definition 9, if k(x) = − log(x), then the op-
erations coincide with those of IFNs (Beliakov et al., 2011;
Xu, 2007, 2008, 2010; Yager, 2009). This indicates that
the same principles of SNSs in Definition 9 also apply to
IFSs. In fact, when the indeterminacy factor i is replaced
by π = 1 − T − F , the NS becomes an IFS.

Theorem 1: Let A =< TA, IA, FA >, B =<

TB, IB, FB > and C =< TC, IC, FC > be three SNNs,

therefore the following equations are true:

(1) A ⊕ B = B ⊕ A;
(2) A ⊗ B = B ⊗ A;
(3) λ(A ⊕ B) = λA ⊕ λB, λ > 0;
(4) (A ⊗ B)λ = Aλ ⊗ Bλ, λ > 0;
(5) λ1A ⊕ λ2A = (λ1 + λ2)A, λ1 > 0, λ2 > 0;
(6) Aλ1 ⊗ Aλ2 = A(λ1+λ2), λ1 > 0, λ2 > 0;
(7) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C);
(8) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Proof: Equations (1) and (2) are obvious, but the others
can also be proved:

(3)

λ(A ⊕ B)
= λ· < l−1(l(TA) + l(TB)), k−1(k(IA)

+ k(IB )), k−1(k(FA) + k(FB)) >

=< l−1(λl(l−1(l(TA) + l(TB)))), k−1(λk(k−1(k(IA)
+ k(IB )))), k−1(λk(k−1(k(FA) + k(FB)))) >

=< l−1(λ(l(TA) + l(TB))), k−1(λ(k(IA)
+ k(IB ))), k−1(λ(k(FA) + k(FB))) >

=< l−1(λl(TA) + λl(TB))), k−1(λk(IA)
+ λk(IB))), k−1(λk(FA) + λk(FB))) >

= λA ⊕ λB.

Therefore, λ(A ⊕ B) = λA ⊕ λB.

(4)

(A ⊗ B)λ

= (< k−1(k(TA) + k(TB)), l−1(l(IA)
+ l(IB )), l−1(l(FA) + l(FB)) >)λ

=< k−1(λk(k−1(k(TA) + k(TB)))), l−1(λl(l−1(l(IA)
+ l(IB )))), l−1(λl(l−1(l(FA) + l(FB)))) >

=< k−1(λ(k(TA) + k(TB))), l−1(λ(l(IA)
+ l(IB ))), l−1(λ(l(FA) + l(FB))) >

=< k−1(λk(TA) + λk(TB)), l−1(λl(IA)
+ λl(IB)), l−1(λl(FA) + λl(FB)) >= Aλ ⊗ Bλ.

Therefore, (A ⊗ B)λ = Aλ ⊗ Bλ.

(5)

λ1A ⊕ λ2A

=< l−1(λ1l(TA)), k−1(λ1k(IA)), k−1(λ1k(FA)) >

⊕ < l−1(λ2l(TA)), k−1(λ2k(IA)),
k−1(λ2k(FA)) >=< l−1(l(l−1(λ1l(TA)))
+ l(l−1(λ2l(TA)))), k−1(k(k−1(λ1k(IA)))
+ k(k−1(λ2k(IA)))),
k−1(k(k−1(λ1k(FA))) + k(k−1(λ2k(FA)))) >

=< l−1(λ1l(TA) + λ2l(TA)), k−1(λ1k(IA)
+ λ2k(IA)), k−1(λ1k(FA) + λ2k(FA)) >

=< l−1((λ1 + λ2)l(TA)), k−1((λ1 + λ2)k(IA)),
k−1((λ1 + λ2)k(FA)) >= (λ1 + λ2)A.
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Therefore, λ1A ⊕ λ2A = (λ1 + λ2)A.

(6)

Aλ1 ⊗ Aλ2

=< k−1(λ1k(TA), l−1(λ1l(IA)), l−1(λ1l(FA)) >

⊗ < k−1(λ2k(TA), l−1(λ2l(IA)), l−1(λ2l(FA)) >

=< k−1(k(k−1(λ1k(TA))) + k(k−1(λ2k(TA))),
l−1(l(l−1(λ1l(IA))) + l(l−1(λ2l(IA))),
l−1(l(l−1(λ1l(FA))) + l(l−1(λ2l(FA))) >

=< k−1(λ1k(TA) + λ2k(TA)), l−1(λ1l(IA)
+ λ2l(IA)), l−1(λ1l(FA) + λ2l(FA)) >

=< k−1((λ1 + λ2)k(TA)), l−1((λ1 + λ2)l(IA)),
l−1((λ1 + λ2)l(FA)) >= Aλ1+λ2 .

Therefore, Aλ1 ⊗ Aλ2 = A(λ1+λ2).

(7)

(A ⊕ B) ⊕ C

= <l−1(l(TA)+l(TB)), k−1(k(IA)
+ k(IB )), k−1(k(FA) + k(FB)) >

⊕ < TC, IC, FC >

=< l−1(l(l−1(l(TA) + l(TB)))
+ l(TC)), k−1(k(k−1(k(IA) + k(IB))) + k(IC)),
k−1(k(k−1(k(FA)
+ k(FB))) + k(FC)) >=< l−1(l(TA)
+ l(TB) + l(TC)), k−1(k(IA) + k(IB)
+ k(IC)), k−1(k(FA) + k(FB) + k(FC)) >

and

A ⊕ (B ⊕ C)
=< TA, IA, FA > ⊕ < l−1(l(TB) + l(TC)),
k−1(k(IB) + k(IC)), k−1(k(FB) + k(FC)) >

= l−1(l(TA) + l(l−1(l(TB) + l(TC)))),
k−1(k(IA) + k(k−1(k(IB) + k(IC)))), k−1(k(FA)

+k(k−1(k(FB) + k(FC)))) >

=< l−1(l(TA) + l(TB) + l(TC)), k−1(k(IA)
+k(IB) + k(IC)), k−1(k(FA)

+k(FB) + k(FC)) > .

Therefore, (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C).

(8)

(A ⊗ B) ⊗ C

=< k−1(k(TA) + k(TB)), l−1(l(IA) + l(IB)),
l−1(l(FA) + l(FB)) > ⊗ < TC, IC, FC >

=< k−1(k(k−1(k(TA) + k(TB))) + k(TC)))),
l−1(l(l−1(l(IA) + l(IB))) + l(IC)))),
l−1(l(l−1(l(IA) + l(IB))) + l(IC)))) >

=< k−1(k(TA) + k(TB) + k(TC)), l−1(l(IA)
+ l(IB ) + l(IC)), l−1(l(IA) + l(IB) + l(IC)) >

and

A ⊗ (B ⊗ C)
=< TA, IA, FA > ⊗ < k−1(k(TB) + k(TC)),
l−1(l(IB) + l(IC)), l−1(l(FB) + l(FC)) >

= k−1(k(TA) + k(k−1(k(TB) + k(TC)))), l−1(l(IA)
+ l(l−1(l(IB) + l(IC)))), l−1(l(FA) + l(l−1(l(FB)
+ l(FC))))>

= <k−1(k(TA) + k(TB) + k(TC)), l−1(l(IA)
+ l(IB) + l(IC)), l−1(l(IA) + l(IB) + l(IC)) > .

Therefore, (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).
The proof is therefore complete.

3.2. The comparison method of SNNs

Based on the score function and accuracy function of IFNs
(Xu, 2007, 2008, 2010; Yager, 2009), the score function,
accuracy function and certainty function of an SNN are
defined as follows.
Definition 10: Let A =< TA, IA, FA > be an SNN, and
then the score function s(A), accuracy function a(A) and
certainty function c(A) of an SNN are defined as follows:

(1) s(A) = (TA + 1 − IA + 1 − FA)/3;
(2) a(A) = TA − FA;
(3) c(A) = TA.

The score function is an important index in ranking
SNNs. For an SNN A, the bigger the truth-membership TA

is, the greater the SNN will be; furthermore, the smaller
the indeterminacy-membership IA is, the greater the SNN
will be; similarly, the smaller the false-membership FA is,
the greater the SNN will be. For the accuracy function, the
bigger the difference between truth and falsity, the more
affirmative the statement is. As for the certainty function,
the certainty of any SNN positively depends on the value
of truth- membership TA.

On the basis of Definition 10, the method for comparing
SNNs can be defined as follows.
Definition 11: Let A and B be two SNNs. The comparison
method can be defined as follows:

(1) if s(A) > s(B), then A is greater than B, that is, A

is superior to B, denoted by A � B;
(2) if s(A) = s(B) and a(A) > a(B), then A is greater

than B, that is, A is superior to B, denoted by
A � B;

(3) if s(A) = s(B), a(A) = a(B) and c(A) > c(B),
then A is greater than B, that is, A is superior to B,
denoted by A � B;

(4) if s(A) = s(B), a(A) = a(B) and c(A) = c(B),
then A is equal to B, that is, A is indifferent to
B, denoted by A ∼ B.

Example 5: Based on Example 2 and Definition 10,
s(A1) = 0.8+1−0+1−0

3 = 2.8
3 and s(A2) = 0.7+1−0+1−0

3 = 2.7
3

can be obtained. According to Definition 11, s(A1) >

s(A2); therefore, A1 � A2, i.e., A1 is superior A2, which
avoids the drawbacks discussed in Example 2.
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Example 6: Based on Example 3 and Definition 10,
s(A1) < s(A2), then A2 � A1, i.e., A2 is superior to
A1, which also avoids the shortcomings discussed in
Example 3.

4. The aggregation operators of SNNs and their
applications to MCGDM problems

In this section, by applying the SNNs’ operations, the ag-
gregation operators of SNNs are presented and a method for
MCGDM problems that utilises the proposed aggregation
operators is proposed.

4.1. The aggregation operators of SNNs

Definition 12: Let Aj =< TAj
, IAj

, FAj
> (j = 1,

2, . . . , n) be a collection of SNNs, SNNWA : SNNn →
SNN,

SNNWAw(A1, A2, . . . , An) =
n∑

j=1

wjAj , (1)

the SNNWA operator is called the simplified neutro-
sophic number weighted averaging operator of dimension
n, where w = (w1, w2, . . . , wn) is the weight vector of
Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 wj = 1.

Theorem 2: Let Aj =< TAj
, IAj

, FAj
> (j = 1,

2, . . . , n) be a collection of SNNs, and w =
(w1, w2, . . . , wn) be the weight vector of Aj

(j = 1, 2, . . . , n), with wj ≥ 0 (j = 1, 2, . . . , n) and∑n
j=1 wj = 1.Then their aggregated result using the

SNNWA operator is also an SNN, and

SNNWAw(A1, A2, . . . , An) =
〈
l−1

( n∑
j=1

wj l(TAj
)

)
,

k−1

( n∑
j=1

wjk(IAj
)

)
, k−1

( n∑
j=1

wjk(FAj
)

)〉
, (2)

where k is the additive generator of the Archimedean t-norm
that is used in the operations of SNNs and l(x) = k(1 − x).

If k(x) = − log(x), then l(x) = − log(1 − x), k−1(x) =
e−x and l−1(x) = 1 − e−x . Thus, the aggregated result us-
ing the SNNWA operator in Theorem 2 can be represented
by

SNNWAw(A1, A2, . . . , An) =
〈
1 −

n∏
j=1

(1 − TAj
)wj ,

n∏
j=1

I
wj

Aj
,

n∏
j=1

F
wj

Aj

〉
. (3)

If k(x) = log( 2−x
x

), then Theorem 2 can be represented by

SNNWAw(A1, A2, . . . , An)

=
〈∏n

j=1 (1 + TAj
)wj −∏n

j=1 (1 − TAj
)wj∏n

j=1 (1 + TAj
)wj +∏n

j=1 (1 − TAj
)wj

,

×
2
∏n

j=1 I
wj

Aj∏n
j=1 (2 − IAj

)wj +∏n
j=1 I

wj

Aj

×
2
∏n

i=1 F
wj

Aj∏n
j=1 (2 − FAj

)wj +∏n
j=1 F

wj

Aj

〉
. (4)

Proof: By using the mathematical induction on n:

(1) let n = 2, since

w1A1 ⊕ w2A2

=< l−1(w1l(TA1 )), k−1(w1k(IA1 )), k−1(w1k(FA1 )) >

⊕ < l−1(w2l(TA2 )), k−1(w2k(IA2 )), k−1(w2k(FA2 )) >

=< l−1(l(l−1(w1l(TA1 )) + l(l−1(w2l(TA2 ))),
k−1(k(k−1(w1k(IA1 )) + k(k−1(w2k(IA2 ))),
k−1(k(k−1(w1k(FA1 )) + k(k−1(w2k(FA2 )))

=< l−1(w1l(TA1 ) + w2l(TA2 )), k−1(w1k(IA1 )
+w2k(IA2 )), k−1(w1k(FA1 ) + w2k(FA2 )) >,

then

SNNWAw(A1, A2) = w1A1 ⊕ w2A2

=< l−1(w1l(TA1 ) + w2l(TA2 )), k−1(w1k(IA1 )
+w2k(IA2 )), k−1(w1k(FA1 ) + w2k(FA2 )) >;

(1) if Equation (3) holds for n = k, then

SNNWAw(A1, A2, . . . , Ak)=w1A1 ⊕ w2A2 ⊕ · · · ⊕ wkAk

=
〈
l−1

(
k∑

j=1
wj l(TAj

)

)
, k−1

(
k∑

j=1
wjk(IAj

)

)
,

k−1

(
k∑

j=1
wjk(FAj

)

)〉
.

If n = k + 1, by operations (1) and (3) in Definition 8
SNNWAw(A1, A2, . . . , Ak,Ak+1)

= (w1A1 ⊕ w2A2 ⊕ · · · ⊕ wkAk) ⊕ wk+1Ak+1

=
〈
l−1

(
k∑

i=1
wil(TAi

)

)
, k−1

(
k∑

i=1
wik(IAi

)

)
,

k−1

(
k∑

i=1
wik(FAi

)

) 〉

⊕
〈
l−1(wk+1l(TAk+1 )), k−1(wk+1k(IAk+1 )),

k−1(wk+1k(FAk+1 ))

〉
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=
〈
l−1

(
l

(
l−1

(
k∑

j=1
wj l(TAj

)

)
+ l(l−1(wk+1l(TAk+1 )))

))
,

k−1

(
k

(
k−1

(
k∑

j=1
wjk(IAj

)

)
+ k(k−1(wk+1k(IAk+1 )))

))
,

k−1

(
k

(
k−1

(
k∑

j=1
wjk(FAj

)

))
+ k(k−1(wk+1k(FAk+1 )))

)〉

=
〈
l−1

(
k+1∑
j=1

wj l(TAj
)

)
, k−1

(
k+1∑
j=1

wjk(IAj
)

)
,

k−1

(
k+1∑
j=1

wjk(FAj
)

)〉
,

i.e., Equation (2) holds for n = k + 1. Thus, Equation (2)
holds for all n. Then

SNNWAw(A1, A2, . . . , An) =
〈
l−1

⎛
⎝ n∑

j=1

wj l(TAj
)

⎞
⎠ ,

k−1

⎛
⎝ n∑

j=1

wjk(IAj
)

⎞
⎠ , k−1

⎛
⎝ n∑

j=1

wjk(FAj
)

⎞
⎠〉

.

The proof is therefore complete.
It is clear that the SNNWA operator has the following

properties.

Property 1: Let Aj =< TAj
, IAj

, FAj
> (j = 1,

2, . . . , n) be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNWAw(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =< min
j

TAj
, max

j
IAj

,

max
j

FAj
> and A+ =< max

j
TAj

, min
j

IAj
,

min
j

FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNWAw(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNWAw(A1, A2, . . . , An)
⊆ SNNWAw(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: Let Aj =< TAj
, IAj

, FAj
> (j = 1, 2, . . . , n) be

a collection of SNNs, w = (w1, w2, . . . , wn) be the
weight vector of Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j =
1, 2, . . . , n) and

∑n
j=1 wj = 1.

(1) Since A1 = A2 = · · · = An = A =< TA, IA,

FA > and
∑n

j=1 wj = 1,

SNNWAw(A1, A2, . . . , An)

=
〈
l−1

(
n∑

j=1
wj l(TA)

)
,

k−1

(
n∑

j=1
wjk(IA)

)
, k−1

(
n∑

j=1
wjk(FA)

)〉

=
〈
l−1

(
n∑

j=1
wj l(TA)

)
, k−1

(
n∑

j=1
wjk(IA)

)
,

k−1

(
n∑

j=1
wjk(FA)

)〉

=< l−1(l(TA)), k−1(k(IA)), k−1(k(FA)) >

=< TA, IA, FA > .

(2) For any Aj =< TAj
, IAj

, FAj
> (1 ≤

j ≤ n), it is clear that A− =<

minj TAj
, maxj IAj

, maxj FAj
> and A+ =

< maxj TAj
, minj IAj

, minj FAj
> are two

SNNs. For any j , minj TAj
≤ TAj

≤ maxj TAj
,

minj IAj
≤ IAj

≤ maxj IAj
and minj FAj

≤
FAj

≤ maxj FAj
. Since

∑n
j=1 wj = 1,

l(x) = k(1 − x), and l(x) is a strictly increasing
function, then

max
j

TAj
= l−1

⎛
⎝ n∑

j=1

wj l(max
j

TAj
)

⎞
⎠

≤ l−1

⎛
⎝ n∑

j=1

wj l(TAj
)

⎞
⎠ ≤ l−1

⎛
⎝ n∑

j=1

wj l(min
j

TAj
)

⎞
⎠

= min
j

TAj
;

min
j

IAj
= k−1

⎛
⎝ n∑

j=1

wjk(min
j

IAj
)

⎞
⎠

≤ k−1

⎛
⎝ n∑

j=1

wjk(IAj
)

⎞
⎠ ≤ k−1

⎛
⎝ n∑

j=1

wjk(max
j

IAj
)

⎞
⎠

= max
j

IAj
;

min
j

FAj
= k−1

⎛
⎝ n∑

j=1

wjk(min
j

FAj
)

⎞
⎠

≤ k−1

⎛
⎝ n∑

j=1

wjk(FAj
)

⎞
⎠ ≤ k−1

⎛
⎝ n∑

j=1

wjk(max
j

FAj
)

⎞
⎠

= max
j

FAj
.
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Based on Definition 7, A− ⊆
SNNWAw(A1, A2, . . . , An) ⊆ A+.

(3) For Aj =< TAj
, IAj

, FAj
> and A∗

j =<

TA∗
j
, IA∗

j
, FA∗

j
>. Since Aj ⊆ A∗

j , therefore
TAj

≤ TA∗
j
, IAj

≥ IA∗
j

and FAj
≥ FA∗

j
. Because

l(x) = k(1 − x), and l(x) is a strictly increas-
ing function, therefore l−1(

∑n
j=1 wj l(TAj

)) ≤
l−1(

∑n
j=1 wj l(TA∗

j
)), k−1(

∑n
j=1 wjk(IAj

)) ≥
k−1(

∑n
j=1 wjk(IA∗

j
)) and k−1(

∑n
j=1 wjk(FAj

))

≥ k−1(
∑n

j=1 wjk(FA∗
j
)). According to Def-

inition 7, SNNWAw(A1, A2, . . . , An) ⊆
SNNWAw(A∗

1, A
∗
2, . . . , A

∗
n).

The proof is therefore complete. �

Definition 13: Let Aj =< TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, SNNWG : SNNn →
SNN,

SNNWGw(A1, A2, . . . , An) =
n∏

j=1

A
wj

j , (5)

and thus the SNNWG operator is called a simplified neu-
trosophic number weighted geometric operator of dimen-
sion n, where w = (w1, w2, . . . , wn) is the weight vector
of Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 wj = 1.

Theorem 3: Let Aj =< TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, and w =
(w1, w2, . . . , wn) be the vector of Aj (j = 1, 2, . . . , n),
with wj ∈ [0, 1] and

∑n
j=1 wj = 1. Then their aggregated

result using the SNNWG operator is also an SNN, and

SNNWGw(A1, A2, . . . , An) =
〈
k−1

⎛
⎝ n∑

j=1

wjk(TAj
)

⎞
⎠ ,

l−1

⎛
⎝ n∑

j=1

wj l(IAj
)

⎞
⎠ , l−1

⎛
⎝ n∑

j=1

wj l(FAj
)

⎞
⎠〉

. (6)

Let k(x) = − log(x), and then Theorem 3 can be repre-
sented by

SNNWGw(A1, A2, . . . , An) =
〈 n∏

j=1

T
wj

Aj
,

1 −
n∏

j=1

(1 − IAj
)wj , 1 −

n∏
j=1

(1 − FAj
)wj

〉
. (7)

Let k(x) = log( 2−x
x

), and Theorem 3 can be denoted
by

SNNWGw(A1, A2, . . . , An)

=
〈

2
∏n

j=1 T
wj

Aj∏n
j=1 (2 − TAj

)wj +∏n
j=1 T

wj

Aj

,

×
∏n

j=1 (1 + IAj
)wj −∏n

j=1 (1 − IAj
)wj∏n

j=1 (1 + IAj
)wj +∏n

j=1 (1 − IAj
)wj

,

×
∏n

j=1 (1 + FAj
)wj −∏n

j=1 (1 − FAj
)wj∏n

j=1 (1 + FAj
)wj +∏n

j=1 (1 − FAj
)wj

〉
. (8)

Proof: Theorem 3 can be proved by the mathematical
induction method, and the process is omitted here. �
Property 2: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNWGw(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =< min
j

TAj
, max

j
IAj

,

max
j

FAj
> and A+ =< max

j
TAj

, min
j

IAj
,

min
j

FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNWGw(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNWGw(A1, A2, . . . , An)
⊆ SNNWGw(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: The proof is similar to that for Property 1. �
Definition 14: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs, SNNOWA : SNNn →
SNN,

SNNOWAω(A1, A2, . . . , An) =
n∑

j=1

ωjAσ (j ), (9)

and thus the SNNOWA operator is called the simplified
neutrosophic number ordered weighted averaging operator
of dimension n, where Aσ (j ) is the jth largest value. ω =
(ω1, ω2, . . . , ωn) is the aggregation-associated vector such
that ωj ≥ 0 (j = 1, 2, . . . , n) and

∑n
j=1 ωj = 1.

Theorem 4: Let Aj =< TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, and
ω = (ω1, ω2, . . . , ωn) be the aggregation-associated vec-
tor such that ωj ≥ 0 (j = 1, 2, . . . , n) and

∑n
j=1 ωj = 1.

Their aggregated result using the SNNOWA operator is
also an SNN, and
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SNNOWAω(A1, A2, . . . , An)

=
〈
l−1

⎛
⎝ n∑

j=1

ωj l(TAσ (j ) )

⎞
⎠ ,

k−1

⎛
⎝ n∑

j=1

ωjk(IAσ (j ) )

⎞
⎠ , k−1

⎛
⎝ n∑

j=1

ωjk(FAσ (j ) )

⎞
⎠〉

. (10)

Let k(x) = − log(x), and then Theorem 4 can be repre-
sented by

SNNOWAω(A1, A2, . . . , An)

=
〈
1 −

n∏
j=1

(1 − TAσ (j ) )
ωj ,

n∏
j=1

I
ωj

Aσ (j )
,

n∏
j=1

F
ωj

Aσ (j )

〉
. (11)

If k(x) = log( 2−x
x

), then Theorem 4 can be represented
by

SNNOWAω(A1, A2, . . . , An)

=
〈∏n

j=1 (1 + TAσ (j ) )
ωj −∏n

j=1 (1 − TAσ (j ) )
ωj∏n

j=1 (1 + TAσ (j ) )
ωj +∏n

j=1 (1 − TAσ (j ) )
ωj

,

×
2
∏n

j=1 I
ωj

Aσ (j )∏n
j=1 (2 − IAσ (j ) )

ωj +∏n
j=1 I

ωj

Aσ (j )

×
2
∏n

j=1 F
ωj

Aσ (j )∏n
j=1 (2 − FAσ (j ) )

ωj +∏n
j=1 F

ωj

Aσ (j )

〉
, (12)

where Aσ (j ) is the jth largest value according to the total
order Aσ (1) ≥ Aσ (2) ≥ · · · ≥ Aσ (n).

Proof: Theorem 4 can be proved by the mathematical
induction method, and the process is omitted here. �
Property 3: Let Aj =<TAj

, IAj
, FAj

> (j=1, 2, . . . , n)
be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNOWAω(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =<minj TAj
, maxj IAj

,

maxj FAj
> and A+ =<maxj TAj

, minj IAj
,

minj FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNOWAω(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNOWAω(A1, A2, . . . , An) ⊆
SNNOWAω(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: The proof is similar to that for Property 1. �
Definition 15: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs, and SNNOWG :

SNNn → SNN

SNNOWGω(A1, A2, . . . , An) =
n∏

j=1

A
ωj

σ (j ), (13)

and thus the SNNOWG operator is called an simplified
neutrosophic number ordered weighted geometric operator
of dimension n, where Aσ (j ) is the jth largest value and
ω = (ω1, ω2, . . . , ωn) is the aggregation-associated vector
such that . (j = 1, 2, . . . , n) and

∑n
j=1 ωj = 1.

Theorem 5: Let Aj =<TAj
, IAj

, FAj
> (j = 1, 2, . . . , n)

be a collection of SNNs, and ω = (ω1, ω2, . . . , ωn) be
the aggregation-associated vector such that ωj ≥ 0 (j =
1, 2, . . . , n) and

∑n
j=1 ωj = 1. Then their aggregated re-

sult using the SNNOWG operator is also an SNN, and

SNNOWGω(A1, A2, . . . , An)

=
〈
k−1

⎛
⎝ n∑

j=1

ωjk(TAσ (j ) )

⎞
⎠ ,

l−1

⎛
⎝ n∑

j=1

ωj l(IAσ (j ) )

⎞
⎠ , l−1

⎛
⎝ n∑

j=1

ωj l(FAσ (j ) )

⎞
⎠〉

.

(14)

Assume k(x) = − log(x), and then Theorem 5 can be
represented by

SNNOWGω(A1, A2, . . . , An) =
〈 n∏

j=1

T
ωj

Aσ (j )
,

1 −
n∏

j=1

(1 − IAσ (j ) )
ωj , 1 −

n∏
j=1

(1 − FAσ (j ) )
ωj

〉
. (15)

Let k(x) = log( 2−x
x

), and then Theorem 5 can be de-
noted by

SNNOWGω(A1, A2, . . . , An)

=
〈

2
∏n

j=1 T
ωj

Aσ (j )∏n
j=1 (2 − TAσ (j ) )

ωj +∏n
j=1 T

ωj

Aσ (j )

,

×
∏n

j=1 (1 + IAσ (j ) )
ωj −∏n

j=1 (1 − IAσ (j ) )
ωj∏n

j=1 (1 + IAσ (j ) )
ωj +∏n

j=1 (1 − IAσ (j ) )
ωj

,

∏n
j=1 (1 + FAσ (j ) )

ωj −∏n
j=1 (1 − FAσ (j ) )

ωj∏n
j=1 (1 + FAσ (j ) )

ωj +∏n
j=1 (1 − FAσ (j ) )

ωj

〉
, (16)

where Aσ (j ) is the jth largest value according to the total
order Aσ (1) ≥ Aσ (2) ≥ · · · ≥ Aσ (n).

Proof: Theorem 5 can be proved by the mathematical
induction method, and the process is omitted here. �
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Property 4: Let Aj =<TAj
, IAj

, FAj
> (j=1, 2, . . . , n)

be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNOWGω(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =<minj TAj
, maxj IAj

,

maxj FAj
> and A+ =<maxj TAj

, minj IAj
,

minj FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNOWGω(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNOWGω(A1, A2, . . . , An)
⊆ SNNOWGω(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: The proof is similar to that for Property 1. �
Definition 16: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs, SNNHOWA :
SNNn → SNN,

SNNHOW Aω(A1, A2, . . . , An) =
n∑

j=1

ωj Ȧσ (j ), (17)

and then the SNNHOWA operator is called the simpli-
fied neutrosophic number hybrid ordered weighted av-
eraging operator of dimension n, where Ȧσ (j ) is the
jth largest of the weighted value Ȧj (Ȧj = nwjAj , j =
1, 2, . . . , n), w = (w1, w2, . . . , wn) is the weight vector of
Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 wj = 1, ω = (ω1, ω2, . . . , ωn) is the aggregation-
associated vector such that ωj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 ωj = 1, and n is the balancing coefficient.

Theorem 6: Let Aj =<TAj
, IAj

, FAj
> (j=1, 2, . . . , n)

be a collection of SNNs, w = (w1, w2, . . . , wn) be the
weight vector of Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j =
1, 2, . . . , n) and

∑n
j=1 wj = 1, and ω = (ω1, ω2, . . . , ωn)

be the aggregation-associated vector such that ωj ≥ 0
(j = 1, 2, . . . , n) and

∑n
j=1 ωj = 1. Then their aggregated

result using the SNNHOWA operator is also an SNN, and

SNNHOWAw(A1, A2, . . . , An) =
〈
l−1

⎛
⎝ n∑

j=1

ωj l(TȦσ (j )
)

⎞
⎠ ,

k−1

⎛
⎝ n∑

j=1

ωjk(IȦσ (j )
)

⎞
⎠ , k−1

⎛
⎝ n∑

j=1

ωjk(FȦσ (j )
)

⎞
⎠〉

.

(18)

Let k(x) = − log(x), and then Theorem 6 can be repre-
sented by

SNNHOWAω(A1, A2, . . . , An)

=
〈
1 −

n∏
j=1

(1 − TȦσ (j )
)ωj ,

n∏
j=1

I
ωj

Ȧσ (j )
,

n∏
j=1

F
ωj

Ȧσ (j )

〉
. (19)

If k(x) = log( 2−x
x

), then Theorem 6 can be represented
by

SNNHOWAω(A1, A2, . . . , An)

=
〈∏n

j=1 (1 + TȦσ (j )
)ωj −∏n

j=1 (1 − TȦσ (j )
)ωj∏n

j=1 (1 + TȦσ (j )
)ωj +∏n

j=1 (1 − TȦσ (j )
)ωj

,

×
2
∏n

j=1 I
ωj

Ȧσ (j )∏n
j=1 (2 − IȦσ (j )

)ωj +∏n
j=1 I

ωj

Ȧσ (j )

,

×
2
∏n

j=1 F
ωj

Ȧσ (j )∏n
j=1 (2 − FȦσ (j )

)ωj +∏n
j=1 F

ωj

Ȧσ (j )

〉 (20)

where Ȧσ (j ) is the jth largest of the weighted value Ȧj (Ȧj =
nwjAj , j = 1, 2, . . . , n).

Proof: Theorem 6 can be proved by the mathematical
induction method, and the process is omitted here. �
Property 5: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNHOWAω(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =<minj TAj
, maxj IAj

,

maxj FAj
> and A+ =< maxj TAj

, minj IAj
,

minj FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNHOWAω(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNHOWAω(A1, A2, . . . , An)
⊆ SNNHOWAω(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: The proof is similar to that for Property 1. �
Definition 17: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs, and SNNHOWG :
SNNn → SNN,

SNNHOWGw(A1, A2, . . . , An) =
n∏

j=1

Ȧ
wj

σ (j ), (21)

and then the SNNHOWG operator is called the simpli-
fied neutrosophic number hybrid ordered weighted ge-
ometric operator of dimension n, where Ȧσ (j ) is the
jth largest of the weighted value Ȧj (Ȧj = nwjAj , j =
1, 2, . . . , n), w = (w1, w2, . . . , wn) is the weight vector of
Aj (j = 1, 2, . . . , n), with wj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 wj = 1, ω = (ω1, ω2, . . . , ωn) is the aggregation-
associated vector such that ωj ≥ 0 (j = 1, 2, . . . , n) and∑n

j=1 ωj = 1, and n is the balancing coefficient.
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2352 J.-J. Peng et al.

Theorem 7: Let Aj =< TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, w = (w1, w2, . . . , wn)
be the vector of Aj (j = 1, 2, . . . , n), with wj ∈ [0, 1]
and

∑n
j=1 wj = 1, and ω = (ω1, ω2, . . . , ωn) be the

aggregation-associated vector such that ωj ≥ 0
(j = 1, 2, . . . , n) and

∑n
j=1 ωj = 1. Then their ag-

gregated result using the SNNHOWG operator is also an
SNN, and

SNNHOWGω(A1, A2, . . . , An)

=
〈
k−1

⎛
⎝ n∑

j=1

ωjk(TȦσ (j )
)

⎞
⎠ ,

l−1

⎛
⎝ n∑

j=1

ωj l(IȦσ (j )
)

⎞
⎠ , l−1

⎛
⎝ n∑

j=1

ωj l(FȦσ (j )
)

⎞
⎠〉

.

(22)

Assume k(x) = − log(x), and then Theorem 7 can be
represented by

SNNHOWGω(A1, A2, . . . , An) =
〈 n∏

j=1

T
ωj

Ȧσ (j )
,

1 −
n∏

j=1

(1 − IȦσ (j )
)ωj , 1 −

n∏
j=1

(1 − FȦσ (j )
)ωj

〉
.

(23)

Let k(x) = log( 2−x
x

), and then Theorem 7 can be de-
noted by

SNNHOWGω(A1, A2, . . . , An)

=
〈

2
∏n

j=1 T
ωj

Ȧσ (j )∏n
j=1 (2 − TȦσ (j )

)ωj +∏n
j=1 T

ωj

Ȧσ (j )

,

×
∏n

j=1 (1 + IȦσ (j )
)ωj −∏n

j=1 (1 − IȦσ (j )
)ωj∏n

j=1 (1 + IȦσ (j )
)ωj +∏n

j=1 (1 − IȦσ (j )
)ωj

,

×
∏n

j=1 (1 + FȦσ (j )
)ωj −∏n

j=1 (1 − FȦσ (j )
)ωj∏n

j=1 (1 + FȦσ (j )
)ωj +∏n

j=1 (1 − FȦσ (j )
)ωj

〉
,

(24)
where Aσ (j ) is the jth largest value according to the total or-
der Aσ (1) ≥ Aσ (2) ≥ · · · ≥ Aσ (n) and Ȧσ (j ) is the jth largest
of the weighted value Ȧj (Ȧj = Ajnwj , j = 1, 2, . . . , n).

Proof: Theorem 7 can be proved by the mathematical
induction method and the process is omitted here. �
Property 6: Let Aj =< TAj

, IAj
, FAj

> (j =
1, 2, . . . , n) be a collection of SNNs.

(1) Idempotency: if all Aj (j = 1, 2, . . . , n) are equal,
i.e., Aj = A, for all j ∈ {1, 2, . . . , n}, then
SNNHOWGω(A1, A2, . . . , An) = A.

(2) Boundedness: assume A− =<minj TAj
, maxj IAj

,

maxj FAj
> and A+ =<maxj TAj

, minj IAj
,

minj FAj
> for all j ∈ {1, 2, . . . , n}, and then

A− ⊆ SNNHOWGω(A1, A2, . . . , An) ⊆ A+.
(3) Monotonity: assume A∗

j =< TA∗
j
, IA∗

j
, FA∗

j
>

and Aj ⊆ A∗
j for any j ∈ {1, 2, . . . , n},

and then SNNHOWGω(A1, A2, . . . , An)
⊆ SNNHOWGω(A∗

1, A
∗
2, . . . , A

∗
n).

Proof: The proof is similar to that for Property 1. �

Definition 18: Let Aj =< TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, and GSNNWA:
SNNn → SNN,

GSNNWAw(A1, A2, . . . , An) =
⎛
⎝ n∑

j=1

wj (Aj )λ

⎞
⎠

1/λ

,

(25)
and then the GSNNWA operator is called the generalised
simplified neutrosophic number weighted averaging oper-
ator of dimension n, where w = (w1, w2, . . . , wn) is the
weight vector of Aj (j = 1, 2, . . . , n) with wj > 0(j =
1, 2, . . . , n) and

∑n
j=1 wj = 1.

Theorem 8: Let Aj =< TAj
, IAj

, FAj
>

(j = 1, 2, . . . , n) be a collection of SNNs, and
w = (w1, w2, . . . , wn) be the weight vector of Aj

(j = 1, 2, . . . , n), with λ > 0, wj ≥ 0 (j = 1, 2, . . . , n)
and

∑n
j=1 wj = 1. Then their aggregated result using the

SNNHOWG operator is also an SNN, and

GSNNWAw(A1, A2, . . . , An)

=
〈
k−1

⎛
⎝1

λ
k

⎛
⎝l−1

⎛
⎝ n∑

j=1

wj l(k
−1
(
λk(Tj ))

)⎞⎠
⎞
⎠
⎞
⎠ ,

l−1

⎛
⎝1

λ
l

⎛
⎝k−1

⎛
⎝ n∑

j=1

wjk
(
l−1(λl(Ij ))

)⎞⎠
⎞
⎠
⎞
⎠ ,

l−1

⎛
⎝1

λ
l

⎛
⎝k−1

⎛
⎝ n∑

j=1

wjk(l−1(λl(Fj )))

⎞
⎠
⎞
⎠
⎞
⎠〉

.

(26)

Assume k(x) = − log(x), and then Theorem 8 can be
represented by

GSNNWAw (A1, A2, . . . , An)

=
〈(

1 −
n∏

j=1
(1−(Tj )λ)wj

)1/λ

,
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1 −
(

1−
n∏

j=1
(1 − (1 − Ij )λ)wj

)1/λ

,

1 −
(

1−
n∏

j=1
(1 − (1 − Fj )λ

)wj

)1/λ
〉
.

(27)

Let k(x) = log( 2−x
x

), and then Theorem 8 can be de-
noted by

GSNNWAw(A1, A2, . . . , An)

=

⎡
⎢⎢⎣ 2(∏n

j=1(αAj
)wj +3∏n

j=1(αAj
)wj −1

)1/λ +1

, 1 − 2(∏n
j=1(βAj

)wj +3∏n
j=1(βAj

)wj −1

)1/λ + 1

,

1 − 2(∏n
j=1(γAj

)wj +3∏n
j=1(γAj

)wj −1

)1/λ + 1

⎤
⎥⎥⎦ ,

(28)

where

αAj
=

⎛
⎜⎜⎜⎜⎜⎝

1 + 2(
2−TAj
TAj

)λ

+1

1 − 2⎛
⎝2 − TAj

TAj

⎞
⎠

λ

+1

⎞
⎟⎟⎟⎟⎟⎠ , βAj

=

⎛
⎜⎜⎜⎝

1 + 2(
1+IAj
1−IAj

)λ

+1

1 − 2(
1+IAj
1−IAj

)λ

+1

⎞
⎟⎟⎟⎠ ,

γAj
=

⎛
⎜⎜⎜⎝

1 + 2(
1+FAj
1−FAj

)λ

+1

1 − 2(
1+FAj
1−FAj

)λ

+1

⎞
⎟⎟⎟⎠ .

Apparently, if λ = 1, then the GSNNWA operator is
reduced to the SNNWA operator.

Definition 19: Let Aj =<TAj
, IAj

, FAj
> (j =

1, 2, . . . , n) be a collection of SNNs, and GSNNWG:
SNNn → SNN,

GSNNWGw(A1, A2, . . . , An) = 1

λ

⎛
⎝ n∏

j=1

(λAj )wj

⎞
⎠ ,

(29)
and then the GSNNWG operator is called the generalised
simplified neutrosophic number weighted geometric oper-
ator of dimension n, where w = (w1, w2, . . . , wn) is the
weight vector of Aj (j = 1, 2, . . . , n) with wj > 0(j =
1, 2, . . . , n) and

∑n
j=1 wj = 1.

Theorem 9: Let Aj =<TAj
, IAj

, FAj
> (j = 1, 2, . . . , n)

be a collection of SNNs, and w = (w1, w2, . . . , wn) be the
weight vector of Aj (j = 1, 2, . . . , n), with λ > 0, wj ≥ 0

(j = 1, 2, . . . , n) and
∑n

j=1 wj = 1. Then their aggregated
result using the SNNHOWG operator is also an SNN, and

GSNNWGw(A1, A2, . . . , An)

=
〈
l−1

⎛
⎝1

λ
l

⎛
⎝k−1

⎛
⎝ n∑

j=1

wjk(l−1(λl(TAj
)))

⎞
⎠
⎞
⎠
⎞
⎠ ,

× k−1

⎛
⎝1

λ
k

⎛
⎝l−1

⎛
⎝ n∑

j=1

wj l(k
−1(λk(IAj

)))

⎞
⎠
⎞
⎠
⎞
⎠ ,

k−1

⎛
⎝1

λ
k

⎛
⎝l−1

⎛
⎝ n∑

j=1

wj l(k
−1(λk(FAj

)))

⎞
⎠
⎞
⎠
⎞
⎠〉

.

(30)

Assume k(x) = − log(x), and then Theorem 9 can be
represented by

GSNNWGw(A1, A2, . . . , An)

=
〈

1−
(

1−
n∏

j=1
(1 − (1 − TAj

)λ)wj

)1/λ

,

×
(

1−
n∏

j=1
(1−(IAj

)λ)wj

)1/λ

,

(
1−

n∏
j=1

(1−(FAj
)λ)wj

)1/λ]〉
.

Let k(x) = log( 2−x
x

), and then Theorem 8 can be denoted
by

GSNNWGw(A1, A2, . . . , An)

=

⎡
⎢⎢⎣1 − 2(∏n

j=1(γAj
)wj +3∏n

j=1(γAj
)wj −1

)1/λ + 1

,
2(∏n

j=1(αAj
)wj +3∏n

j=1(αAj
)wj −1

)1/λ + 1

,

× 2(∏n
j=1(βAj

)wj +3∏n
j=1(βAj

)wj −1

)1/λ + 1

⎤
⎥⎥⎦ ,

(31)
where

γAj
=

⎛
⎜⎜⎜⎝

1 + 2(
1+TAj
1−TAj

)λ

+1

1 − 2(
1+TAj
1−TAj

)λ

+1

⎞
⎟⎟⎟⎠ , αAj

=

⎛
⎜⎜⎜⎝

1 + 2(
2−IAj
IAj

)λ

+1

1 − 2(
2−IAj
IAj

)λ

+1

⎞
⎟⎟⎟⎠ ,

βAj
=

⎛
⎜⎜⎜⎝

1 + 2(
2−FAj
FAj

)λ

+1

1 − 2(
2−FAj
FAj

)λ

+1

⎞
⎟⎟⎟⎠ .
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Apparently, if λ = 1, then the GSNNWG operator is
reduced to the SNNWG operator.

Similarly, it can be proved that the GSNNWA and
GSNNWG operators have the same properties as the
SNNWA operator.

4.2. The MCGDM method based on the
aggregation operators of SNNs

Assume that there are n alternatives A = {a1, a2, . . . , an}
and m criteria C = {c1, c2, . . . , cm}, and the weight vec-
tor of criteria is w = (w1, w2, . . . , wm), where wj ≥ 0
(j = 1, 2, . . . , m),

∑m
j=1 wj = 1. Suppose that there are k

decision-makers D = {d1, d2, . . . , dk}, whose correspond-
ing weight vector is λ = (λ1, λ2, . . . , λk). Let R = (ak

ij )n×m

be the simplified neutrosophic decision matrix, where
ak

ij =< Tak
ij
, Iak

ij
, Fak

ij
> is the value of a criterion, denoted

by SNNs, where Tak
ij

indicates the truth-membership func-
tion that the alternative ai satisfies the criterion cj for
the kth decision-maker, Iak

ij
indicates the indeterminacy-

membership function that the alternative ai satisfies the
criterion cj for the kth decision-maker, and Fak

ij
indicates

the falsity-membership function that the alternative ai satis-
fies the criterion cj for the kth decision-maker. This method
uses the aggregation operators of SNNs in order to solve
the MCGDM problem mentioned above.

In the following steps, a procedure for ranking and se-
lecting the most desirable alternative(s) is provided.

Step 1: Aggregate the SNNs of each decision-maker.

Utilise the GSNNWA or GSNNWG operator to ag-
gregate the SNNs of each decision-maker, and the indi-
vidual value of the alternative ai (i = 1, 2, . . . , n) can be
obtained.

xi = GSNNWAw(ai1, ai2, . . . , aim)
=< l−1(w1l(Tai1 ) + w2l(Tai2 )... + wnl(Tain

)),
k−1(w1k(Iai1 ) + w2k(Iai2 )... + wnk(Iain

)),
k−1(w1k(Fai1 ) + w2k(Fai2 )... + wnk(Fain

)) >,

(32)
or

xi = GSNNWGw(ai1, ai2, . . . , aim)
=< k−1(w1k(Tai1 ) + w2k(Tai2 )... + wnk(Taim

)),
l−1(w1l(Iai1 ) + w2l(Iai2 )... + wnl(Iaim

)),
l−1(w1l(Fai1 ) + w2l(Fai2 )... + wnl(Faim

)) > .

(33)

Step 2: Aggregate the SNNs of all decision-makers.

Utilise the SNNHOWA or SNNHOWG operator to
obtain the overall SNN yi for all alternatives ai (i =
1, 2, . . . , n), i.e.,

yi = SNNHOWAw(x1, x2, . . . , xk)

= < l−1(w1l(Tẏσ (1) ) + w2l(Tẏσ (2) )... + wnl(Tẏσ (k) )),

k−1(w1k(Iẏσ (1) ) + w2k(Iẏσ (2) )... + wnk(Iẏσ (k) )),

k−1(w1k(Fẏσ (1) ) + w2k(Fẏσ (2) )... + wnk(Fẏσ (k) )) >, (34)

or

yi = SNNHOWGw(x1, x2, . . . , xk)

= < k−1(w1k(Tẏσ (1) ) + w2k(Tẏσ (2) )... + wnk(Tẏσ (k) )),

l−1(w1l(Iẏσ (1) ) + w2l(Iẏσ (2) )... + wnl(Iẏσ (k) )),

l−1(w1l(Fẏσ (1) ) + w2l(Fẏσ (2) )... + wnl(Fẏσ (k) )) > . (35)

Step 3: Calculate the score function value s(yi), accuracy
function value a(yi) and certainty function value c(yi) of yi

(i = 1, 2, . . . , m) using Definition 10.

Step 4: Rank the alternatives.

According to Definition 11, an order of priority for all
the alternatives ai (i = 1, 2, . . . , m) could be obtained and
the best one can be chosen.

5. An illustrative example

In this section, an example of MCGDM problems is used
to demonstrate the applicability and effectiveness of the
proposed decision-making method.

Let us consider a decision-making problem adapted
from Lupiáñez (2009). There is an investment company,
which wants to invest a sum of money in the best option.
There are four possible alternatives to invest the money: (1)
A1 is a car company; (2) A2 is a food company; (3) A3 is
a computer company and (4) A4 is an arms company. The
investment company must make a decision according to the
following three criteria: (1) C1 is the risk analysis; (2) C2 is
the growth analysis and (3) C3 is the environmental impact
analysis, where C1 and C2 are of the maximising type, and
C3 is a minimising type. The weight vector of the criteria is
given by w = (0.35, 0.25, 0.4). Suppose that there are three
decision-makers, {d1, d2, d3} whose corresponding weight
vector is λ = (0.5, 0.3, 0.2). The four possible alternatives
are to be evaluated under these three criteria and are in the
form of SNNs for each decision-maker, as shown in the
following simplified neutrosophic decision matrix D:

D1=

⎛
⎜⎜⎝

〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.2, 0.2, 0.5〉
〈0.6, 0.1, 0.2〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.2〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.2〉
〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.4, 0.3, 0.2〉

⎞
⎟⎟⎠ ;

D2=

⎛
⎜⎜⎝

〈0.5, 0.2, 0.2〉 〈0.6, 0.2, 0.3〉 〈0.3, 0.2, 0.4〉
〈0.6, 0.1, 0.2〉 〈0.7, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉
〈0.4, 0.1, 0.3〉 〈0.5, 0.3, 0.3〉 〈0.6, 0.2, 0.2〉
〈0.7, 0.3, 0.1〉 〈0.6, 0.3, 0.2〉 〈0.5, 0.1, 0.2〉

⎞
⎟⎟⎠ ;

D
ow

nl
oa

de
d 

by
 [

C
en

tr
al

 S
ou

th
 U

ni
ve

rs
ity

],
 [

jia
n-

qi
an

g 
W

an
g]

 a
t 0

0:
23

 1
7 

M
ar

ch
 2

01
6 



International Journal of Systems Science 2355

D3=

⎛
⎜⎜⎝

〈0.5, 0.1, 0.2〉 〈0.5, 0.2, 0.2〉 〈0.3, 0.1, 0.3〉
〈0.5, 0.3, 0.2〉 〈0.7, 0.1, 0.3〉 〈0.5, 0.3, 0.3〉
〈0.6, 0.2, 0.3〉 〈0.5, 0.1, 0.3〉 〈0.5, 0.1, 0.2〉
〈0.5, 0.3, 0.2〉 〈0.7, 0.2, 0.2〉 〈0.7, 0.2, 0.2〉

⎞
⎟⎟⎠ .

5.1. The decision-making procedure based on
SNNs

Step 1: Utilise the GSNNWA or GSNNWG operator to
obtain the SNNs for each decision-maker. Because the ag-
gregation results based on the GSNNWA and GSNNWG
operators are different, they are calculated separately. For
convenience, the operations of SNNs are based on the Al-
gebraic t-conorm and t-norm and λ = 1.

By using the GSNNWA operator, the alternatives matrix
AWA can be obtained:

AWA =

⎛
⎜⎜⎝

< 0.327, 0.325, 0.368 > < 0.459, 0.325, 0.292 > < 0.428, 0.257, 0.235 >

< 0.563, 0.285, 0.200 > < 0.593, 0.339, 0.260 > < 0.560, 0.307, 0.260 >

< 0.438, 0.382, 0.255 > < 0.513, 0.375, 0.255 > < 0.538, 0.207, 0.255 >

< 0.575, 0.347, 0.157 > < 0.605, 0.260, 0.157 > < 0.641, 0.310, 0.200 >

⎞
⎟⎟⎠ .

With the GSNNWG operator, the alternatives matrix AWG

is shown as follows:

AWG =

⎛
⎜⎜⎝

< 0.303, 0.200, 0.388 > < 0.427, 0.242, 0.310 > < 0.408, 0.210, 0.242 >

< 0.588, 0.289, 0.200 > < 0.579, 0.309, 0.206 > < 0.544, 0.348, 0.267 >

< 0.418, 0.337, 0.262 > < 0.497, 0.389, 0.262 > < 0.533, 0.317, 0.262 >

< 0.538, 0.206, 0.166 > < 0.589, 0.388, 0.166 > < 0.622, 0.484, 0.200 >

⎞
⎟⎟⎠ .

Step 2: Aggregate the SNNs of all decision-makers.

Utilise the SNNHOWA or SNNHOWG operator to
obtain the overall SNN yi for all alternatives ai (i =
1, 2, . . . , n), with the SNNHOWA operator, the overall SNN
can be obtained as follows:

HWA =

⎛
⎜⎜⎝

< 0.590, 0.279, 0.188 >

< 0.859, 0.274, 0.137 >

< 0.728, 0.302, 0.153 >

< 0.905, 0.280, 0.100 >

⎞
⎟⎟⎠ .

With the SNNHOWG operator, the overall SNN can be
obtained as follows:

HWG =

⎛
⎜⎜⎝

< 0535, 0.193, 0.202 >

< 0.842, 0.277, 0.140 >

< 0.694, 0.314, 0.157 >

< 0.854, 0.292, 0.104 >

⎞
⎟⎟⎠ .

Step 3: Calculate the score function value, accuracy func-
tion value and certainty function value.

For the alternatives matrix HWA, using Definition 10,
the score function of HWA can be obtained:

s(HWA) = (0.708, 0.816, 0.757, 0.842).

For the alternatives matrix HWG, using Definition 10,
the score function of HWG is shown as follows:

s(HWG) = (0.713, 0.809, 0.741, 0.819).

It is clear that the score values are different; therefore,
there is no need to compute the accuracy function value and
certainty function value.

Step 4: Obtain an order of priority for the alternatives and
choose the best one.

According to Definition 11 and the results in Step 3, for
AWA, the final ranking is A4 � A2 � A3 � A1. Clearly, the
best alternative is A4.

Similarly, for AWG, the final ranking is A4 � A2 �
A3 � A1. And the best alternative is A1.

If k(x) = log( 2−x
x

) for AWA, then the ranking of the four
alternatives is still A4 � A2 � A3 � A1, and the ranking is
A4 � A2 � A3 � A1 for AWG.

5.2. The sensitivity analysis

In the following discussion, the influence of λ on the ranking
of alternatives is investigated. The results can be found in
Table 1.

From Table 1, it can be seen that the rankings of the
alternatives are slightly different as λ changes. However,
for the GSNNWA and GSNNWG operators, the best alter-
native is A4, while the worst alternative is A1 or A3. The
authors believe that λ can be considered as a reflection of
the decision-makers’ preferences. Based on Archimedean
t-conorm and t-norm, Beliakov et al. (2011) introduced
some operations for IFSs, proposed two general concepts
for constructing other types of aggregation operators for
IFSs, which extended the existing methods, and demon-
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Table 1. The results of the sensitivity analysis.

GSNNWA GSNNWG

λ The final ranking The best one The worst one The final ranking The best one The worst one

λ = 1 A4 � A2 � A3 � A1 A4 A1 A4 � A2 � A3 � A1 A4 A1

λ = 2 A4 � A2 � A3 � A1 A4 A1 A4 � A2 � A3 � A1 A4 A1

λ = 5 A4 � A2 � A1 � A3 A4 A3 A4 � A2 � A1 � A3 A4 A3

λ = 10 A4 � A2 � A3 � A1 A4 A1 A4 � A2 � A3 � A1 A4 A1

λ = 20 A4 � A2 � A3 � A1 A4 A1 A4 � A2 � A3 � A1 A4 A1

strated that the operators obtained by using Lukasiewicz
t-norm are consistent with the ones for ordinary FSs. In
order to calculate the actual aggregation values of the al-
ternatives, different aggregation operators can be used. It is
also found that those aggregation operators are all based on
different t-conorms and t-norms and are used to deal with
different relationships of the aggregated arguments, which
can provide more choices for decision-makers.

5.3. The comparison analysis and discussion

In order to validate the feasibility of the proposed decision-
making method based on the aggregation operators of
SNNs, a comparison study is now conducted.

(1) The similarity measure proposed by Majumdar and
Samant (2014) is going to be utilised in this discus-
sion. By using the proposed aggregation operators,
the aggregated values that were presented in Step 1
of Subsection 5.1. can be obtained. According to the
similarity measure (Majumdar & Samant, 2014),
the ideal alternative is A∗ =< 1, 0, 0 >, thus the
following results could be obtained.

With the GSNNWA operator (λ = 1),

S1(A1, A
∗) = 0.402; S2(A2, A

∗) = 0.609;

S3(A3, A
∗) = 0.500 and S4(A4, A

∗) = 0.656.

With the GSNNWG operator (λ = 1),

S1(A1, A
∗) = 0.384; S2(A2, A

∗) = 0.594;

S3(A3, A
∗) = 0.472 and S4(A4, A

∗) = 0.612.

Therefore, the final ranking is still A4 � A2 � A3 �
A1, and the best one is A4.

(1) Similarly, if the operations and correlation coeffi-
cient are used (Ye, 2013a), then the final ranking is
A2 � A4 � A3 � A1, and the best one is A2.

(2) If the operations and cross-entropy are utilised (Ye,
2014b), then the final ranking is A2 � A4 � A3 �
A1, and the best one is A2.

From the analysis above, it can be seen that the re-
sult obtained by using the similarity measure (Majumdar
& Samant, 2014) is A4 � A2 � A3 � A1, which is con-
sistent with that obtained by using the proposed method,
while the final ranking obtained by utilising the corre-
lation coefficient and cross entropy (Ye, 2014, 2014b) is
A2 � A4 � A3 � A1, which is different from that obtained
by using the proposed method. The reason for this phe-
nomenon is that the proposed operations and aggregation
operators have been used before utilising the similarity mea-
sure (Majumdar & Samant, 2014). However, the operations,
correlation coefficient and similarity measure (Ye, 2013,
2014b) have been proved to be impractical in Section 2.
Thereby, the differences were amplified in the aggregation
values because of the criteria weights and the final ranking
of all alternatives was influenced adversely by the simi-
larity measure or correlation coefficient. By contrast, the
proposed operations could overcome these shortcomings
as were discussed in Examples 1–3. Therefore, the best
alternative is A4, which is more precise and reliable.

6. Conclusions

SNSs can be applied in solving problems with uncer-
tain, imprecise, incomplete and inconsistent information
that exist in scientific and engineering situations. How-
ever, as a new branch of NSs, there is not enough ex-
tant research on SNSs. In particular, the existing litera-
tures have not proposed using the aggregation operators
and the MCGDM methods for SNSs. Based on related re-
search achievements in IFSs, the operations of SNSs were
defined in this paper, and an approach to solve MCGDM
problems with SNNs was proposed. Additionally, the aggre-
gation operators of SNNWA and SNNWG, SNNOWA and
SNNOWG, SNNHOWA and SNNHOWG, and GSNNWA
and GSNNWG were provided. Thus, an MCGDM method
was established based on the proposed operators. By using
the comparison method, the ranking of all alternatives can
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be determined and the best one can easily be identified.
An illustrative example demonstrated the applicability of
the proposed decision-making method. Although there is
no consensus on the best way to sequence SNNs, when
compared to the MCDM method for SNSs (Majumdar &
Samant, 2014; Ye, 2013, 2014b), the illustrative example
showed that the final result produced by the method pro-
posed in this paper is more precise and reliable than the re-
sults produced by existing methods. Therefore, the method
proposed in this paper can provide a reliable basis for SNSs.
In future research, the relative measures of SNSs will be
studied and applied to other fields.

Acknowledgements
The authors thank the anonymous reviewers and editors for their
insightful and constructive comments and suggestions for this
paper.

Funding
This work is supported by the National Natural Science Foun-
dation of China [No. 71271218], [No. 71221061]; the Research
Project of Education of Hubei [No. Q20122302]; the Science
Foundation for Doctors of Hubei University of Automotive Tech-
nology [No. BK201405].

Notes on contributors

Juan-juan Peng received her M.Sc. degree in Computational
Mathematics from Wuhan University of Technology, China, in
2007. She is currently a Ph.D. student in Business School, Central
South University; she is also a Lecturer in School of Economics
and Management, Hubei University of Automotive Technology,
China. Her current research focuses on decision-making theory
and application, risk management and control, and information
management.

Jian-Qiang Wang received the Ph.D. degree in Management Sci-
ence and Engineering from Central South University, Changsha,
China, in 2005. He is currently a Professor in Business School,
Central South University. His current research interests include
decision-making theory and application, risk management and
control, and information management.

Jing Wang received her M.Sc. degree in Information Engineer-
ing from University of Osnabrueck, Germany, in 2006. She is
currently a Ph.D. student in Business School, Central South Uni-
versity; she is also a Lecturer in International College, Central
South University of Forestry and Technology, China. Her current
research focuses on decision-making theory and application, risk
management and control, and information management.

Hong-Yu Zhang received her Ph.D. degree in Management Sci-
ence and Engineering from Business School, Central South Uni-
versity, Changsha, China, in 2009. She is currently an Associated
Professor in Business School, Central South University. Her re-
search interests include the area of information management and
its applications in production operations. Her current research fo-
cuses on remanufacturing production management and decision-
making theory.

Xiao-hong Chen received her Ph.D in Tokyo University of Tech-
nology, Japan, in 1999. She is currently a professor at the School of
Business, Central South University, Changsha, China. Her current
research interests lie in the field of decision theory & method, de-
cision support system, resource-saving and environment-friendly
society. He has published in several journals, including Decision
Support system, Expert Systems with Applications, etc.

ORCID
Jian-qiang Wang http://orcid.org/0000-0001-7668-4881
Jing Wang http://orcid.org/0000-0002-2407-5985
Hong-yu Zhang http://orcid.org/0000-0001-5142-5277
Xiao-hong Chen http://orcid.org/0000-0003-3919-5215

References
Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and

Systems, 20(1), 87–96.
Atanassov, K. (1994). New operations defined over the intuition-

istic fuzzy sets. Fuzzy Sets and Systems, 61(2), 137–142.
Atanassov, K. (1999). Intuitionistic fuzzy sets. Heidelberg:

Springer.
Atanassov, K. (2000). Two theorems for intuitionistic fuzzy sets.

Fuzzy Sets and Systems, 110(2), 267–269.
Atanassov, K.T., & Gargov, G. (1989). Interval valued intuitionis-

tic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343–349.
Beliakov, G., Bustince, H., Goswami, D.P., Mukherjee, U.K., &

Pal, N.R. (2011). On averaging operators for Atanassov’s in-
tuitionistic fuzzy sets. Information Sciences, 181(6), 1116–
1124.

Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation func-
tions: A guide for practitioners. Heidelberg, Berlin, New York:
Springer.

Bellman, R., & Zadeh, L.A. (1970). Decision making in
a fuzzy environment. Management Science, 17(4), 141–
164.

Bustince, H., & Burillo, P. (1996). Vague sets are intuitionistic
fuzzy sets. Fuzzy Sets and Systems, 79(3), 403–405.

Chaira, T. (2010). Intuitionistic fuzzy set approach for color region
extraction. Journal of Scientific & Industrial Research, 69,
426–432.

Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering
algorithm and its application to medical images. Applied Soft
Computing, 11(2), 1711–1717.

Chen, Y.T. (2010). A outcome-oriented approach to multi-
criteria decision analysis with intuitionistic fuzzy opti-
mistic/pessimistic operators. Expert Systems with Applica-
tions, 37(12), 7762–7774.

Gau, W.L., & Buehrer, D. J. (1993). Vague sets, IEEE transac-
tions on systems. IEEE Transactions on Systems, Man, and
Cybernetics, 23(2), 610–614.

Joshi, B.P., & Kumar, S. (2012). Fuzzy time series model based on
intuitionistic fuzzy sets for empirical research in stock market.
International Journal of Applied Evolutionary Computation,
3(4), 71–84.

Klement, E.P., & Mesiar, R. (Eds.). (2005). Logical, algebraic,
analytic, and probabilistic aspects of triangular norms. New
York, NY: Elsevier.

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory
and applications. Upper Saddle River, NJ: Prentice Hall.

Li, L., Yang, J., & Wu, W. (2005). Intuitionistic fuzzy hopfield
neural network and its stability. Expert Systems Applications,
129, 589–597.

D
ow

nl
oa

de
d 

by
 [

C
en

tr
al

 S
ou

th
 U

ni
ve

rs
ity

],
 [

jia
n-

qi
an

g 
W

an
g]

 a
t 0

0:
23

 1
7 

M
ar

ch
 2

01
6 

http://orcid.org/0000-0001-7668-4881
http://orcid.org/0000-0002-2407-5985
http://orcid.org/0000-0001-5142-5277
http://orcid.org/0000-0003-3919-5215


2358 J.-J. Peng et al.

Liu, H.W., & Wang, G.J. (2007). Multi-criteria methods based
on intuitionistic fuzzy sets. European Journal Operational
Research, 179(1), 220–233.
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