
entropy

Article

Robot Evaluation and Selection with Entropy-Based
Combination Weighting and Cloud
TODIM Approach

Jing-Jing Wang 1, Zhong-Hua Miao 2, Feng-Bao Cui 3,4,* and Hu-Chen Liu 1,3

1 School of Management, Shanghai University, Shanghai 200444, China; 081025025@shu.edu.cn (J.-J.W.);
huchenliu@shu.edu.cn (H.-C.L.)

2 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
zhhmiao@shu.edu.cn

3 School of Economics and Management, Tongji University, Shanghai 200092, China
4 Department of Economics & Management, Yibin University, Yibin 644007, China
* Correspondence: cuifengbao73@163.com; Tel.: +86-021-6613-3703

Received: 13 April 2018; Accepted: 7 May 2018; Published: 7 May 2018
����������
�������

Abstract: Nowadays robots have been commonly adopted in various manufacturing industries to
improve product quality and productivity. The selection of the best robot to suit a specific production
setting is a difficult decision making task for manufacturers because of the increase in complexity and
number of robot systems. In this paper, we explore two key issues of robot evaluation and selection:
the representation of decision makers’ diversified assessments and the determination of the ranking
of available robots. Specifically, a decision support model which utilizes cloud model and TODIM
(an acronym in Portuguese of interactive and multiple criteria decision making) method is developed
for the purpose of handling robot selection problems with hesitant linguistic information. Besides,
we use an entropy-based combination weighting technique to estimate the weights of evaluation
criteria. Finally, we illustrate the proposed cloud TODIM approach with a robot selection example
for an automobile manufacturer, and further validate its effectiveness and benefits via a comparative
analysis. The results show that the proposed robot selection model has some unique advantages,
which is more realistic and flexible for robot selection under a complex and uncertain environment.

Keywords: robot selection; cloud model; TODIM method; combination weight; entropy method

1. Introduction

Due to the explosion of information technology and engineering sciences, robots have been
widely utilized in many manufacturing practices. An industry robot is defined as a self-controlled,
reprogrammable, and multi-functional machine made of mechanical, microelectronic, and electrical
components [1–3]. Robots are capable of executing monotonous, complicated, and hazardous tasks
with precision, and thus used by manufacturers in many applications, including assembly, material
handling, spray painting, and packaging [4,5]. Proper evaluation of robots and selecting the most
appropriate one for a particular production environment would be helpful for a company to improve
product quality and build profitability. Because of the increasing complexity of robot systems and
the growing number of options on the market with different capabilities, features, and specifications,
selecting the most suited robotic system for a particular industrial application is not an easy task for
production firms. Therefore, in recent years, the problem of robot selection has attracted extensive
attention from researchers as well as practitioners [6–8].

Normally, robot selection is accomplished by multiple decision makers from different technical
expertise and working backgrounds. In practice, it is hard for decision makers to give their opinions
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about alternatives using numerical values. Instead, they often use linguistic terms to express the
assessments for alternate robots versus different criteria and criteria weights. As a new cognition model,
cloud model was suggested by Li et al. [9] based on probability statistics and fuzzy sets for handle
fuzziness, randomness, and uncertain concepts. The prominent feature of the cloud model is that it
can perfectly deal with the uncertainty of qualitative notions and make the bidirectional conversion
between qualitative concepts and quantitative information more easily [10–12]. Recently, researchers
have applied cloud model theory to address linguistic decision making problems in many areas.
For example, Wu et al. [11] proposed a modified multi-objective optimization by ratio analysis plus the
full multiplicative form (MULTIMOORA) method based on cloud model theory for quality function
deployment analysis. Wang et al. [12] reported an extended QUALIFLEX (qualitative flexible multiple
criteria) method with cloud model theory to assess the performance of suppliers under economic
and environmental criteria. Liu and Wen [13] proposed a cloud model-based robust algorithm for
continuum topology optimization considering uncertainties in load locations. Wu et al. [14] designed
an applicable method using cloud model with 2-order additive fuzzy measures for the selection of
waste-to-energy disposal sites in China. Wang et al. [15] suggested a consensus-based method based on
cloud model for the large group decision making with linguistic information. In addition, Liu et al. [16]
used a grey relational analysis method and cloud model to evaluate failure modes with incomplete
weight information of risk factors. Chang and Wang [17] employed cloud model and decision tree to
assess teacher evaluation in higher education including subjectivity, inaccuracy, and fuzziness.

On the other hand, various factors, such as positioning accuracy, cost, programming flexibility,
load capacity, man-machine interface, and vendor’s service quality, need to be considered in the robot
selection decision making [7,18,19]. Therefore, robot selection is basically a multiple criteria decision
making (MCDM) problem [3,8], and organizations can find utility in MCDM methods that can assist
with evaluating and selecting robots in view of different conflict criteria. The TODIM (an acronym
in Portuguese of interactive and multiple criteria decision making) [20] is an MCDM method on the
basis of prospect theory, which uses prospect formula to determine the supremacy of one alternative
against another and considers experts’ bounded rationality in the decision making processes. Due to
its advantages, the TODIM method has been applied by many researchers in different decision making
solutions. For instance, Zhang and Xu [21] suggested a hesitant vague TODIM approach for the
evaluation of sustainable water management efficiency. Wang et al. [22] developed a likelihood-based
TODIM method based on multi-hesitant fuzzy linguistic sets to select service providers in logistics
outsourcing. Sang and Liu [23] proposed an interval type-2 fuzzy set-based TODIM approach to
address multiple criteria green supplier selection problems. Ji et al. [24] reported a projection-based
TODIM model to deal with personnel selection problems within the multi-valued neutrosophic
environment. In [25], an extended TODIM model was presented for the evaluation of mineral resources
development efficiency with hesitant fuzzy linguistic information. In [26], an intuitionistic linguistic
TODIM method was proposed to deal with the interactive MCDM problems in which criteria weights
are unknown. Besides, Hu et al. [27] addressed the online diagnosis and medical treatment selection
problems by using a TODIM-based three-way decision model, and Wang et al. [28] managed the
non-homogeneous information and experts’ psychological behavior in group emergency decision
making by using a fuzzy TODIM method.

Against the above background, this article aims to develop a cloud model based-TODIM
(cloud TODIM) approach to handle robot selecting problems within an uncertain linguistic context.
The proposed decision making approach brings several contributions to robot evaluation and selection.
First, various linguistic assessments of decision makers on alternative robots are described with the
aid of cloud model theory. Second, a new type of the standard TODIM is developed for determining
the best robot for a given industrial application problem. Third, a combination weighting method is
utilized to indicate criteria weights, which considers both subjective and objective weights in the robot
selection process. In addition, a real example is presented to display the feasibility and effectiveness of
the proposed cloud TODIM method for selecting robots.
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The rest of this article is arranged as below: Section 2 briefly reviews current robot selection
methods in the literature. Section 3 presents the basic concepts and operations regarding cloud model
theory. In Section 4, we give a new robot evaluation and selection framework by combing cloud
model theory with the TODIM method. In Section 5, we exemplify the proposed cloud model-TODIM
methodology by using a practical robot selection case and by comparing with some existing methods.
Finally, the conclusions of this paper and future research suggestions are provided in Section 6.

2. Literature Review

In the past decades, a wide variety of methods and tools have been proposed for supporting
robot selection decision making in different industrial contexts. Generally, the approaches of robot
assessment and selection can be categorized into four categories: MCDM methods, optimization
models, computer aided methods, and other solutions (e.g., statistical and mathematical models) [2,29].
Due to the multi-criteria character of robot selection problems, the MCDM methods have been
recognized as a promising tool which reduces the problem of human’s decision impact on the final
result of selection process. Thus, in the following, we mainly review the MCDM-based models
suggested in previous studies for supporting the robot selection process. For a comprehensive review
of more robot selection methods, one can refer to [29].

Xue et al. [8] developed a linguistic MCDM model, which integrates hesitant linguistic term
sets with an improved QUALIFLEX technique, for robot selection with partial criteria weight
information. Sen et al. [3] presented an extension of the preference ranking organization method
for enrichment evaluation (PROMETHEE) for robot evaluation considering objective and subjective
data simultaneously, and Sen et al. [7] applied the PROMETHEE II method for addressing the robot
selection problem subjected to a set of objective data. An extended VIKOR approach was developed
by Keshavarz Ghorabaee [6] for robot evaluation under the interval type-2 fuzzy environment,
and Kavita [30] suggested an improved VIKOR method for the evaluation of robots in the context
of triangular intuitionistic vague sets. Gitinavard et al. [4] presented an interval hesitant fuzzy
COPRAS (COmplex Proportional ASsessment of alternatives) model and Vahdani et al. [31] offered
an interval-valued fuzzy COPRAS framework for the determination of the most appropriate robot
under uncertainty. Durán and Aguilo [32] developed a fuzzy analytic hierarchy process (AHP)-based
decision support system for selecting machine tools, and Kumru and Kumru [33] used a fuzzy
analytic network process (ANP) model for the selection of 3D coordinate-measuring machines. Besides,
a number of other models have been suggested to help experts in their robot selection decisions, such as
the generalized interval-valued fuzzy TOPSIS [34], the fuzzy hierarchical TOPSIS [5], the weighted
aggregated sum product assessment (WASPAS) [35,36], and the ELECTRE (Elimination and Choice
Expressing the Reality) method [37].

In Koulouriotis and Ketipi [38], a fuzzy digraph methodology was proposed for the comparison
and selection of industrial robots, in which the fuzzy logic was used for managing experts’ assessments
and the digraph and matrix technique was adopted for ranking robots. Gola and Świć [39] proposed a
computer aided machine tool selection tool for focused flexibility manufacturing systems considering
several economical criteria. Rao et al. [1] proposed a MCDM technique to evaluate and rank robots in
an industry application, which utilizes statistical variance and AHP method to compute the objective
and subjective weights of criteria, respectively. Kentli and Kar [40] presented a multi-criteria robot
selection algorithm on the basis of satisfaction function and distance measure, and Kumar and Garg [41]
gave a determining quantitative framework using the distance method to choose the optimal robot.
In addition, multiple MCDM methods have been used for industrial robot selection. For instance,
Parameshwaran et al. [19] proposed a united approach for the assessment of robots from objective
and subjective standards, in which fuzzy AHP was utilized to indicate criteria weights and fuzzy
TOPSIS and fuzzy VIKOR were employed to determine rank orders of alternatives. Chatterjee et al. [2]
utilized the VIKOR and ELECTRE methods for the selection of industrial robots, and Bairagi et al. [42]
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presented a de novo multi-approaches multi-criteria decision making method called Technique of
Precise Order Preference (TPOP) for the performance evaluation of material handling devices.

The literature review above shows that a lot of MCDM methods have been applied for robot
selection decision making. However, the psychological behavior of experts has not been taken into
consideration in the existing models of robot selection, which is of considerable significance since
different experts may have different psychological expectations in the practical situation. On the other
hand, although many uncertainty theories, such as fuzzy sets, intuitionistic vague sets and 2-tuple
linguistic variables, have been utilized by researchers for coping with imprecise and fuzzy decision
makers’ preferences, they cannot describe the fuzziness and randomness of qualitative characteristics
of criteria simultaneously. Therefore, to bridge theses gaps, this paper attempts to developed a novel
behavioral decision making model to address the problem of robot evaluation and selection with
hesitant linguistic information. Furthermore, both subjective and objective criteria weights are taken
into account in determining the ranking orders of alternative robots. Finally, we apply the proposed
cloud TODIM approach to the robot selection case in an auto company to demonstrate its validity
and applicability.

3. Basic Concepts

3.1. Cloud Model Theory

Definition 1 [9,10]. Supposing a qualitative concept T defined on a universe of discourse U, let x(x ∈ U) be a
random instantiation of the concept T and y ∈ [0, 1] be the certainty degree of x belonging to T, which corresponds
to a random number with a stable tendency. Then the distribution of x in the universe U is called a cloud, and the
cloud drop is denoted as (x, y).

Definition 2 [9,10]. The characteristics of a cloud y are depicted by expectation Ex, entropy En, and hyper
entropy He. Here, Ex is the center value of the qualitative concept domain, En measures the randomness
and fuzziness of the qualitative concept, and He reflects the dispersion of the cloud drops and the uncertain
degree of the membership function. Based on the three numerical characteristics, a cloud can be described as
ỹ = (Ex, En, He).

Generally, different kinds of clouds exist in the literature, such as normal cloud, trapezium cloud,
triangular cloud, and half cloud. Among them, the normal cloud based on normal distribution and
Gaussian membership is an important cloud model widely applied by researchers.

Definition 3. Considering any two normal clouds ỹ1 = (Ex1, En1, He1) and ỹ2 = (Ex2, En2, He2) in the
universe U, some basic operations between them are defined as follows [14,43]:

(1) ỹ1 + ỹ2 =
(

Ex1 + Ex2,
√

En2
1 + En2

2,
√

He2
1 + He2

2

)
;

(2) ỹ1 × ỹ2 =

(
Ex1Ex2,

√
(En1Ex2)

2 + (En2Ex1)
2,
√
(He1Ex2)

2 + (He2Ex1)
2
)

;

(3) λỹ1 =
(

λEx1,
√

λEn1,
√

λHe1

)
, λ > 0;

(4) ỹλ
1 =

(
Exλ

1 ,
√

λ(Ex1)
λ−1En1,

√
λ(Ex1)

λ−1He1

)
, λ > 0.

Definition 4. Let ỹi = (Exi, Eni, Hei)(i = 1, 2, . . . , n) be a collection of normal clouds in the universe U,
and w = (w1, w2, . . . , wn)

T be their associated weights with wi ∈ [0, 1] and ∑n
i=1 wi = 1. Then the cloud

weighted averaging (CWA) is defined as [43]:

CWAw(ỹ1, ỹ2, . . . , ỹn) =
n

∑
i=1

wi ỹi =

(
n

∑
i=1

wiExi,

√
n

∑
i=1

wiEn2
i ,

√
n

∑
i=1

wi He2
i

)
. (1)
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Definition 5. Assume that there are two normal clouds ỹ1 = (Ex1, En1, He1) and ỹ2 = (Ex2, En2, He2) in
the universe U, the distance between them is defined as [44]:

d(ỹ1, ỹ2) =

∣∣∣∣(1− (En1)
2+(He1)

2

(En1)
2+(He1)

2+(En2)
2+(He2)

2

)
Ex1−(

1− (En2)
2+(He2)

2

(En1)
2+(He1)

2+(En2)
2+(He2)

2

)
Ex2

∣∣∣∣. (2)

Especially, when En1 = He1 = En2 = He2 = 0, the cloud distance changes to be the distance
between crisp numbers and d(ỹ1, ỹ2) = |Ex1 − Ex2|.

Definition 6. Let ỹi = (Exi, Eni, Hei)(i = 1, 2, . . . , n) be a collection of normal clouds in the universe U,
and ω = (ω1, ω2, . . . , ωn) be an associated weight vector satisfying ωj ∈ [0, 1] and ∑n

j=1 ωj = 1, then the
cloud ordered weighted averaging (COWA) is defined as [43]:

COWAω(ỹ1, ỹ2, . . . , ỹn) =
n
∑

j=1
ωjỹσ(j)

=

(
n
∑

j=1
ωjExσ(j),

√
n
∑

j=1
ωjEn2

σ(j),

√
n
∑

j=1
ωj He2

σ(j)

)
,

(3)

where ỹσ(j) =
(

Exσ(j), Enσ(j), Heσ(j)

)
is the jth largest element of ỹi(i = 1, 2, . . . , n).

Note that many methods have been proposed in the literature to determine the weights of ordered
weighted average (OWA) operator [45], which can also be applied for the COWA operator.

Definition 7 [43]. Let ỹi = (Exi, Eni, Hei)(i = 1, 2, . . . , n) be a collection of normal clouds in the universe U,
and ω = (ω1, ω2, . . . , ωn) be an associated weight vector with ωj ∈ [0, 1], and ∑n

j=1 ωj = 1, then the cloud
hybrid averaging (CHA) operator is defined as:

CHAω,w(ỹ1, ỹ2, . . . , ỹn) =
n
∑

j=1
ωj

.
ỹσ(j)

=

(
n
∑

j=1
ωj

.
Exσ(j),

√
n
∑

j=1
ωj

.
En2

σ(j),

√
n
∑

j=1
ωj

.
He2

σ(j)

)
,

(4)

where
.
ỹσ(j) is the jth largest element of the weighted normal clouds

.
ỹi

( .
ỹi = nwi ỹi, i = 1, 2, . . . , n

)
,

w = (w1, w2, . . . , wn) is the weights of ỹi(i = 1, 2, . . . , n), with wi ∈ [0, 1], ∑n
i=1 wi = 1, and n is the

balancing coefficient. Especially, if ω = (1/n, 1/n, . . . , 1/n), then the CHA operator reduces to the
CWA operator, and if w = (1/n, 1/n, . . . , 1/n), then the CHA operator becomes the COWA operator.

3.2. Conversion between Linguistic Terms and Clouds

The concept of linguistic variables [46] was proposed to deal with situations which are too complex
or too ill-defined to be reasonably represented by quantitative expressions.

Definition 8. Let S =
{

s0, s1, . . . , sg
}

be a finite and totally ordered discrete linguistic term set, where g is an
even number and si denotes a possible value of a linguistic variable, then the linguistic term set has the following
characteristics [12,47]:

(1) Negation operator: Neg (si) = sj such that j = g− i;

(2) The set is ordered: si > sj, if i > j;

(3) Max operator: max (si, sj) = si, if si ≥ sj.
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Definition 9. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set and [Xmin, Xmax] is an effective domain,
then g + 1 basic clouds can be generated corresponding to the linguistic values si(i = 0, 1, . . . , g), which are
denoted as ỹ0 = (Ex0, En0, He0), ỹ1 = (Ex1, En1, He1), . . . , ỹg =

(
Exg, Eng, Heg

)
, respectively.

Let the linguistic term set S = {s0, s1, . . . , s6}, where the valid universe is [Xmin, Xmax].
By applying a golden radio method, seven basic clouds can be produced and their numerical
characteristics are shown below:

Ex3 = (Xmin + Xmax)/2, Ex0 = Xmin, Ex6 = Xmax,
Ex2 = Ex3 − 0.382(Xmax − Xmin)/4, Ex4 = Ex3 + 0.382(Xmax − Xmin)/4,
Ex1 = Ex3 − (Xmax − Xmin)/4, Ex5 = Ex3 + (Xmax − Xmin)/4,
En2 = En4 = 0.382(Xmax − Xmin)/12, En3 = 0.618En2,
En1 = En5 = En2/0.618, En0 = En6 = En1/0.618,
He2 = He4 = He3/0.618, He1 = He5 = He2/0.618, He0 = He6 = He1/0.618,

where He3 can be designated in advance by decision makers.
For example, given the universe [0, 10] and He3 = 0.1, six basic clouds can be computed as below

for the linguistic term set S [44]:

ỹ0 = (0, 0.833, 0.424), ỹ1 = (2.5, 0.515, 0.262), ỹ2 = (4.05, 0.318, 0.162),
ỹ3 = (5, 0.197, 0.100), ỹ4 = (5.96, 0.318, 0.162), ỹ5 = (7.5, 0.515, 0.262), ỹ6 = (10, 0.833, 0.424).

To depict the hesitancy, fuzziness, and uncertainty of decision makers, Meng et al. [48] defined
the linguistic hesitant fuzzy sets (LHFSs) by using linguistic terms and a related membership degree.

Definition 10. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set, a LHFS in S is a set that, when applied to the
linguistic terms of S, returns a subset of S with several values in [0, 1], denoted by LH = {si, lh(si)|si ∈ S},
where lh(si) = {r1, r2, . . . , rmi} is a set with mi values in [0, 1] denoting the possible membership degrees of the
element si ∈ S to the set LH.

Definition 11 [44]. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set and [Xmin, Xmax] is an effective
domain, the corresponding cloud ỹLH = (ExLH , EnLH , HeLH) of the LHFS LH = {si, lh(si)|si ∈ S} can be
computed by

ExLH = 1
|index(LH)|

(
∑

i∈index(LH)

Exi
|lh(si)|

(
∑

r∈lh(si)
r

))
,

EnLH =

√√√√ 1
|index(LH)|

(
∑

i∈index(LH)
(Eni)

2

)
,

HeLH =

√√√√ 1
|index(LH)|

(
∑

i∈index(LH)
(Hei)

2

)
,

(5)

where |lh(si)| is the count of real numbers in lh(si) and |index(LH)| is the cardinality of index(LH)

defined as index(LH) = {i|(si, lh(si)) ∈ LH, lh(si) 6= {0}} with si ∈ S.

4. The Proposed Robot Selection Approach

This section develops a novel decision supporting method by combining cloud model with a
modified TODIM to cope with the robot evaluation and selection problems considering subjective and
objective criteria weights. In a nutshell, the new model comprises three key phases of determining
the ratings for available robots, estimating the weights regarding evaluation criteria, and determining
the ranking for alternative robots. First, the linguistic ratings of decision makers on alternatives are
handled with the cloud model theory. Second, the importance weights of selection criteria are acquired
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by using a combination weighting method. Finally, the ranking orders of alternatives are determined
adopting the procedure of a modified TODIM method. The overall process for using the proposed
three-stage cloud TODIM model is shown in Figure 1, and the corresponding procedural steps are
explained in the following subsections.
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4.1. Determine Robot Assessments

Let us consider a robot selection problem with m possible alternatives (Ai, i = 1, 2, . . . , m)

and n selection criteria
(
Cj, j = 1, 2, . . . , n

)
, in which a collection of l experts or decision makers

(DMk, k = 1, 2, . . . , l) is involved. Let Dk =
[
dk

ij

]
m×n

be the linguistic decision matrix specified by

DMk, where dk
ij denotes the judgement of alternative Ai against Cj assigned by DMk. Because decision

makers from different working backgrounds have dissimilar experience and knowledge, they are
given different weights λk(k = 1, 2, . . . , l with ∑l

k=1 λk = 1) in the robot selection process. Next,
the cloud model is implemented to address the decision makers’ linguistic assessments of robots
against each criterion.

Step 1: Establish the normalized linguistic decision matrix Rk =
(

rk
ij

)
m×n

In the real robot selection problem, different types of criteria often exist, such as cost and benefit.
Therefore, we normalize the linguistic decision matrix Dk =

(
dk

ij

)
m×n

first to obtain the corresponding

matrix Rk =
(

rk
ij

)
m×n

, which can be yielded by

rk
ij =

{
dk

ij, for benefit critera

neg
(

dk
ij

)
, for cos t criteria

. (6)
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Note that if dk
ij is an LHFS dk

ij = {si, lh(si)}, then rk
ij = {neg(si), lh(si)}.

Step 2: Obtain the cloud decision matrix Ỹk
According to the introduced cloud conversion method in Section 3.2, this step is to

convert the linguistic assessments of each normalized linguistic decision matrix Rk into the
corresponding normal clouds for determining the cloud decision matrix Ỹk =

[
ỹk

ij

]
m×n

,

where ỹij =
(

Exk
ij, Enk

ij, Hek
ij

)
for i = 1,2, . . . , m and j = 1, 2, . . . , n.

Step 3: Construct the collective cloud decision matrix Ỹ
Once the decision makers’ cloud assessments are obtained, we can pull all individual cloud

decision matrices Ỹk(k = 1, 2, . . . , l) for the collective cloud decision matrix Ỹ =
[
ỹij

]
m×n

. By using

the CHA operator, the aggregated cloud rating of alternative Ai on criterion Cj, i.e., ỹij, is calculated by

ỹij = CHAω,λ

(
ỹ1

ij, ỹ2
ij, . . . , ỹl

ij

)
=

l

∑
h=1

ωh
.
ỹσ(h), (7)

where
.
ỹ

σ(h)
ij is the hth largest element of the weighted normal clouds

.
ỹ

k
ij

(
.
ỹ

k
ij = lλi ỹk

ij, k = 1, 2, . . . , l
)

and ω = (ω1, ω2, . . . , ωl) is a related COWA weight vector with ωh ∈ [0, 1] and ∑l
h=1 ωh = 1.

It is worth noting that if quantitative criteria existed in the problem of robot selection,
the assessments of each alternative can be normalized, e.g., by using the linear normalization
method [18], and converted into normal clouds. Thus, both qualitative and quantitative criteria
can be handled in the course of robot evaluation and selection.

4.2. Determine Criteria Weights

Different types of weighting methods have been used to define the importance values of criteria
for multi-criteria decision analysis, which can be categorized as subjective, objective, and combination
weighting methods. The subjective weighting techniques, such as AHP [19], step-wise weight
assessment ratio analysis (SWARA) [49,50], pivot pairwise relative criteria importance assessment
(PIPRECIA) [51], factor relationship (FARE) [52], and best-worse method [53], assign the criteria
weights using the subjective preferences or judgments of decision makers. In contrast, the objective
weighting techniques, like entropy method [54], criterion impact loss (CILOS) [55], and integrated
determination of objective criteria weights (IDOCRIW) [56,57], specify the criteria weights through
dispersion analyses of data given in a decision matrix. Nevertheless, both the subjective and objective
weighting techniques have their own advantages and drawbacks. Accordingly, the combination
weighting methods integrating both subjective and objective weights have been increasingly adopted
by researchers for deriving the weights of criteria.

In the sequel, an entropy-based combination weighting method is proposed to determine criteria
weights for the robot selection problem.

Step 4: Determine the subjective criteria weights
Let wk

j be the linguistic weighting of criterion Cj given by decision maker DMk to indicate

its importance in the ranking of robots. The corresponding cloud weights w̃k
j (j = 1, 2, . . . , n) are

aggregated to find the collective cloud weights w̃ =
(
w̃j
)

1×n by using the CHA operator. Then,
the subjective weight of each evaluation criterion is computed by

wS
j =

ŝ
(
w̃j
)

n
∑

j=1
ŝ
(
w̃j
) , (8)

where ŝ
(
w̃j
)

is the estimated value of the cloud weight w̃j.
Step 5: Compute the objective criteria weights
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On the basis of the entropy theory [54], the objective weights of criteria are defined as

wO
j =

1− Ej

n−
n
∑

j=1
Ej

, (9)

where Ej is the entropy of the projected results of the criterion Cj, which can be obtained by

Ej = −
(

1
ln m

) m

∑
i=1

Pij ln Pij, (10)

Pij =
ŝ
(
ỹij
)

m
∑

i=1
ŝ
(
ỹij
) . (11)

Step 6: Compute the combination criteria weights
Based on the obtained subjective and objective weights, the combination weights of the criteria

are computed by Equation (12) i.e.,

wj =

√
wS

j · w
O
j

n
∑

j=1

√
wS

j · w
O
j

. (12)

4.3. Define the Ranking of Robots

The TODIM is an interactive MCDM method based on prospect theory [20,58], which reflects
decision makers’ psychological behavior in the decision making process. It is a practical and consistent
method to better make decisions and has been implemented successfully in many situations [22,25,27].
This subsection extends the TODIM method to cloud environment to help decision makers to rank
alternative robots for the given robot selection problem.

Step 7: Compute the relative weight of Cj with respect to the reference criterion Cr by

wjr =
wj

wr
, j = 1, 2, . . . , n, (13)

where wr = max
1≤j≤n

{
wj
}

and Cr is the criterion associated with wr.

Step 8: Determine the domination degree of Ai over Ap under Cj, i.e.,

ϕj
(

Ai, Ap
)
=



√
d
(
ỹij, ỹpj

)
wjr/

n
∑

j=1
wjr, if ỹij > ỹpj

0, if ỹij = ỹpj

− 1
θ

√
d
(
ỹij, ỹpj

) n
∑

j=1
wjr/wjr, if ỹij < ỹpj

,

i, p = 1, 2, . . . , m, j = 1, 2, . . . , n,

(14)

where θ is the attenuation factor of the losses and d
(
ỹij, ỹpj

)
is the distance between the cloud ratings

ỹij and ỹpj.
Step 9: Obtain the overall domination degree of Ai over Ap by

ϕ
(

Ai, Ap
)
=

n

∑
j=1

ϕj
(

Ai, Ap
)
, i, p = 1, 2, . . . , m. (15)
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Step 10: Acquire the global value of alternative Ai over the other alternatives by using the
following equation:

ξ(Ai) =

δ(Ai)− min
1≤i≤m

{δ(Ai)}

max
1≤i≤m

{δ(Ai)} − min
1≤i≤m

{δ(Ai)}
, i = 1, 2, . . . , m, (16)

where δ(Ai) =
m
∑

p=1
ϕ
(

Ai, Ap
)
. All the alternatives are ranked following the descending order

of their global values ξ(Ai)(i = 1, 2, . . . , m), and the best robot can be derived for the considered
industrial application.

5. Case Study

5.1. Application

This section presents an empirical case adapted from [6] to account for the applicability and
potential of our proposed robot selection approach. An automobile manufacturing company
wants to choose a robot for implementing its manufacturing process. After preliminary selection,
four candidates referred as A1, A2, A3, and A4 are left for further assessment. Besides, seven evaluation
criteria are considered for selecting the most appropriate robot: Inconsistency with infrastructure (C1),
Man-machine interface (C2), Programming flexibility (C3), Vendor’s service contract (C4), Supporting
channel partner’s performance (C5), Compliance (C6), and Stability (C7). All these criteria are benefit
criteria except C1, which is a cost criterion.

An expert group which consists of five decision makers (DM1, DM2, . . . , DM5) is established
for the evaluation and selection of the most suitable robot. The decision makers’ weights are set as
0.20, 0.30, 0.10, 0.25, and 0.15, respectively, due to their differentiated knowledge and backgrounds.
According to the materials and data concerning the considered robots, a seven-point linguistic term set
S is adopted by the experts to evaluate the given robots and the criteria importance weights, i.e.,

S =

{
s0 = Very Low (VL), s1 = Low (L), s2 = MediumLow (ML), s3 = Medium (M),
s4 = Medium High (MH), s5 = High (H), s6 = Very High (VH)

}
.

As a result, the performance ratings of the four alternative robots against each criterion and the
relative prominence of the seven criteria are indicated in Tables 1 and 2, respectively.

By applying the proposed cloud TODIM approach, the above robot selecting problem is solved
and the procedural steps are summarized as follows.

Stage 1. Evaluate the performance of robots
Step 1: Since criterion C1 is cost type, the linguistic ratings of the alternatives about C1 are normalized

and listed in Table 3 and the normalized linguistic decision matrix Rk =
(

rk
ij

)
4×7

(k = 1, 2, . . . , 5) can be

constructed accordingly.
Step 2: By using the cloud conversion method, we can obtain the cloud decision matrixes

Ỹk =
[
ỹk

ij

]
4×7

(k = 1, 2, . . . , 5) as tabulated in Table 4. It is assumed that the valid universe is [0, 10]

and He3 = 0.1 in the computation.
Step 3: With Table 4 and Equation (7), the collective cloud decision matrix Ỹ =

[
ỹij
]

4×7 is
built as shown in Table 5. It may be mentioned here that the COWA weight vector is computed as
ω = (0.112, 0.236, 0.304, 0.236, 0.112) by using the normal distribution-based method [45].

Stage 2. Calculate the criteria weights
Step 4: Based on Table 2 and the CHA operator, the collective cloud weight vector w̃ =

(
w̃j
)

1×7 is
computed as shown in the last row of Table 5. By Equation (8), we can derive the subjective criteria
weights: wS

1 = 0.213, wS
2 = 0.126, wS

3 = 0.139, wS
4 = 0.204, wS

5 = 0.157, wS
6 = 0.160, andwS

7 = 0.154.
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Step 5: According to the entropy method, the values of Pij and Ej are derived by Equations (10)
and (11), which are furnished in Table 6, and the objective criteria weights are determined via Equation
(9) as: wO

1 = 0.435, wO
2 = 0.147, wO

3 = 0.082, wO
4 = 0.083, wO

5 = 0.078, wO
6 = 0.065, wO

7 = 0.109.
Step 6: Using the subjective and objective criteria weights, Equation (12) is used to compute the

combination criteria weights shown as follows:

w1 = 0.299, w2 = 0.133, w3 = 0.104, w4 = 0.128, w5 = 0.109, w6 = 0.100, andw7 = 0.127.

Stage 3. Acquire the ranking orders of alternatives
Step 7: The relative weights of evaluation criteria regarding the reference criterion Cr can be

calculated through Equation (13) as:

w1r = 1.00, w2r = 0.446, w3r = 0.350, w4r = 0.427, w5r = 0.364, w6r = 0.335, w7r = 0.426.

Step 8: Based on Table 5, we use Equation (14) to obtain the dominance degrees between the
alternatives with respect to the seven criteria. Without loss of generality, the attenuation coefficient θ is
set to be 1. The above results are indicated in Table 7.

Steps 9 and 10: The overall dominance degree for each pair of alternatives on all the criteria
is computed by Equation (15), and the global values of the alternative robots are determined using
Equation (16). We summarized the results of these steps in Table 8. It can be observed that alternative
A1 with the top global value is the best robot for the considered case study, and the ranking of the four
robots is A1 � A4 � A3 � A2.
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Table 1. Linguistic evaluations of alternative robots.

Robots Experts
Criteria

C1 C2 C3 C4 C5 C6 C7

A1 DM1 s0 {(s6, 0.6, 0.9)} s3 s4 s4 s6 s6
DM2 {(s0, 0.7)} s6 s4 s4 s5 s5 s5
DM3 s1 s5 s3 s4 s4 {(s5, s6)} s6
DM4 s1 s6 s3 s5 s4 s5 s6
DM5 s1 s5 {(s3, 0.8), (s4, 0.9)} s5 {(s5, 0.6, 0.8)} s6 {(s5, 0.7), (s6, 0.6, 0.9)}

A2 DM1 s6 s1 s2 s3 s5 s4 {(s3, 0.7, 0.9)}
DM2 s6 s2 s1 s2 s5 s3 s2
DM3 {(s5, s6)} {(s1, 0.6, 0.8)} s1 {(s3, 0.6)} s4 s3 s3
DM4 {(s5, 0.5, 0.8)} s2 {(s2, 0.8)} s2 s4 s5 s3
DM5 s5 s2 s2 s3 s5 s4 s2

A3 DM1 s2 s3 s5 s5 s3 {(s4, 0.5, 0.7)} s3
DM2 s1 s2 s4 s4 s2 s3 s2
DM3 s2 {(s3, 0.8)} {(s5, 0.7)} s5 s3 s4 s2
DM4 s2 s3 s5 s5 s2 s3 s3
DM5 {(s0, 0.6, 0.8), (s1, 0.7)} {(s4, 0.3, 0.5, 0.8)} s4 s4 {(s3, 0.7), (s4, 0.6)} s4 s3

A4 DM1 s1 s4 s4 s3 s6 s5 s5
DM2 s0 s5 s5 s2 s6 s5 s6
DM3 s1 s4 {(s4, s5)} {(s2, 0.4), (s3, 0.7), (s4, 0.4)} s6 s4 {(s6, 0.6)}
DM4 s1 s4 s4 s1 s5 s4 s5
DM5 {(s0, 0.7, 0.8)} s5 s5 s2 s5 s5 s5

Table 2. Linguistic evaluations of criteria weights.

Experts
Criteria

C1 C2 C3 C4 C5 C6 C7

DM1 s5 s3 s5 s4 s5 s4 s5
DM2 s6 s3 s4 s6 s4 s5 s4
DM3 s5 s4 s4 s4 s4 s5 s5
DM4 s6 s4 s3 s6 s4 s5 s4
DM5 s6 s3 s3 s6 s5 s4 s4
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Table 3. Normalized linguistic assessments of alternatives for criterion C1.

Experts
Alternatives

A1 A2 A3 A4

DM1 S6 s0 s4 s5
DM2 {(s6, 0.7)} s0 s5 s6
DM3 s5 {(s0, s1)} s4 s5
DM4 s5 {(s1, 0.5, 0.8)} s4 s5
DM5 s5 s1 {(s5, 0.7), (s6, 0.6, 0.8)} {(s6 0.7, 0.8)}

Table 4. Cloud decision matrix Ỹk .

Alternatives Experts
Criteria

C1 C2 C3 C4 C5 C6 C7

A1 DM1 (10, 0.833, 0.424) (7.5, 0.833, 0.424) (5, 0.197, 0.1) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (10, 0.833, 0.424) (10, 0.833, 0.424)
DM2 (7, 0.833, 0.424) (10, 0.833, 0.424) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262)
DM3 (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (5, 0.197, 0.1) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (8.75, 0.693, 0.352) (10, 0.833, 0.424)
DM4 (7.5, 0.515, 0.262) (10, 0.833, 0.424) (5, 0.197, 0.1) (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (7.5, 0.515, 0.262) (10, 0.833, 0.424)
DM5 (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (4.68, 0.265, 0.135) (7.5, 0.515, 0.262) (5.25, 0.515, 0.262) (10, 0.833, 0.424) (6.38, 0.693, 0.352)

A2 DM1 (0, 0.833, 0.424) (2.5, 0.515, 0.262) (4.05, 0.318, 0.162) (5, 0.197, 0.1) (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (4, 0.197, 0.1)
DM2 (0, 0.833, 0.424) (4.05, 0.318, 0.162) (2.5, 0.515, 0.262) (4.05, 0.318, 0.162) (7.5, 0.515, 0.262) (5, 0.197, 0.1) (4.05, 0.318, 0.162)
DM3 (1.25, 0.693, 0.352) (1.75, 0.515, 0.262) (2.5, 0.515, 0.262) (3, 0.197, 0.1) (5.96, 0.318, 0.162) (5, 0.197, 0.1) (5, 0.197, 0.1)
DM4 (1.63, 0.515, 0.262) (4.05, 0.318, 0.162) (3.24, 0.318, 0.162) (4.05, 0.318, 0.162) (5.96, 0.318, 0.162) (7.5, 0.515, 0.262) (5, 0.197, 0.1)
DM5 (2.5, 0.515, 0.262) (4.05, 0.318, 0.162) (4.05, 0.318, 0.162) (5, 0.197, 0.1) (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (4.05, 0.318, 0.162)

A3 DM1 (5.96, 0.318, 0.162) (5, 0.197, 0.1) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (5, 0.197, 0.1) (3.58, 0.318, 0.162) (5, 0.197, 0.1)
DM2 (7.5, 0.515, 0.262) (4.05, 0.318, 0.162) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (4.05, 0.318, 0.162) (5, 0.197, 0.1) (4.05, 0.318, 0.162)
DM3 (5.96, 0.318, 0.162) (4, 0.197, 0.1) (5.25, 0.515, 0.262) (7.5, 0.515, 0.262) (5, 0.197, 0.1) (5.96, 0.318, 0.162) (4.05, 0.318, 0.162)
DM4 (5.96, 0.318, 0.162) (5, 0.197, 0.1) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (4.05, 0.318, 0.162) (5, 0.197, 0.1) (5, 0.197, 0.1)
DM5 (6.13, 0.693, 0.352) (3.18, 0.318, 0.162) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (3.54, 0.265, 0.135) (5.96, 0.318, 0.162) (5, 0.197, 0.1)

A4 DM1 (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (5, 0.197, 0.1) (10, 0.833, 0.424) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262)
DM2 (10, 0.833, 0.424) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (4.05, 0.318, 0.162) (10, 0.833, 0.424) (7.5, 0.515, 0.262) (10, 0.833, 0.424)
DM3 (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (6.73, 0.428, 0.218) (2.5, 0.283, 0.144) (10, 0.833, 0.424) (5.96, 0.318, 0.162) (6, 0.833, 0.424)
DM4 (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (5.96, 0.318, 0.162) (2.5, 0.515, 0.262) (7.5, 0.515, 0.262) (5.96, 0.318, 0.162) (7.5, 0.515, 0.262)
DM5 (7.5, 0.833, 0.424) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (4.05, 0.318, 0.162) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262) (7.5, 0.515, 0.262)
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Table 5. Collective cloud decision matrix Ỹ and Collective cloud weight vector w̃.

Alternatives
Criteria

C1 C2 C3 C4 C5 C6 C7

A1 (8.13, 0.665, 0.339) (8.66, 0.771, 0.392) (5.1, 0.234, 0.119) (6.63, 0.395, 0.201) (6.09, 0.397, 0.202) (8.73, 0.678, 0.345) (8.81, 0.724, 0.368)
A2 (0.86, 0.661, 0.337) (3.49, 0.384, 0.195) (3.41, 0.441, 0.225) (4.45, 0.260, 0.132) (6.96, 0.445, 0.227) (5.97, 0.319, 0.162) (4.35, 0.271, 0.138)
A3 (6.25, 0.442, 0.225) (4.44, 0.271, 0.138) (6.79, 0.431, 0.220) (6.91, 0.431, 0.220) (4.30, 0.271, 0.138) (4.78, 0.253, 0.129) (4.77, 0.256, 0.130)
A4 (7.92, 0.643, 0.327) (6.49, 0.397, 0.202) (6.51, 0.411, 0.209) (3.67, 0.386, 0.197) (8.78, 0.683, 0.348) (7.68, 0.445, 0.226) (7.84, 0.601, 0.306)
w̃ (7.92, 0.643, 0.327) (6.49, 0.397, 0.202) (6.51, 0.411, 0.209) (3.67, 0.386, 0.197) (8.78, 0.683, 0.348) (7.68, 0.445, 0.226) (7.84, 0.601, 0.306)

Table 6. Values of Pij and Ej by the entropy method.

Pij C1 C2 C3 C4 C5 C6 C7

A1 0.350 0.375 0.234 0.305 0.233 0.323 0.342
A2 0.037 0.151 0.155 0.205 0.266 0.220 0.169
A3 0.271 0.192 0.313 0.320 0.164 0.175 0.186
A4 0.341 0.282 0.297 0.170 0.337 0.283 0.303
Ej 0.874 0.957 0.976 0.976 0.977 0.981 0.968
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Table 7. Dominance degrees between alternatives under each criterion.

C1 C2 C3 C4 C5 C6 C7

ϕj(A1, A2) 1.038 0.378 0.581 0.375 −0.184 0.575 0.590
ϕj(A1, A3) 0.741 0.632 −0.501 −0.240 0.331 0.559 0.644
ϕj(A1, A4) 0.227 0.664 −0.486 0.417 −0.504 0.524 0.365
ϕj(A2, A3) −1.100 −0.491 −0.434 −0.426 0.371 0.248 −0.242
ϕj(A2, A4) −1.045 −0.421 −0.446 0.494 −0.496 −0.365 −0.540
ϕj(A3, A4) −0.711 −0.360 0.139 0.364 −0.524 −0.415 −0.600
ϕj(A2, A1) −1.038 −0.378 −0.581 −0.375 0.184 −0.575 −0.590
ϕj(A3, A1) −0.741 −0.632 0.501 0.240 −0.331 −0.559 −0.644
ϕj(A4, A1) −0.227 −0.664 0.486 −0.417 0.504 −0.524 −0.365
ϕj(A3, A2) 1.100 0.491 0.434 0.426 −0.371 −0.248 0.242
ϕj(A4, A2) 1.045 0.421 0.446 −0.494 0.496 0.365 0.540
ϕj(A4, A3) 0.711 0.360 −0.139 −0.364 0.524 0.415 0.600

Table 8. Overall dominance degrees between alternatives and global value of each alternative.

ϕ(A1, A2) ϕ(A1, A3) ϕ(A1, A4) δ(A1) ξ(Ai)
3.353 2.166 1.207 6.727 1.000

ϕ(A2, A1) ϕ(A2, A3) ϕ(A2, A4) δ(A2) ξ(A2)
−3.353 −2.073 −2.820 −8.246 0.000

ϕ(A3, A1) ϕ(A3, A2) ϕ(A3, A4) δ(A3) ξ(A3)
−2.166 2.073 −2.107 −2.200 0.404

ϕ(A4, A1) ϕ(A4, A2) ϕ(A4, A3) δ(A4) ξ(A4)
−1.207 2.820 2.107 3.720 0.799

5.2. Sensitivity Analysis

In order to investigate the influence of the weight values of criteria on the ranking orders of
alternatives, a sensitivity analysis about criteria weights is conducted. Four cases are considered in
the analysis: combination weights (Case 1), subjective weights (Case 2), objective weights (Case 3),
and equal weights (Case 4). Table 9 shows the global values of alternatives with different sets of
criteria weights. From Table 9, it is apparent that the change of weight values leads to the change of
global values of the alternatives. Depending on different weight values of criteria, the ranking orders
of alternatives may be different, and the results may lead to different decisions. So, it is important
to choose an appropriate method for determining criteria weights. The entropy-based combination
weighting method proposed in this paper can generate more reliable weight values of criteria since
both subjective and objective weights are taken into account. In addition, the final ranking of the
alternative robots is A1 � A4 � A3 � A2 in the four cases, which is stable under the changing weight
values of criteria. This shows that the ranking result obtained by the proposed cloud TODIM approach
is reasonable and robust for the given case study.

Table 9. Results of sensitivity analysis.

Alternatives Case 1 Case 2 Case 3 Case 4

A1 1.000 1.000 1.000 1.000
A2 0.000 0.000 0.000 0.000
A3 0.407 0.413 0.402 0.417
A4 0.832 0.837 0.824 0.825

5.3. Comparison Analysis

For illustrating the efficiency of the suggested decision support framework, we compared with
other representative methods for the same robot selection case, which include the interval type-2 fuzzy
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VIKOR (ITF-VIKOR) [6], the interval-valued fuzzy COPRAS (IVF-COPRAS) [31], the interval 2-tuple
linguistic TOPSIS (ITL-TOPSIS) [18], the fuzzy TOPSIS [5], and the ELECTRE [2] methods. The order
results for the given robots with these five approaches are shown in Figure 2.
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From Figure 2, we can see that the sequences of alternatives obtained by the listed methods and
the proposed cloud TODIM model are exactly the same, and the best-suited robot is alternative A1.
This shows the verification and validation of the proposed approach. However, compared with other
robot selection methods, the presented cloud TODIM model has the following merits:

1. The performance ratings of robots are evaluated in linguistic expressions and the hesitancy and
inconsistency in the decision makers’ evaluations on robots can be well represented. This allows
decision makers to define their opinions more realistically and make the robot selection easier
to perform.

2. Based on the cloud model, the new approach can not only reflect average level but also the
vagueness and randomness of the evaluation criteria. Moreover, the aggregation of performance
information utilizing the CHA operator can reflect the importance weights of experts and
simultaneously minimize the effect of biased assessments on the ranking results.

3. We consider both subjective and objective weights of criteria in ranking the alternative robots,
and the combination criteria weights are computed directly without the need to determine the
weight coefficient between subjective and objective weights in advance. This makes the ranking
results more accurate and theoretically reasonable.

4. By applying an extended TODIM method, the presented approach takes the behavioral
characteristics of decision makers (e.g., reference dependence and loss aversion) into
consideration in determining the ranking of robots. Therefore, the robot selection approach
proposed in this paper is more realistic in practical applications.

6. Conclusions

Industrial robots are commonly applied in different advanced manufacturing systems to enhance
efficiency and improve product quality. Choosing the ideal robot for a particular problem has nowadays
become a major concern for manufacturing companies. This work developed an integrated MCDM
approach combing the cloud model and TODIM method for the selection of the optimal industrial robot.
We used an illustrative example for indicating the applicability and suitability of our proposed model.
To validate the results, the ranking results derived with the cloud TODIM approach were compared
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with some existing robot selection methods. The results display that the proposed model is more
powerful in dealing with the uncertainty and imprecision of subjective assessments given by decision
makers. It can generate a rational ranking result for the given robots in a real-life robot selection
problem and accommodate situations in which decision makers show bounded rationality. In addition,
the proposed robot section model sufficiently considers the different importance of evaluation criteria,
which makes the ranking orders more consistent with the actual situation.

For future research, the following directions are recommended. First, the interrelationships among
criteria were ignored in this study. To overcome this deficiency, the proposed approach can be improved
by using the fuzzy cognitive map or decision-making trial and evaluation laboratory (DEMATEL)
method. Second, many computations are involved in the proposed approach and it requires additional
expertise for practitioners in the adopted methods and cloud model theory. Hence, our future research
will develop a specialized software tool for the proposed robot selection approach so that it can be
easily implemented by non-experts. In addition, the proposed cloud TODIM framework for evaluating
and selecting robots is a general method, which is able to be applied to other manufacturing problems
for making a suitable decision, including rapid prototyping process selection, flexible manufacturing
system selection, and advanced manufacturing technology selection.
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52. Ginevičius, R. A new determining method for the criteria weights in multicriteria evaluation. Int. J. Inf. Technol.
Decis. Mak. 2011, 10, 1067–1095. [CrossRef]

53. Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [CrossRef]
54. Shannon, C.E.; Weaver, W. A Mathematical Theory of Communication; The University of Illinois Press: Urbana,

IL, USA, 1947.
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