Self-Centered Single Valued Neutrosophic Graphs

V.Krishnaraj
Research Scholar, Research & Development Centre,
Bharathiar University, Coimbatore - 641 046, India.
Orcid Id:0000-0001-8092-7524

R.Vikramaprasad
Assistant Professor, Department of Mathematics,
Government Arts College, Salem - 636 007, Tamil Nadu, India.

R.Dhavaseelan
Assistant Professor, Department of Mathematics,
Sona College of Technology, Salem - 636 005, Tamil Nadu, India.
Orcid Id:0000-0001-7035-4427

Abstract
In this paper, we introduce the concepts of length, distance, eccentricity, radius, diameter, status, total status, median and central vertex of a single valued neutrosophic graph. We present the concept of self-centered single valued neutrosophic graph. We investigated some properties of self-centered single valued neutrosophic graphs.

Keywords: Length; distance; eccentricity; radius; diameter; central vertex; status; median; self-centered single valued neutrosophic graph.

INTRODUCTION
Fuzzy set [19] theory plays a vital role in complex phenomena which is not effortlessly described by classical set theory. Atanassov introduced the concept of intuitionistic fuzzy relations and intuitionistic fuzzy graphs(IFGs). Parvathi and Karunambigai [13] introduced the concept of IFG elaborately and analyzed its components. Authors of [9] introduced the concept of self-centered IFG. Smarandache [6]-[7] introduced the idea of neutrosophic sets by combining the non-standard analysis. Neutrosophic set is a mathematical tool for dealing real life problems having imprecise, indeterminacy and inconsistent data. Neutrosophic set theory, as a generalization of classical set theory, fuzzy set theory and intuitionistic fuzzy set theory, is applied in a variety of fields, including control theory, decision making problems, topology, medicines and in many more real life problems. Wang et al. [16] presented the notion of single-valued neutrosophic sets to apply neutrosophic sets in real life problems more conveniently. A single-valued neutrosophic set has three components: truth membership degree, indeterminacy membership degree and falsity membership degree. These three components of a single-valued neutrosophic set are not dependent and their values are contained in the standard unit interval [0, 1]. Single-valued neutrosophic sets are the generalization of intuitionistic fuzzy sets. Single-valued neutrosophic sets have been a new hot research topic and many researchers have addressed this issue. Akram et al.[1-4] has discussed several concepts related to single-valued neutrosophic graphs. Majumdar and Samanta [10] studied similarity and entropy of single-valued neutrosophic sets. Ye[18] proposed correlation coefficients of single-valued neutrosophic sets, and applied it to single-valued neutrosophic decision making problems.

In this paper, we introduce the concepts of length, distance, radius, eccentricity, diameter, status, total status, median and central vertex of a single valued neutrosophic graph. We present the concept of self-centered single valued neutrosophic graph. We also discuss some interesting properties besides giving some examples.

Definition 1.1 [17] Let X be a space of points. A neutrosophic set A in X is characterized by a truth-membership function \(T_A(x) \), an indeterminacy membership function \(I_A(x) \) and a falsity membership function \(F_A(x) \). The functions
\[
T_A(x), I_A(x) \text{ and } F_A(x)
\]
are real standard or non standard subsets of \([0^-, 1^+]\). That is, \(T_A(x): X \to [0^-, 1^+] \), \(I_A(x): X \to [0^-, 1^+] \) and \(F_A(x): X \to [0^-, 1^+] \). and \(0^- \leq T_A(x) + I_A(x) + F_A(x) \leq 3^+ \).

From philosophical point view, the neutrosophic set takes the value from real standard or non standard subsets of \([0^-, 1^+]\). In real life applications in scientific and engineering problems, it is difficult to use neutrosophic set with value from real standard or non standard subset of \([0^-, 1^+]\).

Definition 1.2 [3, 1] A single valued neutrosophic graph is a pair \(G = (A, B) \), where \(A: V \to [0,1] \) is single valued neutrosophic set in V and \(B: V \times V \to [0,1] \) is single valued
neutrosophic relation on V such that $T_A(x, y) \leq \min(T_A(x), T_A(y))$, $I_A(x, y) \leq \min(I_A(x), I_A(y))$, and $F_A(x, y) \leq \max(F_A(x), F_A(y))$ for all $x, y \in V$. A is called single valued neutrosophic vertex set of G and B is called single valued neutrosophic edge set of G, respectively. We note that B is symmetric single valued neutrosophic relation on A. If B is not symmetric single valued neutrosophic relation on A, then $G = (A, B)$ is called a single valued neutrosophic directed graph.

Definition 1.3 A single valued neutrosophic graph $G = (A, B)$ is said to be complete if $T_B(v_i, v_j) = \min(T_A(v_i), T_A(v_j))$, $I_B(v_i, v_j) = \min(I_A(v_i), I_A(v_j))$, and $F_B(v_i, v_j) = \max(F_A(v_i), F_A(v_j))$, for all $v_i, v_j \in V$.

SELF-CENTERED SINGLE VALUED NEUTROSOPHIC GRAPHS

Definition 2.1 Let $G = (A, B)$ be a single valued neutrosophic graph. Then the order of G is defined to be $O(G) = (O_T(G), O_I(G), O_F(G))$ where $O_T(G) = \sum_{u \in V} T_A(u)$,$O_I(G) = \sum_{u \in V} I_A(u),O_F(G) = \sum_{u \in V} F_A(u)$.

Definition 2.2 The size of G is defined to be $S(G) = (S_T(G), S_I(G), S_F(G))$ where $S_T(G) = \sum_{u \in V} T_B(u,v), S_I(G) = \sum_{u \in V} I_B(u,v), S_F(G) = \sum_{u \in V} F_B(u,v)$. The neighbourhood of any vertex v is defined as $N(v) = (N_T(v), N_I(v), N_F(v))$ where $N_T(v) = \{u \in V : T_B(v,u) = \min(T_A(u), T_A(v))\}, N_I(v) = \{u \in V : I_B(v,u) = \min(I_A(u), I_A(v))\}, N_F(v) = \{u \in V : F_B(v,u) = \max(F_A(u), F_A(v))\}$ and $N[v] = N(v) \cup \{v\}$ is called closed neighbourhood of v.

Definition 2.4 A path P in a single valued neutrosophic graph $G = (A, B)$ is a sequence of distinct vertices v_1, v_2, \ldots, v_n such that either one of the following condition is satisfied (i) $T_B(v_i, v_j) > 0, I_B(v_i, v_j) > 0$ and $F_B(v_i, v_j) = 0$ for some i and j. (ii) $T_B(v_i, v_j) = 0, I_B(v_i, v_j) = 0$ and $F_B(v_i, v_j) > 0$ for some i and j.

Definition 2.5 Let G be a single valued neutrosophic graph. (i) [13]The length of a path $P: v_1, v_2, \ldots, v_n+1$ ($n > 0$) in G is n. (ii) [13]The path $P: v_1, v_2, \ldots, v_{n+1}$ in G is called a cycle if $v_1 = v_{n+1}$ and $n \geq 3$. (iii) An single valued neutrosophic graph G is connected if any two vertices are joined by path.

Definition 2.6 The strength of a path $P: v_1, v_2, \ldots, v_n$, is defined as $S(P) = (S_T(P), S_I(P), S_F(P))$ where, $S_T(P) = \min(T_B(v_i,v_j)), S_I(P) = \min(I_B(v_i,v_j))$ and $S_F(P) = \max(F_B(v_i,v_j))$ for all i and j.

Note 2.1 In other words, the strength of a path is defined to be the weight of the weakest edge of the path, i.e. the strength of a path $S(P)$.

Definition 2.7 A single valued neutrosophic graph $G = (A, B)$ is said to be a single valued neutrosophic bipartite if the vertex set V can be partitioned into two non-empty sets V_1 and V_2 such that (i) $T_B(v_i,v_j) = 0, I_B(v_i,v_j) = 0$ and $F_B(v_i,v_j) = 0$, if $v_i \in V_1$ or $v_j \in V_2$, (ii) $T_B(v_i,v_j) > 0, I_B(v_i,v_j) > 0$ and $F_B(v_i,v_j) > 0$, if $v_i \in V_1$ or $v_j \in V_2$ for some i and j or $T_B(v_i,v_j) = 0, I_B(v_i,v_j) = 0$ and $F_B(v_i,v_j) > 0$, if $v_i \in V_1$ or $v_j \in V_2$ for some i and j.

Definition 2.8 A single valued neutrosophic bipartite graph $G = (A, B)$ is said to be complete if $T_B(v_i,v_j) = \min(T_A(v_i), T_A(v_j)), I_B(v_i,v_j) = \min(I_A(v_i), I_A(v_j))$ and $F_B(v_i,v_j) = \max(F_A(v_i), F_A(v_j))$ for all $v_i \in V_1$ and $v_j \in V_2$. It is denoted by $K_{V_1 \cup V_1}$.

Definition 2.9 Let single valued neutrosophic graph $H = (A', B')$ is said to be a single valued neutrosophic subgraph of a connected single valued neutrosophic graph $G = (A, B)$. If $T_{A'}(v_i) = T_A(v_i), I_{A'}(v_i) = I_A(v_i), F_{A'}(v_i) = F_A(v_i)$ for all $v_i \in V'$ and $T_{B'}(v_i,v_j) = T_B(v_i,v_j), I_{B'}(v_i,v_j) = I_B(v_i,v_j)$, $F_{B'}(v_i,v_j) = F_B(v_i,v_j)$ for all $v_i, v_j \in V'$.

Definition 2.10 Let $G = (A, B)$ be a connected single valued neutrosophic graph. (i) The T-length of a path $P: v_1, v_2, \ldots, v_n$ in G, $l_T(P)$ is defined as $l_T(P) = \sum_{i=1}^{n-1} \frac{1}{T_B(v_i,v_{i+1})}$. (ii) The I-length of a path $P: v_1, v_2, \ldots, v_n$ in G, $l_I(P)$ is defined as $l_I(P) = \sum_{i=1}^{n-1} \frac{1}{I_B(v_i,v_{i+1})}$. (iii) The F-length of a path $P: v_1, v_2, \ldots, v_n$ in G, $l_F(P)$ is defined as $l_F(P) = \sum_{i=1}^{n-1} \frac{1}{F_B(v_i,v_{i+1})}$. The T,I,F-length of a path $P: v_1, v_2, \ldots, v_n$ in G, $l_{T,I,F}(P)$ is defined as $l_{T,I,F}(P) = (l_T(P), l_I(P), l_F(P))$.

Definition 2.11 Let $G = (A, B)$ be a connected single valued neutrosophic graph. (i) The T-distance $\delta_T(v_i, v_j)$ is the minimum of the T-length of all the paths joining v_i and v_j in G. where $v_i, v_j \in V$. i.e $\delta_T(v_i, v_j) = \min(l_T(P))$, P is a path between v_i and v_j.
(ii) The I-distance $\delta_i(v_i, v_j)$ is the minimum of the I-length of all the paths joining v_i and v_j in G, where $v_i, v_j \in V$. i.e.$\delta_i(v_i, v_j) = \min\{l_i(P): P$ is a path between v_i and $v_j\}$.

(iii) The F-distance $\delta_F(v_i, v_j)$ is the minimum of the F-length of all the paths joining v_i and v_j in G, where $v_i, v_j \in V$. i.e.$\delta_F(v_i, v_j) = \min\{l_F(P): P$ is a path between v_i and $v_j\}.

The distance $\delta_{(T,F)}(v_i, v_j)$ is defined as $\delta_{(T,F)}(v_i, v_j) = (\delta_T, \delta_F)$.

Definition 2.12 Let $G = (A, B)$ be a connected single valued neutrosophic graph.

(i) For each $v_i \in V$, the T-eccentricity of v_i, denoted by $e_T(v_i)$ and is defined as $e_T(v_i) = \max\{\delta_T(v_i, v_j): v_i \in V, v_i \neq v_j\}$.

(ii) For each $v_i \in V$, the I-eccentricity of v_i, denoted by $e_I(v_i)$ and is defined as $e_I(v_i) = \max\{\delta_I(v_i, v_j): v_i \in V, v_i \neq v_j\}$.

(iii) For each $v_i \in V$, the F-eccentricity of v_i, denoted by $e_F(v_i)$ and is defined as $e_F(v_i) = \min\{\delta_F(v_i, v_j): v_i \in V, v_i \neq v_j\}$.

For each $v_i \in V$, the eccentricity of v_i denoted by $e(v_i)$ and is defined as $e(v_i) = (e_T(v_i), e_I(v_i), e_F(v_i))$.

Definition 2.13 Let $G = (A, B)$ be a connected single valued neutrosophic graph.

(i) The T-radius of G is denoted by $r_T(G)$ and is defined as $r_T(G) = \min\{e_T(v_i): v_i \in V\}$.

(ii) The I-radius of G is denoted by $r_I(G)$ and is defined as $r_I(G) = \min\{e_I(v_i): v_i \in V\}$.

(iii) The F-radius of G is denoted by $r_F(G)$ and is defined as $r_F(G) = \min\{e_F(v_i): v_i \in V\}$.

The radius of G is denoted by $r(G)$ and is defined as $r(G) = (r_T(G), r_I(G), r_F(G))$.

Definition 2.14 Let $G = (A, B)$ be a connected single valued neutrosophic graph.

(i) The T-diameter of G is denoted by $d_{\beta}(G)$ and is defined as $\text{diam}_T(G) = \max\{e_T(v_i): v_i \in V\}$.

(ii) The I-diameter of G is denoted by $d_{\iota}(G)$ and is defined as $\text{diam}_I(G) = \max\{e_I(v_i): v_i \in V\}$.

(iii) The F-diameter of G is denoted by $d_{\phi}(G)$ and is defined as $\text{diam}_F(G) = \max\{e_F(v_i): v_i \in V\}$.

The diameter of G is denoted by $\text{diam}(G)$ and is defined as $\text{diam}(G) = (\text{diam}_T(G), \text{diam}_I(G), \text{diam}_F(G))$.

Example 2.1 Consider a single valued neutrosophic graph, $G = (A, B)$ such that $V = \{v_1, v_2, v_3, v_4, v_5\}$, $E = \{(v_1, v_2), (v_2, v_3), (v_3, v_1), (v_3, v_4), (v_4, v_5), (v_5, v_2)\}$.

Then the eccentricity of v_i are $e(v_1) = (13, 18, 4)$, $e(v_2) = (13, 14, 5)$, $e(v_3) = (13, 18, 5)$, $e(v_4) = (13, 13, 4)$, $e(v_5) = (13, 18, 5)$. Radius of G is $d(G) = (13, 13, 4)$ and Diameter of G is $d(G) = (13, 18, 5)$.

Definition 2.15 A vertex $v_i \in V$ is called a

(i) T-central vertex of a connected single valued neutrosophic graph G if $r_{\beta}(G) = e_{\beta}(v_i)$.

(ii) I-central vertex of a connected single valued neutrosophic graph G if $r_{\iota}(G) = e_{\iota}(v_i)$.

(iii) F-central vertex of a connected single valued neutrosophic graph G if $r_{\phi}(G) = e_{\phi}(v_i)$.

(iv) Central vertex of a connected single valued neutrosophic graph G if $r_{\beta}(G) = e_{\beta}(v_i)$, $r_{\iota}(G) = e_{\iota}(v_i)$ and $r_{\phi}(G) = e_{\phi}(v_i)$ and the set of all central vertices of a single valued neutrosophic graph is denoted by $C(G)$.

Definition 2.16 $<C(G) >= H: (A', B')$ is a single valued neutrosophic subgraph of $G = (A, B)$ induced by the central vertices of G is called the center of G.

Definition 2.17 A connected single valued neutrosophic graph G is

(i) T- self-centered single valued neutrosophic graph, if every vertex of G is a T- central vertex. (i.e) $r_{\beta}(G) = e_{\beta}(v_i), \forall v_i \in V$.

15538
(ii) I- self-centered single valued neutrosophic graph, if every vertex of \(G \) is a I- central vertex. (i.e) \(r_i(G) = e_i(v), \forall v \in V \).

(iii) F- self-centered single valued neutrosophic graph, if every vertex of \(G \) is a F- central vertex. (i.e) \(r_f(G) = e_f(v), \forall v \in V \).

(iv) Single valued neutrosophic self-centered graph, if every vertex of \(G \) is a central vertex. (i.e) \(r_i(G) = e_i(v) \) and \(r_f(G) = e_f(v), \forall v \in V \).

Example 2.2 Consider a single valued neutrosophic graph, \(G = (A, B) \) such that \(V = \{v_1, v_2, v_3, v_4\} \),

\[E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_1), (v_1, v_3)\}. \]

![Graph Image]

Then the eccentricity of \(v_i \) are \(e(v_1) = (11,11,4) \), \(e(v_2) = (11,11,4) \), \(e(v_3) = (11,11,4) \), \(e(v_4) = (11,11,4) \). Radius of \(G \) is \(r(G) = (11,11,4) \) and Diameter of \(G \) is \(d(G) = (11,11,4) \). Here \(r(G) = e(v_1), \forall v_i \in V \). Hence \(G \) is a self-centered single valued neutrosophic graph.

Definition 2.18 Let \(G = (A, B) \) be a connected single valued neutrosophic graph.

(i) The T-status of a node \(u \) of \(G \) is denoted by \(s_{\tau}(u) \) and is defined as \(s_{\tau}(u) = \sum_{v \in V} \delta_{\tau}(u, v) \).

(ii) The I-status of a node \(u \) of \(G \) is denoted by \(s_{\iota}(u) \) and is defined as \(s_{\iota}(u) = \sum_{v \in V} \delta_{\iota}(u, v) \).

(iii) The F-status of a node \(u \) of \(G \) is denoted by \(s_{\varphi}(u) \) and is defined as \(s_{\varphi}(u) = \sum_{v \in V} \delta_{\varphi}(u, v) \).

(iv) The status of a node \(u \) of \(G \) is defined as \(s(u) = (s_{\tau}(u), s_{\iota}(u), s_{\varphi}(u)). \)

Definition 2.19 Let \(G = (A, B) \) be a connected single valued neutrosophic graph.

(i) The minimum T-status of \(G \) is defined as \(m[s_{\tau}(u)]: u \in V \).

(ii) The minimum I-status of \(G \) is defined as \(m[s_{\iota}(u)]: u \in V \).

(iii) The minimum F-status of \(G \) is defined as \(m[s_{\varphi}(u)]: u \in V \).

(iv) The minimum status of \(G \) is denoted by \(m[s(G)] \) and is defined as \(m[s(G)] = (m[s_{\tau}(G)], m[s_{\iota}(G)], m[s_{\varphi}(G)]). \)

Definition 2.20 Let \(G = (A, B) \) be a connected single valued neutrosophic graph.

(i) The maximum T-status of \(G \) is defined as \(M[s_{\tau}(u)]: u \in V \).

(ii) The maximum I-status of \(G \) is defined as \(M[s_{\iota}(u)]: u \in V \).

(iii) The maximum F-status of \(G \) is defined as \(M[s_{\varphi}(u)]: u \in V \).

(iv) The maximum status of \(G \) is denoted by \(M[s(G)] \) and is defined as \(M[s(G)] = (M[s_{\tau}(G)], M[s_{\iota}(G)], M[s_{\varphi}(G)]). \)

Definition 2.21 Let \(G = (A, B) \) be a connected single valued neutrosophic graph.

The total T-status of a node \(u \) of \(G \) is denoted by \(t[s_{\tau}(u)] \) and is defined as \(t[s_{\tau}(u)] = \sum_{v \in V} s_{\tau}(u) \).

Then the eccentricity of \(v_i \) are \(e(v_i) = (11,11,4) \), \(e(v_2) = (11,11,4) \), \(e(v_3) = (11,11,4) \), \(e(v_4) = (11,11,4) \). Radius of \(G \) is \(r(G) = (11,11,4) \) and Diameter of \(G \) is \(d(G) = (11,11,4) \). Here \(r(G) = e(v_1), \forall v_i \in V \). Hence \(G \) is a self-centered single valued neutrosophic graph.

Example 2.3 Consider a single valued neutrosophic -graph, \(G = (A, B) \) such that \(V = \{v_1, v_2, v_3, v_4\} \), \(E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_1), (v_1, v_3)\} \).

Here, status of the nodes are \(s(v_1) = (22,19,17) \), \(s(v_2) = (27,28,23) \), \(s(v_3) = (26,16,14) \), \(s(v_4) = (29,27,20) \). The minimum status of \(G \) is \(m[s(G)] = (22,16,14) \). The maximum status of \(G \) is \(M[s(G)] = (29,28,23) \). The total status of \(G \) is \(t[s(G)] = (104,90,74) \). The median is \(M(G) = (104,90,74) \).
Definition 2.23 A connected single valued neutrosophic graph \(G = (A, B) \) is a self-median if all the nodes have the same status. In other words, a connected single valued neutrosophic graph \(G = (A, B) \) is self-median if and only if \(m[s(G)] = M[s(G)] \).

Example 2.4 Consider a single valued neutrosophic graph, \(G = (A, B) \) such that \(V = \{v_1, v_2, v_3, v_4\} \), \(E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_1), (v_1, v_3), (v_2, v_4)\} \). Here, status of the nodes are \((v_1) = (20,23,15), s(v_2) = (20,23,15), s(v_3) = (20,23,15), s(v_4) = (20,23,15) \). The minimum status of \(G \) is \(m[s(G)] = (20,23,15) \). The maximum status of \(G \) is \(M[s(G)] = (20,23,15) \). The total status of \(G \) is \(t[s(G)] = (80,92,60) \).

The median is \(M(G) = \{\{v_1, v_2, v_3, v_4\}, \{v_1, v_2, v_3, v_4\}, \{v_1, v_2, v_3, v_4\}\} \). Hence \(G = (A, B) \) is called the self-median graph.

Theorem 2.1 If \(G = (A, B) \) is a bipartite single valued neutrosophic cycle of odd length.

Proof. Let \(G \) be a bipartite single valued neutrosophic graph with bipartition \(V_1 \) and \(V_2 \). Suppose that it contains a strong cycle of odd length, say \(v_1, v_2, \ldots, v_n, v_1 \) for some odd \(n(\text{vertices}) \). Without loss of generality, let \(v_1 \in V_1 \). Since \((v_i, v_{i+1}) \) is strong single valued neutrosophic for \(i = 1, 2, \ldots, n - 1 \) and the nodes are alternatively in \(V_1 \) and \(V_2 \), we have \(v_n \) and \(v_1 \in V_1 \). But this implies that \((v_n, v_1)\) is an edge in \(V_2 \) which contradicts the assumption that \(G \) is a bipartite single valued neutrosophic graph. Hence bipartite single valued neutrosophic graph has no single valued neutrosophic strong cycle of odd length.

Theorem 2.2 Every complete single valued neutrosophic graph \(G \) is a self-centered single valued neutrosophic graph and \(r(G) = \frac{1}{\tau_{A}(x)} \) where \(T_{A}(x) \) and \(l_{A}(x) \) are the least value and \(F_{A}(x) \) is greatest value.

Proof. Let \(G \) be complete single valued neutrosophic graph \(G \). To prove that \(G \) is a self-centered single valued neutrosophic graph. That is we have to show that every vertex is a central vertex. First we claim that \(G \) is a self-centered single valued neutrosophic graph and \(r(G) = \frac{1}{\tau_{A}(v)} \), where \(T_{A}(v) \) is the least. Now fix a vertex \(v_i \in V \) such that \(T_{A}(v_i) \) is least vertex membership value of \(G \).

Case (i) : If \(n = 1 \), then \(T_{B}(v_1, v_1) = \min(T_{A}(v_1, v_1)) = T_{A}(v_i) \). Therefore, the T-length of \(P = l_{A}(P) = \frac{1}{\tau_{A}(v_i)} \).

Case (ii) : If \(n > 1 \), then one of the edges of \(P \) possesses the T-strength \(T_{A}(v_i) \) and hence, T-length of a \(v_i - v_j \) path will exceed \(\frac{1}{\tau_{A}(v_i)} \). That is T-length of \(P = l_{A}(P) > \frac{1}{\tau_{A}(v_i)} \).

Hence \(\delta_{A}(v_i, v_j) = \min(l_{A}(P)) = \frac{1}{\tau_{A}(v_i)}, \forall v_j \in V \). (1)

(2) Let \(v_k \neq v_i \in V \). Consider all \(v_k - v_j \) paths \(Q \) of length \(n \) in \(G \), \(\forall v_j \in V \).

Case (i) : If \(n = 1 \), then \(T_{B}(v_k, v_j) = \min(T_{A}(v_k, v_j)) = T_{A}(v_i) \), since \(T_{A}(v_i) \) is the least. Hence T-length of \(Q = l_{A}(Q) = \frac{1}{\tau_{B}(v_k, v_j)} \leq \frac{1}{\tau_{A}(v_i)} \).

Case (ii) : If \(n = 2 \), then \(l_{A}(Q) = \frac{1}{\tau_{B}(v_k, v_{k-1})} + \frac{1}{\tau_{B}(v_{k-1}, v_j)} \leq \frac{2}{\tau_{A}(v_i)} \), since \(T_{A}(v_i) \) is the least.

Case (iii) : If \(n > 2 \), then \(l_{A}(Q) \leq \frac{n}{\tau_{A}(v_i)} \), since \(T_{A}(v_i) \) is the least.

Hence \(\delta_{A}(v_k, v_j) = \min(l_{A}(Q)) \leq \frac{1}{\tau_{A}(v_i)}, \forall v_k, v_j \in V \). (2)

From Equations (1) and (2), we have \(e_{A}(v_i) = \max(\delta_{A}(v_i, v_j)) = \frac{1}{\tau_{A}(v_i)}, \forall v_j \in V \). (3)
Hence G is a T-self-centered single valued neutrosophic graph.

Now, \(r(\mathcal{T}(G)) = \min(e(\mathcal{T}(v_i))) = \frac{1}{I_{\mathcal{T}(v_i)})}, \) since by equation (3)

\[
r(\mathcal{T}(G)) = \frac{1}{I_{\mathcal{T}(v_i)})}, \text{ where } T_{\mathcal{T}(v_i)} \text{ is least.}
\]

Next, we claim that G is a I- self-centered single valued neutrosophic graph and \(r(\mathcal{T}(G)) = \frac{1}{I_{\mathcal{T}(v_i)})}, \) where \(I_{\mathcal{T}(v_i)} \) is the least. Now fix a vertex \(v_i \in V \) such that \(I_{\mathcal{T}(v_i)} \) is least vertex membership value of G.

(1) Consider all the \(v_i - v_j \) paths P of length n in G, \(\forall v_j \in V \).

Case (i) : If \(n = 1 \), then \(I_{\mathcal{T}(v_i, v_j)} = \min(I_{\mathcal{T}(v_i)}) = I_{\mathcal{T}(v_i)}) \). Therefore, the I-length of P = l \((P) = \frac{1}{I_{\mathcal{T}(v_i)})} \).

Case (ii) : If \(n > 1 \), then one of the edges of P possesses the I-strength \(I_{\mathcal{T}(v_i)} \), and hence, I-length of a \(v_i - v_j \) path will exceed \(\frac{1}{I_{\mathcal{T}(v_i)})} \). That is I-length of P = l \((P) > \frac{1}{I_{\mathcal{T}(v_i)})} \).

Hence \(\delta_{\mathcal{T}}(v_i, v_j) = \min(l \((P) \)) = \frac{1}{I_{\mathcal{T}(v_i)})}, \forall v_j \in V \). (4)

(2) Let \(v_k \not= v_j \) in V. Consider all \(v_k - v_j \) paths Q of length n in G, \(\forall v_j \in V \).

Case (i) : If \(n = 1 \), then \(I_{\mathcal{T}(v_k, v_j)} = \min(I_{\mathcal{T}(v_k)}) \geq I_{\mathcal{T}(v_i)}) \), since \(I_{\mathcal{T}(v_i)} \) is the least. Hence I-length of Q = l \((Q) = \frac{1}{I_{\mathcal{T}(v_k, v_j)})} \leq \frac{1}{I_{\mathcal{T}(v_j)})} \).

Case (ii) : If \(n = 2 \), then \(l \((Q) = \frac{1}{I_{\mathcal{T}(v_k, v_j)})} + \frac{1}{I_{\mathcal{T}(v_j)})} \leq \frac{2}{I_{\mathcal{T}(v_j)})} \) since \(I_{\mathcal{T}(v_j)}) \) is the least.

Case (iii) : If \(n > 2 \), then \(l \((Q) \leq \frac{n}{I_{\mathcal{T}(v_j)})} \), since \(I_{\mathcal{T}(v_i)} \) is the least. Hence \(\delta_{\mathcal{T}}(v_k, v_j) = \min(l \((Q) \)) = \frac{1}{I_{\mathcal{T}(v_k, v_j)})}, \forall v_k, v_j \in V \). (5)

From Equations (4) and (5), we have \(e_{\mathcal{T}}(v_i) = \max(\delta_{\mathcal{T}}(v_i, v_j)) = \frac{1}{I_{\mathcal{T}(v_j)})}, \forall v_i \in V \). (6)

Hence G is a I-self-centered single valued neutrosophic graph.

Now, \(r(\mathcal{T}(G)) = \min(e(\mathcal{T}(v_i))) = \frac{1}{I_{\mathcal{T}(v_i)})}, \) since by equation (6)

\[
r(\mathcal{T}(G)) = \frac{1}{I_{\mathcal{T}(v_i)})}, \text{ where } r_{\mathcal{T}(v_i)} \text{ is least.}
\]

Next, we claim that G is a F - self-centered single valued neutrosophic graph and \(r(\mathcal{F}(G)) = \frac{1}{F_{\mathcal{F}(v_i)})} \), where \(F_{\mathcal{F}(v_i)} \) is the greatest. Now fix a vertex \(v_i \in V \) such that \(F_{\mathcal{F}(v_i)} \) is greatest vertex membership value of G.

(1) Consider all the \(v_i - v_j \) paths P of length n in G, \(\forall v_j \in V \).

Case (i) : If \(n = 1 \), then \(F_{\mathcal{F}(v_i, v_j)} = \max(F_{\mathcal{F}(v_i)}) = F_{\mathcal{F}(v_i)}) \). Therefore, the F - length of P = \(l \((P) = \frac{1}{F_{\mathcal{F}(v_i)})} \).

Case (ii) : If \(n > 1 \), then one of the edges of P possesses the F-strength \(F_{\mathcal{F}(v_i)} \), and hence, F-length of a \(v_i - v_j \) path will exceed \(\frac{1}{F_{\mathcal{F}(v_i)})} \). That is F-length of P = \(l \((P) > \frac{1}{F_{\mathcal{F}(v_i)})} \).

Hence \(\delta_{\mathcal{F}}(v_i, v_j) = \min(l \((P) \)) = \frac{1}{F_{\mathcal{F}(v_i)})}, \forall v_j \in V \). (7)

(2) Let \(v_k \not= v_j \) in V. Consider all \(v_k - v_j \) paths Q of length n in G, \(\forall v_j \in V \).

Case (i) : If \(n = 1 \), then \(F_{\mathcal{F}(v_k, v_j)} = \max(F_{\mathcal{F}(v_k)}) \leq F_{\mathcal{F}(v_i)}) \), since \(F_{\mathcal{F}(v_i)} \) is the greatest. Hence F-length of Q = \(l \((Q) = \frac{1}{F_{\mathcal{F}(v_k, v_j)})} \geq \frac{1}{F_{\mathcal{F}(v_i)})} \).

Case (ii) : If \(n = 2 \), then \(l \((Q) = \frac{1}{F_{\mathcal{F}(v_k, v_j)})} + \frac{1}{F_{\mathcal{F}(v_j)})} \geq \frac{2}{F_{\mathcal{F}(v_i)})} \), since \(F_{\mathcal{F}(v_i)} \) is the greatest.

Case (iii) : If \(n > 2 \), then \(l \((Q) \geq \frac{n}{F_{\mathcal{F}(v_i)})} \), since \(F_{\mathcal{F}(v_i)} \) is the greatest. Hence \(\delta_{\mathcal{F}}(v_k, v_j) = \min(l \((Q) \)) = \frac{1}{F_{\mathcal{F}(v_k, v_j)})}, \forall v_k, v_j \in V \). (8)

From Equations (7) and (8), we have \(e_{\mathcal{F}}(v_i) = \max(\delta_{\mathcal{F}}(v_i, v_j)) = \frac{1}{F_{\mathcal{F}(v_j)})}, \forall v_i \in V \). (9)

Hence G is a F-self-centered single valued neutrosophic graph.

Now, \(r(\mathcal{F}(G)) = \min(e(\mathcal{F}(v_i))) = \frac{1}{F_{\mathcal{F}(v_i)})}, \) since by equation (9)

\[
r(\mathcal{F}(G)) = \frac{1}{F_{\mathcal{F}(v_i)})}, \text{ where } r_{\mathcal{F}(v_i)} \text{ is greatest.}
\]

From equations (3),(6), and (9), every vertex of G is a central vertex. Hence G is a self-centered single valued neutrosophic graph.

Theorem 2.3 A single valued neutrosophic graph \(G = (A, B) \) is a self-centered single valued neutrosophic graph iff \(\delta_{\mathcal{F}}(v_i, v_j) \leq r_{\mathcal{F}(v_i)} \text{ and } \delta_{\mathcal{T}}(v_i, v_j) \leq r_{\mathcal{T}(v_i)} \) and \(\delta_{\mathcal{T}}(v_i, v_j) \geq r_{\mathcal{T}(v_i)} \forall v_i, v_j \in V \).

Proof We assume that G is self-centered single valued neutrosophic graph G. That is \(e_{\mathcal{F}}(v_i) = e_{\mathcal{F}(v_i)}, e_{\mathcal{T}}(v_i) = e_{\mathcal{T}(v_i)}, e_{\mathcal{F}}(v_j) = e_{\mathcal{F}(v_j)}, \forall v_i, v_j \in V, r_{\mathcal{T}(G)} = r_{\mathcal{T}(G)} \forall v_i \in V \).

Now we wish to show that \(\delta_{\mathcal{F}}(v_i, v_j) \leq r_{\mathcal{F}(v_i)} \text{ and } \delta_{\mathcal{T}}(v_i, v_j) \leq r_{\mathcal{T}(v_i)} \).
\[r(T(G), \delta(I(v, v)) \leq r(T(G) \text{ and } \delta_f(v, v) \geq r(T(G), \forall v, v \in V). \]

By the definition of eccentricity, we obtain, \[\delta(T(G), \delta(I(v, v)) \leq e(T), (v, v) \leq e(T) \text{ and } \delta_f(v, v) \geq e(T), \forall v, v \in V. \]

When \[e(T(v)) = e(T) \cdot e(T(v)) = e(T), \forall v, v \in V. \] Since G is self-centered single valued neutrosophic graph, the above inequality states \[\delta(T(v, v)) \leq r(T(G)), \delta(I(v, v)) \leq r(T(G)) \text{ and } \delta_f(v, v) \geq r(T(G)). \]

\[\iff \]

Asymptote, \[\delta(T(v, v)) \leq r(T(G)), \delta(I(v, v)) \leq r(T(G)) \text{ and } \delta_f(v, v) \geq r(T(G)). \]

\[\Rightarrow \]

From equations (10), (14), the complement of G has two components and each is a complete single valued neutrosophic graph. Therefore, \[G \text{ is self-centered single valued neutrosophic graph.} \]

\[\text{Suppose that } G \text{ is not self-centered single valued neutrosophic graph. Then} r(T(G) = e(I(v)), r(I) = e(I(v)) \text{ and } r(T(G) = e(I(v)), \text{ for some } v, v \in V. \]

Let us assume that \[e(I(v)), e(I(v)) \text{ and } e(I(v)) \text{ is the least value among all other eccentricities. That is} \]

\[r(T(G) = e(I(v)), r(I) = e(I(v)) \text{ and } r(T(G) = e(I(v)), \text{ for some } v, v \in V. \]

\[\text{Hence from equations (10) and (11), we have } \delta(T(v, v)) > r(T(G)), \delta(I(v, v)) > r(T(G)) \text{ and } \delta_f(v, v) > r(T(G). \]
\[\min\left(\frac{1}{f_g(v_1, v_1)}\right) = \min\left(\frac{1}{f_g(v_2, v_2)}\right) = \min\left(\frac{1}{f_g(v_n, v_n)}\right) = \ldots = \min\left(\frac{1}{f_g(v, v)}\right).\]

\[\max\{\delta_T(v_1, v_1)\} = \max\{\delta_T(v_2, v_2)\} = \max\{\delta_T(v_3, v_3)\} = \ldots = \max\{\delta_T(v_n, v_n)\}.\]

\[\max\{\delta_I(v_1, v_1)\} = \max\{\delta_I(v_2, v_2)\} = \max\{\delta_I(v_3, v_3)\} = \ldots = \max\{\delta_I(v_n, v_n)\}.\]

\[\min\{\delta_F(v_1, v_1)\} = \min\{\delta_F(v_2, v_2)\} = \min\{\delta_F(v_3, v_3)\} = \ldots = \min\{\delta_F(v_n, v_n)\}.\]

\[e(v_1) = e(v_2) = e(v_3) = \ldots = e(v_n).\]

Therefore G is self-centered.

CONCLUSION

In this paper, the concepts of length, distance, eccentricity, radius, diameter, status, total status, median and central vertex of a single valued neutrosophic graph have been investigated. We have presented the concept of self-centered single valued neutrosophic graph. Also some interesting properties of self-centered single valued neutrosophic graphs followed by some examples.

REFERENCES

