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Abstract 

In this paper, we introduce the concepts of length, distance, 

eccentricity, radius, diameter, status, total status, median and 

central vertex of a  single valued neutrosophic graph. We 

present the concept of self-centered  single valued 

neutrosophic graph. We investigated some properties of self-

centered single valued neutrosophic graphs. 
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INTRODUCTION 

Fuzzy set [19] theory plays a vital role in complex phenomena 

which is not effortlessly described by classical set theory. 

Atanassov introduced the concept of intuitionistic fuzzy 

relations and intuitionistic fuzzy graphs(IFGs). Parvathi and 

Karunambigai[13] introduced the concept of IFG elaborately 

and analyzed its components. Authors of [9] introduced the 

concept of self-centered IFG. Smarandache[6]-[7] introduced 

the idea of neutrosophic sets by combining the non-standard 

analysis. Neutrosophic set is a mathematical tool for dealing 

real life problems having imprecise, indeterminacy and 

inconsistent data. Neutrosophic set theory, as a generalization 

of classical set theory, fuzzy set theory and intuitionistic fuzzy 

set theory, is applied in a variety of fields, including control 

theory, decision making problems, topology, medicines and in 

many more real life problems. Wang et al.[16] presented the 

notion of single-valued neutrosophic sets to apply 

neutrosophic sets in real life problems more conveniently. A 

single-valued neutrosophic set has three components: truth 

membership degree, indeterminacy membership degree and 

falsity membership degree. These three components of a 

single-valued neutrosophic set are not dependent and their 

values are contained in the standard unit interval [0, 1]. 

Single-valued neutrosophic sets are the generalization of 

intuitionistic fuzzy sets. Single-valued neutrosophic sets have 

been a new hot research topic and many researchers have 

addressed this issue. Akram et al.[1-4] has discussed several 

concepts related to single-valued neutrosophic graphs. 

Majumdar and Samanta [10] studied similarity and entropy of 

single-valued neutrosophic sets. Ye[18] proposed correlation 

coefficients of single-valued neutrosophic sets, and applied it 

to single-valued neutrosophic decision making problems. 

In this paper, we introduce the concepts of length, distance, 

radius, eccentricity, diameter, status, total status, median and 

central vertex of a single valued neutrosophic graph. We 

present the concept of self-centered single valued 

neutrosophic graph. We also discuss some interesting 

properties besides giving some examples. 

Definition 1.1 [17] Let X be a space of points. A neutrosophic 

set A in X is characterized by a truth-membership function 

𝑇 𝐴(𝑥) , an indeterminacy membership function 𝐼 𝐴(𝑥)  and a 

falsity membership function 𝐹 𝐴(𝑥) . The functions 

𝑇 𝐴(𝑥), 𝐼 𝐴(𝑥) and 𝐹 𝐴(𝑥)  are real standard or non standard 

subsets of ]0−, 1+[. That is, 𝑇 𝐴
(𝑥): 𝑋 →]0−, 1+[, 𝐼 𝐴

(𝑥): 𝑋 →

]0−, 1+[ , 𝐹 𝐴(𝑥): 𝑋 →]0−, 1+[  and 0− ≤ 𝑇 𝐴(𝑥) + 𝐼 𝐴(𝑥) +

𝐹 𝐴(𝑥) ≤ 3+. 

From philosophical point view, the neutrosophic set takes the 

value from real standard or non standard subsets of ]0−, 1+[. 

In real life applications in scientific and engineering 

problems, it is difficult to use neutrosophic set with value 

from real standard or non standard subset of ]0−, 1+[. 

Definition 1.2  [3, 1] A single valued neutrosophic graph is a 

pair 𝐺 = (𝐴, 𝐵) , where 𝐴: 𝑉 → [0,1]  is single valued 

neutrosophic set in V and 𝐵: 𝑉 × 𝑉 → [0,1] is single valued 
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neutrosophic relation on V such that 𝑇 𝐵(𝑥𝑦) ≤

min{𝑇 𝐴(𝑥), 𝑇 𝐴(𝑦)}, 𝐼 𝐵(𝑥𝑦) ≤ min{𝐼 𝐴(𝑥), 𝐼 𝐴(𝑦)}, 𝐹 𝐵(𝑥𝑦) ≤

max{𝐹 𝐴
(𝑥), 𝐹 𝐴

(𝑦)} for all 𝑥, 𝑦 ∈ 𝑉. A is called single valued 

neutrosophic vertex set of G and B is called single valued 

neutrosophic edge set of G, respectively. We note that B is 

symmetric single valued neutrosophic relation on A. If B is 

not symmetric single valued neutrosophic relation on A, then 

𝐺 = (𝐴, 𝐵)  is called a single valued neutrosophic directed 

graph. 

Definition 1.3 A single valued neutrosophic graph 𝐺 = (𝐴, 𝐵) 

is said to be complete if𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min (𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)) , 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = min (𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)) and  𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max 

(𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)) , ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

 

SELF-CENTERED SINGLE VALUED NEUTROSOPHIC 

GRAPHS 

 

Definition 2.1 Let 𝐺 = (𝐴, 𝐵) be a single valued neutrosophic 

graph. Then the order of G is defined to be 𝑂(𝐺) =

(𝑂𝑇(𝐺), 𝑂𝐼(𝐺), 𝑂𝐹(𝐺)) where𝑂 𝑇(𝐺) = ∑𝑢∈𝑉 𝑇𝐴(𝑢) ,𝑂 𝐼(𝐺) =

∑𝑢∈𝑉 𝐼𝐴(𝑢),𝑂𝐹(𝐺) = ∑𝑢∈𝑉 𝐹𝐴(𝑢).  

Definition 2.2 The size of G is defined to be 𝑆(𝐺) =

(𝑆𝑇(𝐺), 𝑆𝐼(𝐺), 𝑆𝐹(𝐺))  where 𝑆𝑇(𝐺) = ∑𝑢,𝑣∈𝑉 𝑇𝐵(𝑢, 𝑣) , 

𝑆𝐼(𝐺) = ∑𝑢,𝑣∈𝑉 𝐼𝐵(𝑢, 𝑣), 𝑆𝐹(𝐺) = ∑𝑢,𝑣∈𝑉 𝐹𝐵(𝑢, 𝑢).  

Definition 2.3 The neighbourhood of any vertex 𝑣 is defined 

as 𝑁(𝑣) = (𝑁𝑇(𝑣), 𝑁𝐼(𝑣), 𝑁𝐹(𝑣)) where 

𝑁𝑇(𝑣) = {𝑢 ∈ 𝑉: 𝑇𝐵(𝑢, 𝑣) = min{𝑇𝐴(𝑢), 𝑇𝐴(𝑣)}}, 

𝑁𝐼(𝑣) = {𝑢 ∈ 𝑉: 𝐼𝐵(𝑢, 𝑣) = min{𝐼𝐴(𝑢), 𝐼𝐴(𝑣)}}, 

𝑁𝐹(𝑣) = {𝑢 ∈ 𝑉: 𝐹𝐵(𝑢, 𝑣) = max{𝐹𝐴(𝑢), 𝐹𝐴(𝑣)}}  

and 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣} is called closed neighbourhood of v.   

 

Definition 2.4 A path P in a single valued neutrosophic graph 

𝐺 = (𝐴, 𝐵)  is a sequence of distinct vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 

such that either one of the following condition is satisfied   

(i) 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) > 0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) > 0 and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = 0 for some i 

and j. (ii) 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = 0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = 0 and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) > 0 for 

some i and j. 

 

Definition 2.5 Let G be a single valued neutrosophic graph.   

(i) [13] The length of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛+1(𝑛 > 0) in G is 

n. 

(ii) [13] The path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛+1 in G is called a cycle if 

𝑣1 = 𝑣𝑛+1  and 𝑛 ≥ 3 . (iii) An single valued neutrosophic 

graph G is connected if any two vertices are joined by path. 

  

Definition 2.6 The strength of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛 , is 

defined as 𝑆(𝑃) = (𝑆𝑇(𝑃), 𝑆𝐼(𝑃), 𝑆𝐹(𝑃))  where, 𝑆𝑇(𝑃) = 

min(𝑇𝐵(𝑣𝑖 , 𝑣𝑗)),  𝑆𝐼(𝑃) = min(𝐼𝐵(𝑣𝑖 , 𝑣𝑗)) and 𝑆𝐹(𝑃) =

max(𝐹𝐵(𝑣𝑖 , 𝑣𝑗)) for all i and j. 

 

Note 2.1 In other words, the strength of a path is defined to be 

the weight of the weakest edge of the path. i.e the strength of 

a path 𝑆(𝑃). 

 

Definition 2.7  A  single valued neutrosophic graph 𝐺 =

(𝐴, 𝐵) is said to be a  single valued neutrosophic bipartite if 

the vertex set V can be partitioned into two non empty sets 𝑉1 

and 𝑉2  such that (i) 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = 0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = 0  and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = 0 , if 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉1  or 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉2 , (ii) 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) >

0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) > 0 and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) > 0 , if 𝑣𝑖 ∈ 𝑉1  or 𝑣𝑗 ∈ 𝑉2  for 

some i and j (or)  𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = 0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = 0  and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) > 0 , if 𝑣𝑖 ∈ 𝑉1  or 𝑣𝑗 ∈ 𝑉2  for some i and j (or) 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) > 0, 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) > 0 and 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = 0, if 𝑣𝑖 ∈ 𝑉1 or 

𝑣𝑗 ∈ 𝑉2 for some i and j. 

 

Definition 2.8 A single valued neutrosophic bipartite graph 

𝐺 = (𝐴, 𝐵) is said to be complete if 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) =

min(𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)), 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = min(𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)) and 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max(𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)) for all 𝑣𝑖 ∈ 𝑉1 and 𝑣𝑗 ∈ 𝑉2.  

It is denoted by 𝐾𝑣1,𝑉2
. 

 

Definition 2.9 Let single valued neutrosophic graph 𝐻 =

(𝐴′, 𝐵′) is said to be a single valued neutrosophic subgraph of 

a connected single valued neutrosophic graph 𝐺 = (𝐴, 𝐵). If 

𝑇𝐴
′(𝑣𝑖) = 𝑇𝐴(𝑣𝑖) , 𝐼𝐴

′ (𝑣𝑖) = 𝐼𝐴(𝑣𝑖) , 𝐹𝐴
′(𝑣𝑖) = 𝐹𝐴(𝑣𝑖)∀𝑣𝑖 ∈ 𝑉′ 

and 𝑇𝐵
′ (𝑣𝑖 , 𝑣𝑗) = 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) , 𝐼𝐵

′ (𝑣𝑖 , 𝑣𝑗) = 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) , 

𝐹𝐵
′ (𝑣𝑖 , 𝑣𝑗) = 𝐹𝐵(𝑣𝑖 , 𝑣𝑗)∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸′ . 

 

Definition 2.10 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The T-length of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛  in G, 𝑙𝑇(𝑃)  is 

defined as 𝑙𝑇(𝑃) = ∑𝑛−1
𝑖=1 (

1

𝑇𝐵(𝑣𝑖,𝑣𝑖+1)
)  

(ii) The I-length of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛  in G, 𝑙𝐼(𝑃)  is 

defined as 𝑙𝐼(𝑃) = ∑𝑛−1
𝑖=1 (

1

𝐼𝐵(𝑣𝑖,𝑣𝑖+1)
)  

(iii) The F-length of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛  in G, 𝑙𝐹(𝑃)  is 

defined as 𝑙𝐹(𝑃) = ∑𝑛−1
𝑖=1 (

1

𝐹𝐵(𝑣𝑖,𝑣𝑖+1)
)  

The (T,I,F)-length of a path 𝑃: 𝑣1, 𝑣2, . . . , 𝑣𝑛 in G, 𝑙(𝑇,𝐼,𝐹)(𝑃) is 

defined as  𝑙(𝑇,𝐼,𝐹)(𝑃) = (𝑙𝑇(𝑃), 𝑙𝐼(𝑃), 𝑙𝐹(𝑃)). 

 

Definition 2.11 Let 𝐺 = (𝐴, 𝐵) be a connected  single valued 

neutrosophic graph.   

(i) The T-distance 𝛿𝑇(𝑣𝑖 , 𝑣𝑗) is the minimum of the T-length 

of all the paths joining 𝑣𝑖  and 𝑣𝑗  in G, where 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 . i.e 

𝛿𝑇(𝑣𝑖 , 𝑣𝑗) = min{𝑙𝑇(𝑃): P is a path between 𝑣𝑖 and 𝑣𝑗},  
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(ii) The I-distance 𝛿𝐼(𝑣𝑖 , 𝑣𝑗) is the minimum of the I-length of 

all the paths joining 𝑣𝑖  and 𝑣𝑗  in G, where 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 . i.e 

𝛿𝐼(𝑣𝑖 , 𝑣𝑗) = min{𝑙𝐼(𝑃): P is a path between 𝑣𝑖 and 𝑣𝑗},  

(iii) The F-distance 𝛿𝐹(𝑣𝑖 , 𝑣𝑗) is the minimum of the F-length 

of all the paths joining 𝑣𝑖  and 𝑣𝑗  in G, where 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 . i.e 

𝛿𝐹(𝑣𝑖 , 𝑣𝑗) = min{𝑙𝐹(𝑃): P is a path between 𝑣𝑖 and 𝑣𝑗},  

The distance 𝛿(𝑇,𝐼,𝐹)(𝑣𝑖 , 𝑣𝑗)  is defined as 𝛿(𝑇,𝐼,𝐹)(𝑣𝑖 , 𝑣𝑗) =

(𝛿𝑇, 𝛿𝐼 , 𝛿𝐹). 

 

 

Definition 2.12 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) For each 𝑣𝑖 ∈ 𝑉 , the T-eccentricity of 𝑣𝑖 , denoted by 

𝑒𝑇(𝑣𝑖)  and is defined as 𝑒𝑇(𝑣𝑖) = max{𝛿𝑇(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 ∈

𝑉, 𝑣𝑖 ≠ 𝑣𝑗}.  

(ii) For each 𝑣𝑖 ∈ 𝑉, the I-eccentricity of 𝑣𝑖, denoted by 𝑒𝐼(𝑣𝑖) 

and is defined as 𝑒𝐼(𝑣𝑖) = max{𝛿𝐼(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 ∈ 𝑉, 𝑣𝑖 ≠ 𝑣𝑗}.  

(iii) For each 𝑣𝑖 ∈ 𝑉 , the F-eccentricity of 𝑣𝑖 , denoted by 

𝑒𝐹(𝑣𝑖)  and is defined as 𝑒𝐹(𝑣𝑖) = min{𝛿𝐹(𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 ∈

𝑉, 𝑣𝑖 ≠ 𝑣𝑗}.  

For each 𝑣𝑖 ∈ 𝑉, the eccentricity of 𝑣𝑖 denoted by 𝑒(𝑣𝑖) and is 

defined as 𝑒(𝑣𝑖) = (𝑒𝑇(𝑣𝑖), 𝑒𝐼(𝑣𝑖), 𝑒𝐹(𝑣𝑖)).  

 

Definition 2.13 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The T-radius of G is denoted by 𝑟𝑇(𝐺) and is defined as 

𝑟𝑇(𝐺) = min{𝑒𝑇(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

(ii) The I-radius of G is denoted by 𝑟𝐼(𝐺) and is defined as 

𝑟𝐼(𝐺) = min{𝑒𝐼(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

(iii) The F-radius of G is denoted by 𝑟𝐹(𝐺) and is defined as 

𝑟𝐹(𝐺) = min{𝑒𝐹(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

The radius of G is denoted by 𝑟(𝐺) and is defined as 𝑟(𝐺) =

(𝑟𝑇(𝐺), 𝑟𝐼(𝐺), 𝑟𝐹(𝐺)).  

 

Definition 2.14 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The T-diameter of G is denoted by 𝑑𝑖𝑎 𝑇
(𝐺) and is defined 

as 𝑑𝑖𝑎 𝑇
(𝐺) = max{𝑒 𝑇

(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

(ii) The I-diameter of G is denoted by 𝑑𝑖𝑎 𝐼(𝐺) and is defined 

as 𝑑𝑖𝑎 𝐼(𝐺) = max{𝑒 𝐼(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

(iii) The F-diameter of G is denoted by 𝑑𝑖𝑎 𝐹(𝐺)  and is 

defined as 𝑑𝑖𝑎 𝐹(𝐺) = max{𝑒 𝐹(𝑣𝑖): 𝑣𝑖 ∈ 𝑉}.  

The diameter of G is denoted by 𝑑𝑖𝑎(𝐺) and is defined as 

𝑑𝑖𝑎(𝐺) = (𝑑𝑖𝑎 𝑇
(𝐺), 𝑑𝑖𝑎 𝐼

(𝐺), 𝑑𝑖𝑎 𝐹
(𝐺)). 

 

Example 2.1 Consider a single valued neutrosophic graph, 

𝐺 = (𝐴, 𝐵) such that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}   𝐸 = {(𝑣1, 𝑣2), 

(𝑣2, 𝑣3), (𝑣3, 𝑣1), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝑣5, 𝑣2)}. 

 

 
 

 

Then the eccentricity of 𝑣𝑖  are 𝑒(𝑣1) = (13,18,4) , 𝑒(𝑣2) =

(13,13,4) , 𝑒(𝑣3) = (13,14,5) , 𝑒(𝑣4) = (13,13,5) , 𝑒(𝑣5) =

(13,18,5). Radius of G is 𝑟(𝐺) = (13,13,4) and Diameter of 

G is 𝑑(𝐺) = (13,18,5). 

 

Definition 2.15 A vertex 𝑣𝑖 ∈ 𝑉 is called a   

(i) T-central vertex of a connected single valued neutrosophic 

graph G, if 𝑟 𝑇(𝐺) = 𝑒 𝑇(𝑣𝑖).  

(ii) I-central vertex of a connected single valued neutrosophic 

graph G,  if 𝑟 𝐼
(𝐺) = 𝑒 𝐼

(𝑣𝑖).  

(iii) F-central vertex of a connected single valued 

neutrosophic graph G, if 𝑟 𝐹(𝐺) = 𝑒 𝐹(𝑣𝑖).  

(iv) Central vertex of a connected single valued neutrosophic 

graph G, if 𝑟 𝑇(𝐺) = 𝑒 𝑇(𝑣𝑖) , 𝑟 𝐼(𝐺) = 𝑒 𝐼(𝑣𝑖)  and 𝑟 𝐹(𝐺) =

𝑒 𝐹(𝑣𝑖) and the set of all central vertices of a  single valued 

neutrosophic graph is denoted by 𝐶(𝐺).  

 

Definition 2.16  < 𝐶(𝐺) >= 𝐻: (𝐴′, 𝐵′) is a  single valued 

neutrosophic subgraph of 𝐺 = (𝐴, 𝐵) induced by the central 

vertices of G is called the center of G. 

  

Definition 2.17 A connected single valued neutrosophic 

graph G is a   

(i) T- self-centered single valued neutrosophic graph, if every 

vertex of G is a T- central vertex. (i.e) 𝑟 𝑇(𝐺) = 𝑒 𝑇(𝑣𝑖), ∀𝑣𝑖 ∈

𝑉.  

(ii) I- self-centered single valued neutrosophic graph, if every 

vertex of G is a I- central vertex. (i.e) 𝑟 𝐼
(𝐺) = 𝑒 𝐼

(𝑣𝑖), ∀𝑣𝑖 ∈

𝑉.  

(iii) F- self-centered single valued neutrosophic graph, if 

every vertex of G is a F- central vertex. (i.e) 𝑟 𝐹(𝐺) =

𝑒 𝐹
(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉.  

(iv) Single valued neutrosophic self-centered graph, if every 

vertex of G is a central vertex. (i.e) 𝑟 𝑇
(𝐺) = 𝑒 𝑇

(𝑣𝑖), 𝑟 𝐼
(𝐺) =

𝑒 𝐼(𝑣𝑖) and 𝑟 𝐹(𝐺) = 𝑒 𝐹(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉.  
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Example 2.2 Consider a single valued neutrosophic graph, 

𝐺 = (𝐴, 𝐵)  such that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}   𝐸 =

{(𝑣1, 𝑣2), (𝑣2, 𝑣3), 

(𝑣3, 𝑣4), (𝑣4, 𝑣1), (𝑣1, 𝑣3)}. 

 

Path 𝑣1 − 𝑣2 𝑣1 − 𝑣3 𝑣1 − 𝑣4 

Distance 𝛿 (𝑇,𝐼,𝐹)
(𝑣𝑖 , 𝑣𝑗) (5,5,8) (11,11,12) (6,6,4) 

Path 𝑣2 − 𝑣3 𝑣2 − 𝑣4 𝑣3 − 𝑣4 

Distance 𝛿 (𝑇,𝐼,𝐹)
(𝑣𝑖 , 𝑣𝑗) (6,6,4) (11,11,12) (5,5,8) 

 

Path 𝑣1 − 𝑣2 𝑣1 − 𝑣3 𝑣1 − 𝑣4 𝑣1 − 𝑣5 
𝑣2

− 𝑣3 

Distance 

𝛿 (𝑇,𝐼,𝐹)
(𝑣𝑖 , 𝑣𝑗) 

(6,9,4) (6,7,5) (11,12,10) (13,18,9) (8,8,8) 

Path 
𝑣2 − 𝑣4 𝑣2 − 𝑣5 𝑣3 − 𝑣4 𝑣3 − 𝑣5 𝑣4 − 𝑣5 

Distance 

𝛿 (𝑇,𝐼,𝐹)
(𝑣𝑖 , 𝑣𝑗) 

(13,13,10) (7,9,5) (5,5,5) (13,14,10) (8,9,5) 

 

 
 

Then the eccentricity of 𝑣𝑖  are 𝑒(𝑣1) = (11,11,4) , 𝑒(𝑣2) =

(11,11,4), 𝑒(𝑣3) = (11,11,4), 𝑒(𝑣4) = (11,11,4). Radius of 

G is 𝑟(𝐺) = (11,11,4)  and Diameter of G is 𝑑(𝐺) =

(11,11,4). Here 𝑟(𝐺) = 𝑒(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 . Hence G is a self-

centered single valued neutrosophic graph. 

 

Definition 2.18 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The T-status of a node u of G is denoted by 𝑠 𝑇(𝑢) and is 

defined as 𝑠 𝑇
(𝑢) = ∑𝑣∈𝑉 𝛿𝑇(𝑢, 𝑣),  

(ii) The I-status of a node u of G is denoted by 𝑠 𝐼
(𝑢) and is 

defined as 𝑠 𝐼(𝑢) = ∑𝑣∈𝑉 𝛿𝐼(𝑢, 𝑣),  

(iii) The F-status of a node u of G is denoted by 𝑠 𝐹
(𝑢) and is 

defined as 𝑠 𝐹
(𝑢) = ∑𝑣∈𝑉 𝛿𝐹(𝑢, 𝑣),  

(iv) The status of a node u of G is defined as 𝑠(𝑢) =

(𝑠 𝑇(𝑢), 𝑠 𝐼(𝑢), 𝑠 𝐹(𝑢)). 

 

Definition 2.19 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The minimum T-status of G is defined as 𝑚[𝑠𝑇(𝐺)] =

𝑚𝑖𝑛{𝑠𝑇(𝑢): 𝑢 ∈ 𝑉}, 

(ii) The minimum I-status of G is defined as 𝑚[𝑠𝐼(𝐺)] =

𝑚𝑖𝑛{𝑠𝐼(𝑢): 𝑢 ∈ 𝑉}, 

(iii) The minimum F-status of G is defined as 𝑚[𝑠𝐹(𝐺)] =

𝑚𝑖𝑛{𝑠𝐹(𝑢): 𝑢 ∈ 𝑉}. 

(iv) The minimum status of G is denoted by 𝑚[𝑠(𝐺)] and is 

defined as 𝑚[𝑠(𝐺)] = (𝑚[𝑠𝑇(𝐺)], 𝑚[𝑠𝐼(𝐺)], 𝑚[𝑠𝐹(𝐺)]). 

  

Definition 2.20 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph.   

(i) The maximum T-status of G is defined as 𝑀[𝑠𝑇(𝐺)] =

𝑚𝑎𝑥{𝑠𝑇(𝑢): 𝑢 ∈ 𝑉},  

(ii) The maximum I-status of G is defined as 𝑀[𝑠𝐼(𝐺)] =

𝑚𝑎𝑥{𝑠𝐼(𝑢): 𝑢 ∈ 𝑉},  

(iii) The maximum F-status of G is defined as 𝑀[𝑠𝐹(𝐺)] =

𝑚𝑎𝑥{𝑠𝐹(𝑢): 𝑢 ∈ 𝑉}.  

(iv) The maximum status of G is denoted by 𝑀[𝑠(𝐺)] and is 

defined as 𝑀[𝑠(𝐺)] = (𝑀[𝑠𝑇(𝐺)], 𝑀[𝑠𝐼(𝐺)], 𝑀[𝑠𝐹(𝐺)]). 

 

Definition 2.21 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph. 

The total T-status of a node u of G is denoted by 𝑡𝑠 𝑇(𝑢) and 

is defined as 𝑡𝑠 𝑇(𝑢) = ∑𝑢∈𝑉 𝑠 𝑇(𝑢), 

The total I-status of a node u of G is denoted by 𝑡𝑠 𝐼(𝑢) and is 

defined as 𝑡𝑠 𝐼(𝑢) = ∑𝑣∈𝑉 𝑠 𝐼(𝑢), 

The total F-status of a node u of G is denoted by 𝑡𝑠 𝐹(𝑢) and 

is defined as 𝑡𝑠 𝐹(𝑢) = ∑𝑣∈𝑉 𝑠 𝐹(𝑢). 

The total status of G is denoted by 𝑡[𝑠(𝐺)] and is defined as 

𝑡[𝑠(𝐺)] = (𝑡𝑠 𝑇(𝑢), 𝑡𝑠 𝐼(𝑢), 𝑡𝑠 𝐹(𝑢)). 

 

Definition 2.22 Let 𝐺 = (𝐴, 𝐵) be a connected single valued 

neutrosophic graph. The median is defined as 

 𝑀(𝐺) = (𝑀𝑇(𝐺), 𝑀𝐼(𝐺), 𝑀𝐹(𝐺)) , where 𝑀𝑇(𝐺) = {𝑣𝑖 ∈

𝑉: 𝑚𝑖𝑛{𝑠𝑇(𝑣𝑖)}} , 𝑀𝐼(𝐺) = {𝑣𝑖 ∈ 𝑉: 𝑚𝑖𝑛{𝑠𝐼(𝑣𝑖)}} , 𝑀𝐹(𝐺) =

{𝑣𝑖 ∈ 𝑉: 𝑚𝑖𝑛{𝑠𝐹(𝑣𝑖)}}. 

 

Example 2.3 Consider a single valued neutrosophic -graph, 

𝐺 = (𝐴, 𝐵)  such that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} , 𝐸 =

{(𝑣1, 𝑣2), (𝑣2, 𝑣3), 

(𝑣3, 𝑣1), (𝑣3, 𝑣4), (𝑣1, 𝑣4)}. 
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Here, status of the nodes are 𝑠(𝑣1) = (22,19,17), 𝑠(𝑣2) =

(27,28,23), 𝑠(𝑣3) = (26,16,14),  𝑠(𝑣4) = (29,27,20).  The 

minimum status of G is 𝑚[𝑠(𝐺)] = (22,16,14) . The 

maximum status of G is 𝑀[𝑠(𝐺)] = (29,28,23) . The total 

status of G is 𝑡[𝑠(𝐺)] = (104,90,74).  

The median is 𝑀(𝐺) = ({𝑣1}, {𝑣3}, {𝑣3}).  

 

Definition 2.23 A connected single valued neutrosophic 

graph 𝐺 = (𝐴, 𝐵) is a self-median if all the nodes have the 

same status. In other words, a connected single valued 

neutrosophic graph 𝐺 = (𝐴, 𝐵) is self-median if and only if 

𝑚[𝑠(𝐺)] = 𝑀[𝑠(𝐺)]. 

 

Example 2.4  Consider a  single valued neutrosophic graph, 

𝐺 = (𝐴, 𝐵)  such that 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} , 𝐸 =

{(𝑣1, 𝑣2), (𝑣2, 𝑣3), 

(𝑣3, 𝑣4), (𝑣4, 𝑣1), (𝑣1, 𝑣3), (𝑣2, 𝑣4)}. 

Here, status of the nodes are 𝑠(𝑣1) = (20,23,15), 𝑠(𝑣2) =

(20,23,15), 𝑠(𝑣3) = (20,23,15),  𝑠(𝑣4) = (20,23,15) . The 

minimum status of G is 𝑚[𝑠(𝐺)] = (20,23,15) . The 

maximum status of G is 𝑀[𝑠(𝐺)] = (20,23,15) . The total 

status of G is 𝑡[𝑠(𝐺)] = (80,92,60). 

 

 
 

 

The median is 𝑀(𝐺) = {{𝑣1, 𝑣2, 𝑣3, 𝑣4}, {𝑣1, 𝑣2, 𝑣3, 𝑣4}, 

{𝑣1, 𝑣2, 𝑣3, 𝑣4}}.  Hence 𝐺 = (𝐴, 𝐵)  is called the self-median 

graph. 

Theorem 2.1 If 𝐺 = (𝐴, 𝐵)  is a bipartite  single valued 

neutrosophic graph then it has no strong  single valued 

neutrosophic cycle of odd length.  

Proof. Let G be a bipartite single valued neutrosophic graph 

with bipartition 𝑉1 and 𝑉2. Suppose that it contains a strong 

cycle of odd length, say 𝑣1, 𝑣2, . . . , 𝑣𝑛 , 𝑣1  for some odd 

n(vertices). Without loss of generality, let 𝑣1 ∈ 𝑉1 . Since 

(𝑣𝑖 , 𝑣𝑖+1)  is strong single valued neutrosophic for 𝑖 =

1,2, . . . , 𝑛 − 1 and the nodes are alternatively in 𝑉1 and 𝑉2, we 

have 𝑣𝑛 and 𝑣1 ∈ 𝑉1. But this implies that (𝑣𝑛 , 𝑣1) is an edge 

in 𝑉1  which contradicts the assumption that G is a bipartite 

single valued neutrosophic graph. Hence bipartite single 

valued neutrosophic graph has no single valued neutrosophic 

strong cycle of odd length. 

 

Theorem 2.2 Every complete single valued neutrosophic 

graph G is a self-centered single valued neutrosophic graph 

and 𝑟(𝐺) = (
1

𝑇 𝐴
(𝑥)

,
1

𝐼 𝐴
(𝑥)

,
1

𝐹 𝐴
(𝑥)

)  where 𝑇 𝐴(𝑥)  and 𝐼 𝐴(𝑥)  are 

the least value and 𝐹 𝐴(𝑥) is greatest value.  

Proof. Let G be a complete single valued neutrosophic graph 

G. To prove that G is a self-centered single valued 

neutrosophic graph. That is we have to show that every vertex 

is a central vertex. First we claim that G is a T- self-centered 

single valued neutrosophic graph and 𝑟 𝑇(𝐺) =
1

𝑇 𝐴
(𝑣𝑖)

, where 

𝑇 𝐴(𝑣𝑖) is the least. Now fix a vertex 𝑣𝑖 ∈ 𝑉 such that 𝑇 𝐴(𝑣𝑖) 

is least vertex membership value of G. 

(1) Consider all the 𝑣𝑖 − 𝑣𝑗  paths P of length n in G, ∀𝑣𝑖 ∈ 𝑉.  

Case (i) : If 𝑛 = 1 , then 𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) = min(𝑇 𝐴(𝑣𝑖 , 𝑣𝑗)) =

𝑇 𝐴(𝑣𝑖). Therefore, the T-length of 𝑃 = 𝑙 𝑇(𝑃) =
1

𝑇 𝐴
(𝑣𝑖)

. 

Case (ii) : If 𝑛 > 1, then one of the edges of P possesses the 

T-strength 𝑇 𝐴
(𝑣𝑖) and hence, T-length of a 𝑣𝑖 − 𝑣𝑗  path will 

exceed 
1

𝑇 𝐴
(𝑣𝑖)

. That is T-length of P = 𝑙 𝑇
(𝑃) >

1

𝑇 𝐴
(𝑣𝑖)

. Hence  

𝛿 𝑇
(𝑣𝑖 , 𝑣𝑗) = min(𝑙 𝑇

(𝑃)) =
1

𝑇 𝐴
(𝑣𝑖)

, ∀𝑣𝑗 ∈ 𝑉. (1) 

(2) Let 𝑣𝑘 ≠ 𝑣𝑖   𝑖𝑛  𝑉. Consider all 𝑣𝑘 − 𝑣𝑗 paths Q of length 

n in G, ∀𝑣𝑗 ∈ 𝑉. 

Case (i) : If 𝑛 = 1 , then 𝑇 𝐵
(𝑣𝑘 , 𝑣𝑗) = min(𝑇 𝐴

(𝑣𝑘 , 𝑣𝑗)) ≥

𝑇 𝐴(𝑣𝑖) ,  since 𝑇 𝐴(𝑣𝑖)  is the least. Hence T-length of 𝑄 =

𝑙 𝑇(𝑄) =
1

𝑇 𝐵
(𝑣𝑘,𝑣𝑗)

≤
1

𝑇 𝐴
(𝑣𝑖)

. 

Case (ii) : If 𝑛 = 2, then 𝑙 𝑇(𝑄) =
1

𝑇 𝐵
(𝑣𝑘,𝑣𝑘+1)

+
1

𝑇 𝐵
(𝑣𝑘+1,𝑣𝑗)

≤

2

𝑇 𝐴
(𝑣𝑖)

, since 𝑇 𝐴
(𝑣𝑖) is the least. 

Case (iii) : If 𝑛 > 2, then 𝑙 𝑇(𝑄) ≤
𝑛

𝑇 𝐴
(𝑣𝑖)

,  since 𝑇 𝐴(𝑣𝑖) is the 

least. Hence  
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𝛿 𝑇
(𝑣𝑘 , 𝑣𝑗) = min(𝑙 𝑇

(𝑄)) ≤
1

𝑇 𝐴
(𝑣𝑖)

, ∀𝑣𝑘 , 𝑣𝑗 ∈ 𝑉. (2) 

From Equations (1) and (2), we have  

𝑒 𝑇
(𝑣𝑖) = max(𝛿 𝑇

(𝑣𝑖 , 𝑣𝑗)) =
1

𝑇 𝐴
(𝑣𝑖)

, ∀𝑣𝑖 ∈ 𝑉. (3) 

Hence G is a T-self-centered  single valued neutrosophic 

graph. 

Now,   𝑟 𝑇
(𝐺) = min(𝑒 𝑇

(𝑣𝑖)) 

                       =
1

𝑇 𝐴
(𝑣𝑖)

,    𝑠𝑖𝑛𝑐𝑒    𝑏𝑦    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    (3) 

              𝑟 𝑇
(𝐺) =

1

𝑇 𝐴(𝑣𝑖)
,    𝑤ℎ𝑒𝑟𝑒    𝑇 𝐴

(𝑣𝑖)    𝑖𝑠    𝑙𝑒𝑎𝑠𝑡. 

Next, we claim that G is a I- self-centered  single valued 

neutrosophic graph and 𝑟 𝐼(𝐺) =
1

𝐼 𝐴
(𝑣𝑖)

, where 𝐼 𝐴(𝑣𝑖)  is the 

least. Now fix a vertex 𝑣𝑖 ∈ 𝑉 such that 𝐼 𝐴(𝑣𝑖) is least vertex 

membership value of G. 

(1) Consider all the 𝑣𝑖 − 𝑣𝑗  paths P of length n in G, ∀𝑣𝑖 ∈ 𝑉. 

Case (i) : If 𝑛 = 1 , then 𝐼 𝐵
(𝑣𝑖 , 𝑣𝑗) = min(𝐼 𝐴

(𝑣𝑖 , 𝑣𝑗)) =

𝐼 𝐴(𝑣𝑖) . Therefore, the I-length of 𝑃 = 𝑙 𝐼(𝑃) =
1

𝐼 𝐴
(𝑣𝑖)

. 

Case (ii) : If 𝑛 > 1, then one of the edges of P possesses the I-

strength 𝐼 𝐴(𝑣𝑖)  and hence, I-length of a 𝑣𝑖 − 𝑣𝑗  path will 

exceed 
1

𝐼 𝐴
(𝑣𝑖)

. That is I-length of P =  𝑙 𝐼(𝑃) >
1

𝐼 𝐴
(𝑣𝑖)

. Hence  

𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) = min(𝑙 𝐼(𝑃)) =
1

𝐼 𝐴
(𝑣𝑖)

, ∀𝑣𝑗 ∈ 𝑉. (4) 

(2) Let 𝑣𝑘 ≠ 𝑣𝑖   𝑖𝑛  𝑉. Consider all 𝑣𝑘 − 𝑣𝑗 paths Q of length 

n in G, ∀𝑣𝑗 ∈ 𝑉. 

Case (i) : If 𝑛 = 1 , then 𝐼 𝐵(𝑣𝑘 , 𝑣𝑗) = min(𝐼 𝐴(𝑣𝑘 , 𝑣𝑗)) ≥

𝐼 𝐴(𝑣𝑖) ,  since 𝐼 𝐴(𝑣𝑖)  is the least. Hence I-length of 𝑄 =

𝑙 𝐼(𝑄) =
1

𝐼 𝐵
(𝑣𝑘,𝑣𝑗)

≤
1

𝐼 𝐴
(𝑣𝑖)

. 

Case (ii): If 𝑛 = 2 , then 𝑙 𝐼(𝑄) =
1

𝐼 𝐵
(𝑣𝑘,𝑣𝑘+1)

+
1

𝐼 𝐵
(𝑣𝑘+1,𝑣𝑗)

≤

2

𝐼 𝐴
(𝑣𝑖)

,  since 𝐼 𝐴
(𝑣𝑖) is the least. 

Case (iii): If 𝑛 > 2, then 𝑙 𝐼(𝑄) ≤
𝑛

𝐼 𝐴
(𝑣𝑖)

,  since 𝐼 𝐴(𝑣𝑖) is the 

least. Hence  

𝛿 𝐼(𝑣𝑘 , 𝑣𝑗) = min(𝑙 𝐼(𝑄)) ≤
1

𝐼 𝐴
(𝑣𝑖)

, ∀𝑣𝑘 , 𝑣𝑗 ∈ 𝑉. (5) 

From Equations (4) and (5), we have  

𝑒 𝐼
(𝑣𝑖) = max(𝛿 𝐼

(𝑣𝑖 , 𝑣𝑗)) =
1

𝐼 𝐴
(𝑣𝑖)

, ∀𝑣𝑖 ∈ 𝑉. (6) 

Hence G is a I-self-centered  single valued neutrosophic 

graph. 

Now,   𝑟 𝐼(𝐺) = min(𝑒 𝐼(𝑣𝑖)) 

                      =
1

𝐼 𝐴
(𝑣𝑖)

,    𝑠𝑖𝑛𝑐𝑒    𝑏𝑦    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    (6) 

            𝑟 𝐼(𝐺) =
1

𝐼 𝐴
(𝑣𝑖)

,    𝑤ℎ𝑒𝑟𝑒    𝐼 𝐴(𝑣𝑖)    𝑖𝑠    𝑙𝑒𝑎𝑠𝑡. 

Next, we claim that G is a F - self-centered single valued 

neutrosophic graph and 𝑟 𝐹(𝐺) =
1

𝐹 𝐴
(𝑣𝑖)

, where 𝐹 𝐴(𝑣𝑖) is the 

greatest. Now fix a vertex 𝑣𝑖 ∈ 𝑉 such that 𝐹 𝐴(𝑣𝑖) is greatest 

vertex membership value of G. 

(1) Consider all the 𝑣𝑖 − 𝑣𝑗  paths P of length n in G, ∀𝑣𝑖 ∈ 𝑉. 

Case (i): If 𝑛 = 1 , then 𝐹 𝐵
(𝑣𝑖 , 𝑣𝑗) = max(𝐹 𝐴

(𝑣𝑖 , 𝑣𝑗)) =

𝐹 𝐴(𝑣𝑖). Therefore, the F - length of 𝑃 = 𝑙 𝐹(𝑃) =
1

𝐹 𝐴
(𝑣𝑖)

. 

Case (ii): If 𝑛 > 1, then one of the edges of P possesses the F-

strength 𝐼 𝐴(𝑣𝑖)  and hence, F-length of a 𝑣𝑖 − 𝑣𝑗  path will 

exceed 
1

𝐼 𝐴
(𝑣𝑖)

. That is F-length of P= 𝑙 𝐹(𝑃) >
1

𝐹 𝐴
(𝑣𝑖)

. Hence  

𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) = min(𝑙 𝐹(𝑃)) =
1

𝐹 𝐴
(𝑣𝑖)

, ∀𝑣𝑗 ∈ 𝑉. (7) 

(2) Let 𝑣𝑘 ≠ 𝑣𝑖𝑖𝑛𝑉. Consider all 𝑣𝑘 − 𝑣𝑗 paths Q of length n 

in G, ∀𝑣𝑗 ∈ 𝑉. 

Case (i): If 𝑛 = 1 , then 𝐹 𝐵(𝑣𝑘 , 𝑣𝑗) = max(𝐹 𝐴(𝑣𝑘 , 𝑣𝑗)) ≤

𝐹 𝐴(𝑣𝑖),  since 𝐹 𝐴(𝑣𝑖) is the greatest. Hence F-length of 𝑄 =

𝑙 𝐹(𝑄) =
1

𝐹 𝐵
(𝑣𝑘,𝑣𝑗)

≥
1

𝐹 𝐴
(𝑣𝑖)

. 

Case (ii): If 𝑛 = 2 , then 𝑙 𝐹(𝑄) =
1

𝐹 𝐵
(𝑣𝑘,𝑣𝑘+1)

+
1

𝐹 𝐵
(𝑣𝑘+1,𝑣𝑗)

≥

2

𝐹 𝐴
(𝑣𝑖)

, since 𝐹 𝐴
(𝑣𝑖) is the greatest. 

Case (iii): If 𝑛 > 2, then 𝑙 𝐹(𝑄) ≥
𝑛

𝐹 𝐴
(𝑣𝑖)

,  since 𝐹 𝐴(𝑣𝑖) is the 

greatest. Hence  

𝛿 𝐹(𝑣𝑘 , 𝑣𝑗) = min(𝑙 𝐹(𝑄)) ≥
1

𝐹 𝐴
(𝑣𝑖)

, ∀𝑣𝑘 , 𝑣𝑗 ∈ 𝑉. (8) 

From Equations (7) and (8), we have  

𝑒 𝐹(𝑣𝑖) = min(𝛿 𝐹(𝑣𝑖 , 𝑣𝑗)) =
1

𝐹 𝐴
(𝑣𝑖)

, ∀𝑣𝑖 ∈ 𝑉. (9) 

Hence G is a F-self-centered  single valued neutrosophic 

graph. 

Now,  𝑟 𝐹(𝐺) = min(𝑒 𝐹(𝑣𝑖)) 

                      =
1

𝐹 𝐴
(𝑣𝑖)

,    𝑠𝑖𝑛𝑐𝑒    𝑏𝑦    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    (9) 

            𝑟 𝐹
(𝐺) =

1

𝐹 𝐴
(𝑣𝑖)

,    𝑤ℎ𝑒𝑟𝑒    𝐹 𝐴
(𝑣𝑖)    𝑖𝑠    𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡. 

From equations (3),(6), and (9), every vertex of G is a central 

vertex. Hence G is a self-centered  single valued neutrosophic 

graph. 

 

Theorem 2.3  A  single valued neutrosophic graph 𝐺 =

(𝐴, 𝐵) is a self-centered  single valued neutrosophic graph iff 

𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺) , 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝐼(𝐺)  and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) ≥

𝑟 𝐹(𝐺)∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

Proof. ⇒ We assume that G is self-centered  single valued 

neutrosophic graph G. That is 𝑒 𝑇(𝑣𝑖) = 𝑒 𝑇(𝑣𝑗), 𝑒 𝐼(𝑣𝑖) =

𝑒 𝐼
(𝑣𝑗),  𝑒 𝐹

(𝑣𝑖) = 𝑒 𝐹
(𝑣𝑗), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉,  𝑟 𝑇

(𝐺) =

𝑒 𝑇(𝑣𝑖), 𝑟 𝐼(𝐺) = 𝑒 𝐼(𝑣𝑖)  and 𝑟 𝐹(𝐺) = 𝑒 𝐹(𝑣𝑖), ∀𝑣𝑖 ∈ 𝑉 . Now 
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we wish to show that 𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺) 

and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 𝑟 𝐹(𝐺), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 . By the definition of 

eccentricity, we obtain, 𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) ≤ 𝑒 𝑇(𝑣𝑖), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) ≤

𝑒 𝐼(𝑣𝑖)  and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 𝑒 𝐹(𝑣𝑖), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉.  When 𝑒 𝑇(𝑣𝑖) =

𝑒 𝑇
(𝑣𝑗) , 𝑒 𝐼

(𝑣𝑖) = 𝑒 𝐼
(𝑣𝑗) ,𝑒 𝐹

(𝑣𝑖) = 𝑒 𝐹
(𝑣𝑗), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉.  Since 

G is self-centered  single valued neutrosophic graph, the 

above inequality becomes 𝛿 𝑇
(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇

(𝐺), 𝛿 𝐼
(𝑣𝑖 , 𝑣𝑗) ≤

𝑟 𝑇(𝐺) and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 𝑟 𝐹(𝐺).  

 ⇐  Assume that 𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝐼(𝐺)  and 

𝛿 𝐹
(𝑣𝑖 , 𝑣𝑗) ≥ 𝑟 𝐹

(𝐺), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉.  Then we have to prove that 

G is self-centered single valued neutrosophic graph. Suppose 

that G is not self-centered single valued neutrosophic graph. 

Then 𝑟 𝑇(𝐺) = 𝑒 𝑇(𝑣𝑖), 𝑟 𝐼(𝐺) = 𝑒 𝐼(𝑣𝑖)  and 𝑟 𝐹(𝐺) = 𝑒 𝐹(𝑣𝑖) , 

for some𝑣𝑖 ∈ 𝑉. Let us assume that 𝑒 𝑇
(𝑣𝑖), 𝑒 𝐼

(𝑣𝑖) and 𝑒 𝐹
(𝑣𝑖) 

is the least value among all other eccentricity. That is  

 𝑟 𝑇
(𝐺) = 𝑒 𝑇

(𝑣𝑖), 𝑟 𝐼
(𝐺) = 𝑒 𝐼

(𝑣𝑖)  𝑎𝑛𝑑  𝑟 𝐹
(𝐺) = 𝑒 𝐹

(𝑣𝑖)

 (10) 

Where 𝑒 𝑇(𝑣𝑖) < 𝑒 𝑇(𝑣𝑗), 𝑒 𝐼(𝑣𝑖) < 𝑒 𝐼(𝑣𝑗), 𝑒 𝐹(𝑣𝑖) < 𝑒 𝐹(𝑣𝑗), 

for some 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and  

 𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) = 𝑒 𝑇(𝑣𝑗) > 𝑒 𝑇(𝑣𝑖), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) = 𝑒 𝐼(𝑣𝑗) > 𝑒 𝐼(𝑣𝑖)

 (11) 

     𝑎𝑛𝑑    𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) = 𝑒 𝐹(𝑣𝑗) >

𝑒 𝐹(𝑣𝑖),    𝑓𝑜𝑟    𝑠𝑜𝑚𝑒    𝑣𝑖 , 𝑣𝑗 ∈     𝑉. 

Hence from equations (10) and (11), we have 𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) >

𝑟 𝑇(𝐺), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) > 𝑟 𝐼(𝐺)  and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) < 𝑟 𝐹(𝐺),  for 

some 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 , which is a contradiction to the fact that 

𝛿 𝑇(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺), 𝛿 𝐼(𝑣𝑖 , 𝑣𝑗) ≤ 𝑟 𝑇(𝐺)  and 𝛿 𝐹(𝑣𝑖 , 𝑣𝑗) ≥

𝑟 𝐹(𝐺), ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. Hence G is a self-centered single valued 

neutrosophic graph. 

 

Theorem 2.4 Let 𝐺 = (𝐴, 𝐵) be a single valued neutrosophic 

graph. If the graph G is complete bipartite single valued 

neutrosophic graph then the complement of G is self-centered 

single valued neutrosophic graph.   

Proof. A bipartite single valued neutrosophic graph G is said 

to be complete, if 𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) = min (𝑇 𝐴
(𝑣𝑖), 𝑇 𝐴(𝑣𝑗)) , 

𝐼 𝐵(𝑣𝑖 , 𝑣𝑗) = min (𝐼 𝐴
(𝑣𝑖), 𝐼 𝐴(𝑣𝑗)) , 𝐹 𝐵(𝑣𝑖 , 𝑣𝑗) =

max (𝐹 𝐴
(𝑣𝑖), 𝐹 𝐴(𝑣𝑗)), 

∀𝑣𝑖 ∈ 𝑉1, 𝑣𝑗 ∈ 𝑉2 

 and         

𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) = 0,                                                                   (12)  

𝐼 𝐵(𝑣𝑖 , 𝑣𝑗) = 0, 

𝐹 𝐵(𝑣𝑖 , 𝑣𝑗) = 0, ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉1    (𝑜𝑟)    𝑣𝑖 , 𝑣𝑗 ∈ 𝑉2 

 Now, 

𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) = min(𝑇 𝐴(𝑣𝑖), 𝑇 𝐴(𝑣𝑗)) − 𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) (13) 

𝐼 𝐵(𝑣𝑖 , 𝑣𝑗) = min(𝐼 𝐴(𝑣𝑖), 𝐼 𝐴(𝑣𝑗)) − 𝐼 𝐵(𝑣𝑖 , 𝑣𝑗) 

𝐹 𝐵
(𝑣𝑖 , 𝑣𝑗) = max(𝐹 𝐴

(𝑣𝑖), 𝐹 𝐴
(𝑣𝑗)) − 𝐹 𝐵

(𝑣𝑖 , 𝑣𝑗). 

 By using equation (12)  

𝑇 𝐵(𝑣𝑖 , 𝑣𝑗) = min(𝑇 𝐴(𝑣𝑖), 𝑇 𝐴(𝑣𝑗)) (14) 

𝐼 𝐵
(𝑣𝑖 , 𝑣𝑗) = min(𝐼 𝐴

(𝑣𝑖), 𝐼 𝐴
(𝑣𝑗)) (15) 

𝐹 𝐵(𝑣𝑖 , 𝑣𝑗) = max (𝐹 𝐴
(𝑣𝑖), 𝐹 𝐴(𝑣𝑗)),  

∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉1    (𝑜𝑟)    𝑣𝑖 , 𝑣𝑗 ∈ 𝑉2 (16) 

From equations (12), (14), the complement of G has two 

components and each is complete  single valued neutrosophic 

graph, which are self-centered  single valued neutrosophic by 

Theorem 2.2.Hence the proof.   

 

Theorem 2.5  Every self-median SVN-graph is a self-

centered SVN-graph.  

Proof. Let 𝐺 = (𝐴, 𝐵) be a connected self-median SVN-graph 

with 𝑉 = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛}. 

By definition, 

 𝑠𝑇(𝑣1) = 𝑠𝑇(𝑣2) = 𝑠𝑇(𝑣3) =. . . = 𝑠𝑇(𝑣𝑛), 

𝑠𝐼(𝑣1) = 𝑠𝐼(𝑣2) = 𝑠𝐼(𝑣3) =. . . = 𝑠𝐼(𝑣𝑛), 

𝑠𝐹(𝑣1) = 𝑠𝐹(𝑣2) = 𝑠𝐹(𝑣3) =. . . = 𝑠𝐹(𝑣𝑛). 

∑𝑣𝑖∈𝑉

𝑖≠1

𝛿𝑇(𝑣1, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠2

𝛿𝑇(𝑣2, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠3

𝛿𝑇(𝑣3, 𝑣𝑖) =

. . . = ∑𝑣𝑖∈𝑉

𝑖≠𝑛

𝛿𝑇(𝑣𝑛 , 𝑣𝑖), 

∑𝑣𝑖∈𝑉

𝑖≠1

𝛿𝐼(𝑣1, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠2

𝛿𝐼(𝑣2, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠3

𝛿𝐼(𝑣3, 𝑣𝑖) =. . . =

∑𝑣𝑖∈𝑉

𝑖≠𝑛

𝛿𝐼(𝑣𝑛 , 𝑣𝑖), 

∑𝑣𝑖∈𝑉

𝑖≠1

𝛿𝐹(𝑣1, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠2

𝛿𝐹(𝑣2, 𝑣𝑖) = ∑𝑣𝑖∈𝑉

𝑖≠3

𝛿𝐹(𝑣3, 𝑣𝑖) =

. . . = ∑𝑣𝑖∈𝑉

𝑖≠𝑛

𝛿𝐹(𝑣𝑛 , 𝑣𝑖). 

∑𝑣𝑖∈𝑉

𝑖≠1

1

𝑇𝐵(𝑣1,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠2

1

𝑇𝐵(𝑣2,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠3

1

𝑇𝐵(𝑣3,𝑣𝑖)
=. . . =

∑𝑣𝑖∈𝑉

𝑖≠𝑛

1

𝑇𝐵(𝑣𝑛,𝑣𝑖)
, 

∑𝑣𝑖∈𝑉

𝑖≠1

1

𝐼𝐵(𝑣1,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠2

1

𝐼𝐵(𝑣2,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠3

1

𝐼𝐵(𝑣3,𝑣𝑖)
=. . . =

∑𝑣𝑖∈𝑉

𝑖≠𝑛

1

𝐼𝐵(𝑣𝑛,𝑣𝑖)
, 

∑𝑣𝑖∈𝑉

𝑖≠1

1

𝐹𝐵(𝑣1,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠2

1

𝐹𝐵(𝑣2,𝑣𝑖)
= ∑𝑣𝑖∈𝑉

𝑖≠3

1

𝐹𝐵(𝑣3,𝑣𝑖)
=. . . =

∑𝑣𝑖∈𝑉

𝑖≠𝑛

1

𝐹𝐵(𝑣𝑛,𝑣𝑖)
. 

𝑚𝑎𝑥{
1

𝑇𝐵(𝑣1,𝑣𝑖)
} = 𝑚𝑎𝑥{

1

𝑇𝐵(𝑣2,𝑣𝑖)
} = 𝑚𝑎𝑥{

1

𝑇𝐵(𝑣3,𝑣𝑖)
} =. . . =

𝑚𝑎𝑥{
1

𝑇𝐵(𝑣𝑛,𝑣𝑖)
}, 

𝑚𝑎𝑥{
1

𝐼𝐵(𝑣1,𝑣𝑖)
} = 𝑚𝑎𝑥{

1

𝐼𝐵(𝑣2,𝑣𝑖)
} = 𝑚𝑎𝑥{

1

𝐼𝐵(𝑣3,𝑣𝑖)
} =. . . =

𝑚𝑎𝑥{
1

𝐼𝐵(𝑣𝑛,𝑣𝑖)
}, 
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𝑚𝑖𝑛{
1

𝐹𝐵(𝑣1,𝑣𝑖)
} = 𝑚𝑖𝑛{

1

𝐹𝐵(𝑣2,𝑣𝑖)
} = 𝑚𝑖𝑛{

1

𝐹𝐵(𝑣3,𝑣𝑖)
} =. . . =

𝑚𝑖𝑛{
1

𝐹𝐵(𝑣𝑛,𝑣𝑖)
}.  

𝑚𝑎𝑥{𝛿𝑇(𝑣1, 𝑣𝑖)} = 𝑚𝑎𝑥{𝛿𝑇(𝑣2, 𝑣𝑖)} = 𝑚𝑎𝑥{𝛿𝑇(𝑣3, 𝑣𝑖)} =

. . . = 𝑚𝑎𝑥{𝛿𝑇(𝑣𝑛, 𝑣𝑖)}, 

𝑚𝑎𝑥{𝛿𝐼(𝑣1, 𝑣𝑖)} = 𝑚𝑎𝑥{𝛿𝐼(𝑣2, 𝑣𝑖)} = 𝑚𝑎𝑥{𝛿𝐼(𝑣3, 𝑣𝑖)} =

. . . = 𝑚𝑎𝑥{𝛿𝐼(𝑣𝑛 , 𝑣𝑖)}, 

𝑚𝑖𝑛{𝛿𝐹(𝑣1, 𝑣𝑖)} = 𝑚𝑖𝑛{𝛿𝐹(𝑣2, 𝑣𝑖)} = 𝑚𝑖𝑛{𝛿𝐹(𝑣3, 𝑣𝑖)} =

. . . = 𝑚𝑖𝑛{𝛿𝐹(𝑣𝑛 , 𝑣𝑖)}. 

𝑒(𝑣1) = 𝑒(𝑣2) = 𝑒(𝑣3) =. . . = 𝑒(𝑣𝑛). 

Therefore G is self-centered. 

 

CONCLUSION 

In this paper, the concepts of length, distance, eccentricity, 

radius, diameter, status, total status, median and central vertex 

of a single valued neutrosophic graph have been investigated. 

We have presented the concept of self-centered single valued 

neutrosophic graph. Also some interesting properties of self-

centered single valued neutrosophic graphs followed by some 

examples.  
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