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Single-valued neutrosophic cubic set is a good tool to solve the vague and uncertain problems because it containsmore information.
The article first gives the correlation coefficient of single-valued neutrosophic cubic sets.Then, a decision method is proposed, and
an application in pattern recognition is considered. Finally, examples are given to explain the feasibility of this method. At the same
time, the comparative analysis shows the superiority of this method.

1. Introduction

In 1965, Zadeh [1] defined the fuzzy sets (FSs). Let 𝑋 = {𝑥1,𝑥2, . . . , 𝑥𝑛} be a universe, a fuzzy set 𝐴 on 𝑋 is described by
membership function 𝜇𝐴(𝑥), which satisfies every element in𝑋 corresponding to a real number in the interval [0, 1], and
the value of 𝜇𝐴(𝑥) at 𝑥 represents grade of membership of𝑥 ∈ 𝐴.Therefore, the nearer the value of 𝜇𝐴(𝑥) to 1, the higher
the grade of membership of 𝑥 ∈ 𝐴. The membership is the
degree to which every element in 𝑋 belongs to 𝐴. Example,
let 𝑋 = {155, 170, 178, 188} denote the height of boys, 𝐴 is
a set of all boys with a high feature, and the membership
degree may be 𝜇𝐴(155) = 0, 𝜇𝐴(170) = 0.5, 𝜇𝐴(178) = 0.9,
and 𝜇𝐴(188) = 1. That is, the decision maker thinks 188 is
absolutely tall, so the membership value is naturally 1, while
the membership value of 170 may be 0.5, indicating that the
probability of 170 belonging to set𝐴maybe 0.5. Subsequently,
some other FSs are proposed [2–7]. In order to contain
more information to describe the fuzziness and uncertainty
of the decision maker, cubic sets (CSs) were proposed by
Jun et al. [8]. After that, some scholars put forward many
other related definitions by using the CSs [9–15]. Since
FSs and IFSs only consider partial information, therefore,
Smarandache [16] introduced neutrosophic sets (NSs), and
their values located in the ]−0, 1+[, the nonstandard interval;
these three values are completely independent. NSs can solve

the problem of uncertainty quite well. Neutrosophic sets are
also widely used in many different fields [17–24]. Wang et
al. [25] introduced the interval neutrosophic sets (INSs).
It is the generalization of FSs, IVFSs, and NSs. Because
the nonstandard interval of NSs cannot be used to solve
many specific events, Smarandache [26] proposed the single-
valued neutrosophic sets (SVNSs), and it is applied to many
fields [27–41]. Later, Ye [42] introduced the single-valued
neutrosophic hesitant fuzzy sets (SVNHFSs); SVNHFSs are
more widely available than other fuzzy sets.

Alia et al. [43] also proposed the concept of neutrosophic
cubic sets (NCSs) and defined some notions. They proposed
the concept of NCSs by extending the concept of CSs to
NSs, and it has been widely used in many fields [44–49].
By investigating some properties of NCSs, Alia et al. [50]
considered distance measures of NCSs. The NCS contains
much more information than the general NSs, so it is
possible to show more practical value and effectiveness in
MADM. At present, there are many researchers on single-
valued neutrosophic cubic sets (SVNCSs), as we know,
the application of its correlation coefficient has not been
studied in SVNCSs environment. However, correlation is an
important index and widely used in many places [51–55].
Since the correlation was used in the fuzzy environment [56–
58], then the correlation coefficient was proposed and studied
in different fuzzy environments [3, 4, 59–65]. Based on its
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importance, this article considers the correlation coefficient
of SVNCSs.

The structure of this article is as follows: Section 2
introduces basic concepts of CSs, NSs, and NCSs. The related
concepts of NCSs are proposed in Section 3. In Section 4, a
decision method is given, and the feasibility and superiority
of the method are illustrated by comparative analysis. In
Section 5, an algorithm in pattern recognition is given, and
the feasibility and superiority of the modified algorithm are
illustrated by comparison and analysis. In Section 6, the
paper ends with a conclusion.

2. Preliminaries

Let us start with some concepts, including fuzzy numbers,
interval valued fuzzy sets (IVFSs), neutrosophic sets (NSs),
interval neutrosophic sets (INSs), single-valued neutrosophic
hesitant fuzzy sets (SVNHFSs), and neutrosophic cubic sets
(NCSs).

Definition 1 (see [66]). Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe;𝐴 is a fuzzy set defined on 𝑋. 𝜇𝐴 is a mapping from 𝑋 to[0, 1]. The element 𝑥𝑖 belongs to the membership function
of𝐴, which is expressed as {𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), . . . , 𝜇𝐴(𝑥𝑛)}. And
the fuzzy number can be described as𝜇𝐴 (𝑋) = 𝜇𝐴 (𝑥1) + 𝜇𝐴 (𝑥2) + ⋅ ⋅ ⋅ + 𝜇𝐴 (𝑥𝑛) , (1)

where + denotes the join symbol and does not represent the
meaning of addition.

Fuzzy numbers also have some other definitions [67],
such as triangular fuzzy numbers, trapezoidal fuzzy numbers,
and ordering fuzzy numbers.

Definition 2 (see [2]). Let𝑋 be a set, then an IVFS𝐴 on X has
the form 𝐴 = {⟨𝑥, [𝐴− (𝑥) , 𝐴+ (𝑥)]⟩ | 𝑥 ∈ 𝑋} , (2)

in which 𝐴−(𝑥) and 𝐴+(𝑥) are the upper and lower limits of
the membership degree 𝑥 ∈ 𝑋 where 0 ≤ 𝐴−(𝑥) +𝐴+(𝑥) ≤ 1,
respectively.

Definition 3 (see [68]). Let𝑋 be a universe. The form of NSs𝜆 is 𝜆 = {⟨𝑥, 𝑇 (𝑥) , 𝐼 (𝑥) , 𝐹 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where 𝑇, 𝐼, 𝐹: X󳨀→ ]−0, 1+[ define the degree of Truth,
Indeterminacy, and Falsehood of 𝑥 ∈ 𝑋 to 𝜆 and

−0 ≤ 𝑇 (𝑥) + 𝐼 (𝑥) + 𝐹 (𝑥) ≤ 3+. (4)

Definition 4 (see [25]). Let 𝑋 be a set. INSs 𝐴 in 𝑋 satisfies𝐴𝑇(𝑥), 𝐴𝐼(𝑥), 𝐴𝐹(𝑥) ⊆ [0, 1].
𝐴 = {⟨𝑥, [𝐴−𝑇 (𝑥) , 𝐴+𝑇 (𝑥)] , [𝐴−𝐼 (𝑥) , 𝐴+𝐼 (𝑥)] ,

[𝐴−𝐹 (𝑥) , 𝐴+𝐹 (𝑥)]⟩ | 𝑥 ∈ 𝑋} . (5)

Definition 5 (see [26]). Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe;
the form of the definition of the SVNSs is𝐴 = {⟨𝑥, 𝑇𝐴 (𝑥) , 𝐼𝐴 (𝑥) , 𝐹𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (6)

where 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 : 𝑋 󳨀→ [0, 1], with 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +𝐹𝐴(𝑥) ≤ 3.
Definition 6 (see [39]). Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a set, then,
SVNHFS𝑁 on 𝑋 is defined as𝑁 = {⟨𝑥𝑖, ℎ𝑁 (𝑥𝑖) , 𝑙𝑁 (𝑥𝑖) , 𝑔𝑁 (𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑋} , (7)

in which ℎ𝑁(𝑥𝑖), 𝑙𝑁(𝑥𝑖), and 𝑔𝑁(𝑥𝑖) are three sets,ℎ𝑁 (𝑥𝑖) = {𝛾𝑁1 (𝑥𝑖) , 𝛾𝑁2 (𝑥𝑖) , . . . , 𝛾𝑁𝑙ℎ (𝑥𝑖)} ,
𝑙𝑁 (𝑥𝑖) = {𝛿𝑁1 (𝑥𝑖) , 𝛿𝑁2 (𝑥𝑖) , . . . , 𝛿𝑁𝑙𝑙 (𝑥𝑖)} ,
𝑔𝑁 (𝑥𝑖) = {𝜂𝑁1 (𝑥𝑖) , 𝜂𝑁2 (𝑥𝑖) , . . . , 𝜂𝑁𝑙𝑔 (𝑥𝑖)} ,

(8)

with 0 ≤ 𝛾, 𝛿, 𝜂 ≤ 1 and 0 ≤ 𝛾+ + 𝛿+ + 𝜂+ ≤ 3, where𝛾 ∈ ℎ𝑁(𝑥𝑖), 𝛿 ∈ 𝑙𝑁(𝑥𝑖), 𝜂 ∈ 𝑔𝑁(𝑥𝑖), and 𝛾+ ∈ ℎ+𝑁(𝑥𝑖) =𝑈𝜂∈𝑔𝑁(𝑥𝑖) max{𝜂} for 𝑥𝑖 ∈ 𝑋. Generally, the 𝑛(𝑥𝑖) = {ℎ𝑁(𝑥𝑖),𝑙𝑁(𝑥𝑖), 𝑔𝑁(𝑥𝑖)} is named a single-valued neutrosophic hesi-
tant fuzzy element (SVNHFE). Denoted by 𝑛 = {ℎ, 𝑙, 𝑔} such
that ℎ = {𝛾𝑁1, 𝛾𝑁2, . . . , 𝛾𝑁𝑙ℎ}, 𝑙 = {𝛿𝑁1, 𝛿𝑁2, . . . , 𝛿𝑁𝑙𝑙}, and 𝑔 ={𝜂𝑁1, 𝜂𝑁2, . . . , 𝜂𝑁𝑙𝑔}, where 𝑙ℎ, 𝑙𝑙, and 𝑙𝑔 are the number of
values in ℎ𝑁(𝑥𝑖), 𝑙𝑁(𝑥𝑖), and 𝑔𝑁(𝑥𝑖), respectively.
Definition 7 (see [43]). Let 𝑋 be a universe; the NCS I is
defined as

I = {⟨𝑥, 𝐴 (𝑥) , 𝜆 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (9)

where 𝐴 is an INS and 𝜆 is a NS. A NCS can be denoted as
I = ⟨𝐴, 𝜆⟩.

Because the HFEs are usually disorder, therefore, for
convenience of calculation we need to arrange all elements
of ℎ(𝑥) in a certain order. And for two HFEs, the numbers of
elements are usually different. Chen et al. [60] have defined𝑙(ℎ(𝑥)) as the number of elements in ℎ(𝑥). For two HFEs ℎ𝐴
and ℎ𝐵, let 𝑙 = max{𝑙ℎ(𝐴), 𝑙ℎ(𝐵)}, where 𝑙ℎ(𝐴) and 𝑙ℎ(𝐵) are the
numbers of values in ℎ𝐴 and ℎ𝐵, respectively. When 𝑙ℎ(𝐴) ̸=𝑙ℎ(𝐵), for convenience of calculation we need to add some
values to make them have common length. And [26, 50] have
given the regulation; they have the same length as the longer
one.

Based on the correlation coefficient of HFSs, Sahin [41]
proposed the correlation coefficient of SVNHFSs.

Definition 8 (see [41]). Let 𝐴 be a SVNHFS on universe 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}; the informational energy of 𝐴 is defined as

𝐸𝑆𝑉𝑁𝐻𝐹𝑆 (𝐴) = 𝑛∑
𝑖=1

( 1𝑘𝑖
𝑘𝑖∑
𝑠=1

𝛾2𝐴𝜎(𝑠) (𝑥𝑖) + 1𝑝𝑖
𝑝𝑖∑
𝑧=1

𝛿2𝐴𝜎(𝑧) (𝑥𝑖)
+ 1𝑙𝑖
𝑙𝑖∑
𝑡=1

𝜂2𝐴𝜎(𝑡) (𝑥𝑖)) .
(10)

Definition 9 (see [41]). Let 𝐴, 𝐵 be two SVNHFSs on 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}; the correlation between 𝐴 and 𝐵 is defined
as

𝐶𝑆𝑉𝑁𝐻𝐹𝑆 (𝐴, 𝐵) = 𝑛∑
𝑖=1

( 1𝑘𝑖
𝑘𝑖∑
𝑠=1

𝛾𝐴𝜎(𝑠) (𝑥𝑖) 𝛾𝐵𝜎(𝑠) (𝑥𝑖)
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+ 1𝑝𝑖
𝑝𝑖∑
𝑧=1

𝛿𝐴𝜎(𝑧) (𝑥𝑖) 𝛿𝐵𝜎(𝑧) (𝑥𝑖)
+ 1𝑙𝑖
𝑙𝑖∑
𝑡=1

𝜂𝐴𝜎(𝑡) (𝑥𝑖) 𝜂𝐵𝜎(𝑡) (𝑥𝑖)) .
(11)

And we have
(1) 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐴) = 𝐸𝑆𝑉𝑁𝐻𝐹𝑆(𝐴).
(2) 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = 𝐶𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐴).

Definition 10 (see [41]). Let 𝐴, 𝐵 be two SVNHFSs on 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}; the correlation coefficient between 𝐴 and 𝐵
is defined as

𝜌𝑆𝑉𝑁𝐻𝐹𝑆 (𝐴, 𝐵) = 𝐶𝑆𝑉𝑁𝐻𝐹𝑆 (𝐴, 𝐵)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆 (𝐴, 𝐴)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆 (𝐵, 𝐵)
= ∑𝑛𝑖=1 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾𝐴𝜎(𝑠) (𝑥𝑖) 𝛾𝐵𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿𝐴𝜎(𝑧) (𝑥𝑖) 𝛿𝐵𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂𝐴𝜎(𝑡) (𝑥𝑖) 𝜂𝐵𝜎(𝑡) (𝑥𝑖) ))√∑𝑛𝑖=1 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾2𝐴𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿2𝐴𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂2𝐴𝜎(𝑡) (𝑥𝑖))√∑𝑛𝑖=1 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾2𝐵𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿2𝐵𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂2𝐵𝜎(𝑡) (𝑥𝑖)) .

(12)

Theorem 11 (see [41]). For two SVNHFSs 𝐴 and 𝐵, (12)
satisfies

(1) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = 𝜌𝑆𝑉𝑁𝐻𝐹𝑆(𝐵, 𝐴);
(2) 0 ≤ 𝜌𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) ≤ 1;
(3) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆(𝐴, 𝐵) = 1, 𝑖𝑓 𝐴 = 𝐵.
Generally, the weights of different elements are different,

and also the results will be different.Therefore, it is important

to take into account the weights of 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛).
So the weighted correlation coefficients of SVNHFSs are
given.

Definition 12 (see [41]). Let 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 be the
weighting vector of 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛) with 𝜔𝑖 ≥ 0 and∑𝑛𝑖=1 𝜔𝑖 = 1; the weighted correlation coefficient is as fol-
lows:

𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤 (𝐴, 𝐵) = 𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤 (𝐴, 𝐵)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤 (𝐴, 𝐴)√𝐶𝑆𝑉𝑁𝐻𝐹𝑆𝑤 (𝐵, 𝐵)
= ∑𝑛𝑖=1 𝜔𝑖 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾𝐴𝜎(𝑠) (𝑥𝑖) 𝛾𝐵𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿𝐴𝜎(𝑧) (𝑥𝑖) 𝛿𝐵𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂𝐴𝜎(𝑡) (𝑥𝑖) 𝜂𝐵𝜎(𝑡) (𝑥𝑖) ))√∑𝑛𝑖=1 𝜔𝑖 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾2𝐴𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿2𝐴𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂2𝐴𝜎(𝑡) (𝑥𝑖)) ⋅ √∑𝑛𝑖=1 𝜔𝑖 ((1/𝑘𝑖)∑𝑘𝑖𝑠=1 𝛾2𝐵𝜎(𝑠) (𝑥𝑖) + (1/𝑝𝑖)∑𝑝𝑖𝑧=1 𝛿2𝐵𝜎(𝑧) (𝑥𝑖) + (1/𝑙𝑖)∑𝑙𝑖𝑡=1 𝜂2𝐵𝜎(𝑡) (𝑥𝑖)) .

(13)

The upper form satisfies
(1) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤(𝐴, 𝐵) = 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤(𝐵,𝐴);
(2) 0 ≤ 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤(𝐴, 𝐵) ≤ 1;
(3) 𝜌𝑆𝑉𝑁𝐻𝐹𝑆𝑤(𝐴, 𝐵) = 1, 𝑖𝑓 𝐴 = 𝐵.

3. Correlation Coefficient of Single-Valued
Neutrosophic Cubic Sets

Mumtaz Ali [50] introduced the NCSs and also gave some
theorems. In this paper, according to the correlation coeffi-
cient mentioned above, we give the correlation coefficient of
SVNCSs.

Definition 13. Let I be SVNCS on 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛},
denoted byI = {⟨𝑥, 𝐴(𝑥), 𝜆(𝑥)⟩ | 𝑥 ∈ 𝑋}, then the informa-
tional energy of I is defined as

𝐸𝑆𝑉𝑁𝐶𝑆 (I) = 𝑛∑
𝑖=1

[13 ((𝑇 (𝑥𝑖))2 + (𝐼 (𝑥𝑖))2
+ (𝐹 (𝑥𝑖))2) + 16 ((𝑇− (𝑥𝑖))2 + (𝐼− (𝑥𝑖))2
+ (𝐹− (𝑥𝑖))2 + (𝑇+ (𝑥𝑖))2 + (𝐼+ (𝑥𝑖))2

+ (𝐹+ (𝑥𝑖))2)] .
(14)

Definition 14. Let I1 and I2 be two SVNCSs on 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}, denoted byI1 = {⟨𝑥, 𝐴1(𝑥), 𝜆1(𝑥)⟩ | 𝑥 ∈ 𝑋}
and I2 = {⟨𝑥, 𝐴2(𝑥), 𝜆2(𝑥)⟩ | 𝑥 ∈ 𝑋}. Then, the correlation
between I1 and I2 is defined as

𝐶𝑆𝑉𝑁𝐶𝑆 (I1,I2) = 𝑛∑
𝑖=1

[13 (𝑇1 (𝑥𝑖) 𝑇2 (𝑥𝑖)
+ 𝐼1 (𝑥𝑖) 𝐼2 (𝑥𝑖) + 𝐹1 (𝑥𝑖) 𝐹2 (𝑥𝑖))
+ 16 (𝑇−1 (𝑥𝑖) 𝑇−2 (𝑥𝑖) + 𝐼−1 (𝑥𝑖) 𝐼−2 (𝑥𝑖)
+ 𝐹−1 (𝑥𝑖) 𝐹−2 (𝑥𝑖) + 𝑇+1 (𝑥𝑖) 𝑇+2 (𝑥𝑖)
+ 𝐼+1 (𝑥𝑖) 𝐼+2 (𝑥𝑖) + 𝐹+1 (𝑥𝑖) 𝐹+2 (𝑥𝑖))]

(15)

Definition 15. Let I1 and I2 be two SVNCSs on 𝑋 ={𝑥1, 𝑥2, . . . , 𝑥𝑛}, then the correlation coefficient between I1
and I2 is defined as
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𝜌𝑆𝑉𝑁𝐶𝑆 (I1,I2) = 𝐶𝑆𝑉𝑁𝐶𝑆 (I1,I2)√𝐶𝑆𝑉𝑁𝐶𝑆 (I1,I1)√𝐶𝑆𝑉𝑁𝐶𝑆 (I2,I2) = 𝑛∑
𝑖=1

(13 (𝑇1 (𝑥𝑖) 𝑇2 (𝑥𝑖) + 𝐼1 (𝑥𝑖) 𝐼2 (𝑥𝑖) + 𝐹1 (𝑥𝑖) 𝐹2 (𝑥𝑖))
+ 16 (𝑇−1 (𝑥𝑖) 𝑇−2 (𝑥𝑖) + 𝐼−1 (𝑥𝑖) 𝐼−2 (𝑥𝑖) + 𝐹−1 (𝑥𝑖) 𝐹−2 (𝑥𝑖) + 𝑇+1 (𝑥𝑖) 𝑇+2 (𝑥𝑖) + 𝐼+1 (𝑥𝑖) 𝐼+2 (𝑥𝑖) + 𝐹+1 (𝑥𝑖) 𝐹+2 (𝑥𝑖)))
⋅ (√ 𝑛∑
𝑖=1

(13 ((𝑇1 (𝑥𝑖))2 + (𝐼1 (𝑥𝑖))2 + (𝐹1 (𝑥𝑖))2) + 16 ((𝑇−1 (𝑥𝑖))2 + (𝐼−1 (𝑥𝑖))2 + (𝐹−1 (𝑥𝑖))2 + (𝑇+1 (𝑥𝑖))2 + (𝐼+1 (𝑥𝑖))2 + (𝐹+1 (𝑥𝑖))2))

⋅ √ 𝑛∑
𝑖=1

(13 ((𝑇2 (𝑥𝑖))2 + (𝐼2 (𝑥𝑖))2 + (𝐹2 (𝑥𝑖))2) + 16 ((𝑇−2 (𝑥𝑖))2 + (𝐼−2 (𝑥𝑖))2 + (𝐹−2 (𝑥𝑖))2 + (𝑇+2 (𝑥𝑖))2 + (𝐼+2 (𝑥𝑖))2 + (𝐹+2 (𝑥𝑖))2)))
−1

.

(16)

Theorem 16. Let I1 andI2 be two SVNCSs; (16) satisfies the
following properties:

(1) 𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) = 𝜌𝑆𝑉𝑁𝐶𝑆(I2,I1);
(2) 0 ≤ 𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) ≤ 1;
(3) 𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) = 1, 𝑖𝑓 I1 = I2.

Proof. (1)The proof of (1) and (3) is obvious, sowe do not give
a detailed proof.

(2) The inequality 0 ≤ 𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) is evident. Then,
we prove 𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) ≤ 1.

With the help of Cauchy-Schwarz inequality, (𝑥1𝑦1 +𝑥2𝑦2 + ⋅ ⋅ ⋅ + 𝑥𝑛𝑦𝑛)2 ≤ (𝑥21 + 𝑥22 + ⋅ ⋅ ⋅ + 𝑥2𝑛)(𝑦21 +𝑦22 + ⋅ ⋅ ⋅ + 𝑦2𝑛), in which (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑅𝑛 and (𝑦1,𝑦2, . . . , 𝑦𝑛) ∈ 𝑅𝑛, the following inequality can be ob-
tained:

𝑛∑
𝑖=1

(13 (𝑇1 (𝑥𝑖) 𝑇2 (𝑥𝑖) + 𝐼1 (𝑥𝑖) 𝐼2 (𝑥𝑖) + 𝐹1 (𝑥𝑖) 𝐹2 (𝑥𝑖))
+ 16 (𝑇−1 (𝑥𝑖) 𝑇−2 (𝑥𝑖) + 𝐼−1 (𝑥𝑖) 𝐼−2 (𝑥𝑖) + 𝐹−1 (𝑥𝑖) 𝐹−2 (𝑥𝑖) + 𝑇+1 (𝑥𝑖) 𝑇+2 (𝑥𝑖) + 𝐼+1 (𝑥𝑖) 𝐼+2 (𝑥𝑖) + 𝐹+1 (𝑥𝑖) 𝐹+2 (𝑥𝑖)))
≤ √ 𝑛∑
𝑖=1

(13 (𝑇1 (𝑥𝑖))2 + (𝐼1 (x𝑖))2 + (𝐹1 (𝑥𝑖))2) + 16 ((𝑇−1 (𝑥𝑖))2 + (𝐼−1 (𝑥𝑖))2 + (𝐹−1 (𝑥𝑖))2 + (𝑇+1 (𝑥𝑖))2 + (𝐼+1 (𝑥𝑖))2 + (𝐹+1 (𝑥𝑖))2)

⋅ √ 𝑛∑
𝑖=1

13 ((𝑇2 (𝑥𝑖))2 + (𝐼2 (𝑥𝑖))2 + (𝐹2 (𝑥𝑖))2) + 16 ((𝑇−2 (𝑥𝑖))2 + (𝐼−2 (𝑥𝑖))2 + (𝐹−2 (𝑥𝑖))2 + (𝑇+2 (𝑥𝑖))2 + (𝐼+2 (𝑥𝑖))2 + (𝐹+2 (𝑥𝑖))2)

(17)

It is obvious that we can see 𝐶𝑆𝑉𝑁𝐶𝑆(I1,I2) ≤√𝐶𝑆𝑉𝑁𝐶𝑆(I1,I1) ⋅ √𝐶𝑆𝑉𝑁𝐶𝑆(I2,I2); we can get 0 ≤𝜌𝑆𝑉𝑁𝐶𝑆(I1,I2) ≤ 1. So, the theorem has proved com-
pletely.

In a general way, when decision makers give different
weight value to each element in the universe, the result
of decision may be different. Therefore, it is particularly

important to consider the weight of element when making
decision. Now, let us give the weighted correlation coefficient
of SVNCSs.

Definition 17. Let 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 be the weight-
ing vector of 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛), where 𝜔𝑖 ≥ 0 and∑𝑛𝑖=1 𝜔𝑖 = 1; the weighted correlation coefficient is defined
as

𝜌𝑆𝑉𝑁𝐶𝑆𝑤 (I1,I2) = 𝐶𝑆𝑉𝑁𝐶𝑆𝑤 (I1,I2)√𝐶𝑆𝑉𝑁𝐶𝑆𝑤 (I1,I1)√𝐶𝑆𝑉𝑁𝐶𝑆𝑤 (I2,I2) = 𝑛∑
𝑖=1

𝜔𝑖 (13 (𝑇1 (𝑥𝑖) 𝑇2 (𝑥𝑖) + 𝐼1 (𝑥𝑖) 𝐼2 (𝑥𝑖) + 𝐹1 (𝑥𝑖) 𝐹2 (𝑥𝑖))
+ 16 (𝑇−1 (𝑥𝑖) 𝑇−2 (𝑥𝑖) + 𝐼−1 (𝑥𝑖) 𝐼−2 (𝑥𝑖) + 𝐹−1 (𝑥𝑖) 𝐹−2 (𝑥𝑖) + 𝑇+1 (𝑥𝑖) 𝑇+2 (𝑥𝑖) + 𝐼+1 (𝑥𝑖) 𝐼+2 (𝑥𝑖) + 𝐹+1 (𝑥𝑖) 𝐹+2 (𝑥𝑖))
⋅ (√ 𝑛∑
𝑖=1

𝜔𝑖 (13 (𝑇1 (𝑥𝑖))2 + (𝐼1 (𝑥𝑖))2 + (𝐹1 (𝑥𝑖))2 ) + 16 ((𝑇−1 (𝑥𝑖))2 + (𝐼−1 (𝑥𝑖))2 + (𝐹−1 (𝑥𝑖))2 + (𝑇+1 (𝑥𝑖))2 + (𝐼+1 (𝑥𝑖))2 + (𝐹+1 (𝑥𝑖))2))

⋅ √ 𝑛∑
𝑖=1

𝜔𝑖 (13 ((𝑇2 (𝑥𝑖))2 + (𝐼2 (𝑥𝑖))2 + (𝐹2 (𝑥𝑖))2) + 16 ((𝑇−2 (𝑥𝑖))2 + (𝐼−2 (𝑥𝑖))2 + (𝐹−2 (𝑥𝑖))2 + (𝑇+2 (𝑥𝑖))2 + (𝐼+2 (𝑥𝑖))2 + (𝐹+2 (𝑥𝑖))2)))
−1

(18)
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Specially, when 𝜔𝑖 = 1/𝑛 (𝑖 = 1, 2, . . . , 𝑛), (18) reduced to
(16), and (18) satisfies the following properties:

(1) 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I1,I2) = 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I2,I1);
(2) 0 ≤ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I1,I2) ≤ 1;
(3) 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I1,I2) = 1, 𝑖𝑓 I1 = I2.

Proof. The proof process of the theorem is identical.

In the next two parts, we give the decision method
and an algorithm via the correlation coefficient of SVNCSs,
respectively. The superiority of the proposed methods is
illustrated through comparative analysis.

4. Decision-Making Method Based on the
Correlation Coefficient of Single-Valued
Neutrosophic Cubic Sets

In this section, weighted correlation coefficient is used to
select the best alternative in MADM with SVNCS environ-
ment.

In MADM problems, let I = {I1,I2, . . . ,I𝑚} be a set
of alternatives; 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) be a set of attributes; 𝜔 =(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 be the weighting vector of 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛)
with 𝜔𝑖 ≥ 0 and ∑𝑛𝑖=1 𝜔𝑖 = 1. I𝑘 (𝑘 = 1, 2, . . . , 𝑚) are
evaluation results.

I𝑘𝑗 = (⟨[𝑇−𝑘𝑗, 𝑇+𝑘𝑗], [𝐼−𝑘𝑗, 𝐼+𝑘𝑗], [𝐹−𝑘𝑗, 𝐹+𝑘𝑗]⟩, ⟨𝑇𝑘𝑗, 𝐼𝑘𝑗, 𝐹𝑘𝑗⟩)(𝑘 =1, 2, . . . , 𝑚; 𝑗 = 1, 2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 𝑛), where 𝑇−𝑘𝑗, 𝐼−𝑘𝑗, 𝐹−𝑘𝑗, 𝑇+𝑘𝑗, 𝐼+𝑘𝑗,𝐹+𝑘𝑗 ⊆ [0, 1] and 𝑇𝑘𝑗, 𝐼𝑘𝑗, 𝐹𝑘𝑗 ∈ [0, 1]. Therefore, 𝐴 = (I𝑘𝑗)𝑚×𝑛
is the decision matrix.

In MADM problems, we can use the ideal alternative
to select the best one in all alternatives. In general, the
ideal scheme does not exist, but it can provide theoretical
support for decision makers. Jun Ye [46] put forward a
method to construct ideal plan, and we can use this idea
to construct a relatively ideal plan. The best alternative
is selected according to the degree of correlation between
known and ideal solution. The selection process is as follows.

Step 1. Construct the neutrosophic cubic decision matrix
based on decision information.

Step 2. Set up an ideal schemeI∗ = {I∗1 ,I∗2 , . . . ,I∗𝑛 }
I
∗
𝑗 = (⟨[max (𝑇−𝑘𝑗) ,max (𝑇+𝑘𝑗)] ,
[min (𝐼−𝑘𝑗) ,min (𝐼+𝑘𝑗)] , [min (𝐹−𝑘𝑗) ,min (𝐹+𝑘𝑗)]⟩ ,
⟨max (𝑇𝑘𝑗) ,min (𝐼𝑘𝑗) ,min (𝐹𝑘𝑗)⟩)

(19)

It represents the benefit attribute

I
∗
𝑗 = (⟨[min (𝑇−𝑘𝑗) ,min (𝑇+𝑘𝑗)] ,
[max (𝐼−𝑘𝑗) ,max (𝐼+𝑘𝑗)] , [max (𝐹−𝑘𝑗) ,max (𝐹+𝑘𝑗)]⟩ ,
⟨min (𝑇𝑘𝑗) ,max (𝐼𝑘𝑗) ,max (𝐹𝑘𝑗)⟩)

(20)

It represents the cost attribute.

Step 3. Calculate weight correlation coefficient between
I𝑘 (𝑘 = 1, 2, . . . , 𝑚) and I∗𝑗 by using (18).

Step 4. Rank all of the weighted correlation coefficient of
SVNCSs and select the best one.

In the following, we give an example from Lu [46] to
illustrate the effectiveness of the method.

Example 18. According to [46], we can get the following data:

I1

= [[[
⟨[0.5, 0.6] , [0.1, 0.3] , [0.2, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩⟨[0.5, 0.6] , [0.1, 0.3] , [0.2, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩⟨[0.6, 0.8] , [0.2, 0.3] , [0.1, 0.2]⟩ , ⟨0.7, 0.2, 0.1⟩

]]]
,

I2

= [[[
⟨[0.6, 0.8] , [0.1, 0.2] , [0.2, 0.3]⟩ , ⟨0.7, 0.1, 0.2⟩⟨[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]⟩ , ⟨0.6, 0.1, 0.2⟩⟨[0.6, 0.7] , [0.3, 0.4] , [0.1, 0.2]⟩ , ⟨0.7, 0.4, 0.1⟩

]]]
,

I3

= [[[
⟨[0.4, 0.6] , [0.2, 0.3] , [0.1, 0.3]⟩ , ⟨0.6, 0.2, 0.2⟩⟨[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]⟩ , ⟨0.6, 0.3, 0.4⟩⟨[0.5, 0.7] , [0.2, 0.3] , [0.3, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩

]]]
,

I4

= [[[
⟨[0.7, 0.8] , [0.1, 0.2] , [0.1, 0.2]⟩ , ⟨0.8, 0.1, 0.2⟩⟨[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]⟩ , ⟨0.7, 0.1, 0.2⟩⟨[0.6, 0.7] , [0.3, 0.4] , [0.2, 0.3]⟩ , ⟨0.7, 0.3, 0.2⟩

]]]
,

(21)

Step 1. According to the aforementioned four alternatives,
construct the neutrosophic cubic decision matrix A:

𝐴 = [[[[[[

𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33𝑎41 𝑎42 𝑎43
]]]]]]
. (22)

where

𝑎11= (⟨[0.5, 0.6] , [0.1, 0.3] , [0.2, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩) ;
𝑎12= (⟨[0.5, 0.6] , [0.1, 0.3] , [0.2, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩) ;
𝑎13= (⟨[0.6, 0.8] , [0.2, 0.3] , [0.1, 0.2]⟩ , ⟨0.7, 0.2, 0.1⟩) ;
𝑎21= (⟨[0.6, 0.8] , [0.1, 0.2] , [0.2, 0.3]⟩ , ⟨0.7, 0.1, 0.2⟩) ;
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Table 1: The valuesI∗ with I𝑖 and ranking orders.

Value Ranking Order The Best Alternative𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I∗,I𝑖) 0.9542,0.9822,0.6291,0.9944 𝜌4 > 𝜌2 > 𝜌1 > 𝜌3 I4𝑆𝜔1(I∗,I𝑖) 0.9564,0.9855,0.9596,0.9945 𝑆4 > 𝑆2 > 𝑆3 > 𝑆1 I4𝑆𝜔2(I∗,I𝑖) 0.9769,0.9944,0.9795,0.9972 𝑆4 > 𝑆2 > 𝑆3 > 𝑆1 I4𝑆𝜔3(I∗,I𝑖) 0.9892,0.9959,0.9897,0.9989 𝑆4 > 𝑆2 > 𝑆3 > 𝑆1 I4

𝑎22= (⟨[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]⟩ , ⟨0.6, 0.1, 0.2⟩) ;
𝑎23= (⟨[0.6, 0.7] , [0.3, 0.4] , [0.1, 0.2]⟩ , ⟨0.7, 0.4, 0.1⟩) ;
𝑎31= (⟨[0.4, 0.6] , [0.2, 0.3] , [0.1, 0.3]⟩ , ⟨0.6, 0.2, 0.2⟩) ;
𝑎32= (⟨[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]⟩ , ⟨0.6, 0.3, 0.4⟩) ;
𝑎33= (⟨[0.5, 0.7] , [0.2, 0.3] , [0.3, 0.4]⟩ , ⟨0.6, 0.2, 0.3⟩) ;
𝑎41= (⟨[0.7, 0.8] , [0.1, 0.2] , [0.1, 0.2]⟩ , ⟨0.8, 0.1, 0.2⟩) ;
𝑎42= (⟨[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]⟩ , ⟨0.7, 0.1, 0.2⟩) ;
𝑎43= (⟨[0.6, 0.7] , [0.3, 0.4] , [0.2, 0.3]⟩ , ⟨0.7, 0.3, 0.2⟩) .

(23)

Step 2. Set up an ideal scheme:

I
∗

= [[[
⟨[0.7, 0.8] , [0.1, 0.2] , [0.1, 0.2]⟩ , ⟨0.8, 0.1, 0.2⟩⟨[0.6, 0.7] , [0.1, 0.2] , [0.1, 0.3]⟩ , ⟨0.7, 0.1, 0.2⟩⟨[0.5, 0.7] , [0.3, 0.4] , [0.3, 0.4]⟩ , ⟨0.6, 0.4, 0.3⟩

]]]
. (24)

Step 3. Calculate weight correlation coefficient:𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I∗,I1) = 0.9542, 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I∗,I2) = 0.9822,𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I∗,I3) = 0.6291, 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I∗,I4) = 0.9944.
Step 4. Rank all of the weighted correlation coefficient of
SVNCSs: 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I4) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I2) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,
I1) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I3) and thus, the alternative I4 was
selected as the best alternative.

Comparative Analysis. From three cosine measures of
SVNCSs from Lu [46] and the correlation coefficient of
SVNCSs, we have the result in Table 1.

From the results of Table 1, we note that the rank𝑆4(I,I4) ≥ 𝑆2(I,I2) ≥ 𝑆3(I,I3) ≥ 𝑆1(I,I1) is changed

1
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Figure 1: Correlation coefficient and cosinemeasures of alternatives
with ideal alternative.

to 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I4) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I2) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I1) ≥𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I3). What is more, comparing the results of Lu
[46], we can see that all the weighted cosine measure values
are quite close; therefore, it is difficult to convince such a
ranking result. And the values vary from 0.9564 to 0.9945
of 𝑆𝜔1, and we note that 𝑆𝜔1(I,I1) with 𝑆𝜔1(I,I3) and𝑆𝜔1(I,I2) with 𝑆𝜔1(I,I4) are very close, which makes it
difficult to make clear judgments about all alternatives in
decision-making. 𝑆𝜔2 varies from 0.9769 to 0.9972;moreover,
the values of 𝑆𝜔2(I,I1) with 𝑆𝜔2(I,I3) and 𝑆𝜔2(I,I2)
with 𝑆𝜔2(I,I4) are basically not any gaps, which can be
seen approximately equal, so that the results of the decision
making may be suspected. And 𝑆𝜔3 varies from 0.9892 to
0.9989, the difference between 𝑆𝜔3(I,I1) with 𝑆𝜔3(I,I3)
is only 0.0005, and the difference between 𝑆𝜔3(I,I2) with𝑆𝜔3(I,I4) is 0.003, so it is difficult to make the most
appropriate decision for decision makers, perhaps this is not
a desirable decision method.

Obviously, these cosine measure values cannot clearly
discriminate the difference of different alternatives. Con-
versely, the result of this paper lies from 0.6291 to 0.9944;
the distinction between different values is relatively large.
Moreover, the minimum cell division in the four numbers is
also 0.0122, which is more convincing than that article [46];
thus, we can easily select the best alternative. Furthermore,
from the table, we can see that several methods are basically
consistent with the evaluation results of the fourth schemes.
But it is difficult to make a relatively clear and reliable
judgment between the alternative 1 and the alternative 3
with the previous cosine measurement method. However,
the method of this paper gives a clear comparison between
them. As shown in Figure 1, we can clearly see the result𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I4) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I2) ≥ 𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I1) ≥𝜌𝑆𝑉𝑁𝐶𝑆𝑤(I,I3).
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Compared with Lu [46] method, we find the method of
this paper more effective and superior.

5. Applications in Pattern
Recognition Problems

In this section, we propose a recognition method based on
the correlation coefficient of SVNCSs, which is derived from
[50]. According to the maximum correlation principle in
mathematical statistics, we assume that if the correlation
coefficient of ideal pattern with sample pattern is greater than
or equal to 0.7, we consider that the sample model belongs to
a group of ideal model. The algorithm is as follows.

Algorithm 19.

Step 1. Construct an ideal SVNCS I∗ on 𝑋.

Step 2. Construct SVNCSs I𝑖, 𝑖 = 1, 2, 3 ⋅ ⋅ ⋅ , 𝑛 as the sample
pattern that is recognized.

Step 3. Calculate the correlation coefficient 𝜌𝑆𝑉𝑁𝐶𝑆𝑠(I∗,I𝑖),𝑖 = 1, 2, . . . , 𝑛.
Step 4. If 𝜌𝑆𝑉𝑁𝐶𝑆𝑠(I∗,I𝑖) ≥ 0.7, the I𝑖 belongs to the ideal
pattern I∗ and if 𝜌𝑆𝑉𝑁𝐶𝑆𝑠(I∗,I𝑖) < 0.7, the I𝑖 does not
belong to the ideal pattern I∗.

In the following, we give two examples to illustrate the
utility of the correlation coefficient of SVNCSs in pattern
recognition.

Example 20. This example is adapted from [50]; three sample
patterns I𝑖 (𝑖 = 1, 2, 3) and the ideal pattern I∗ are given
as
I1

= [[[
⟨[0.2, 0.5] , [0.4, 0.5] , [0.3, 0.5]⟩ , ⟨0.5, 0.6, 0.4⟩⟨[0.7, 0.7] , [0.1, 0.3] , [0.1, 0.3]⟩ , ⟨0.2, 0.2, 0.2⟩⟨[0.6, 0.8] , [0.5, 0.6] , [0.3, 0.4]⟩ , ⟨0.3, 0.1, 0.7⟩

]]]
,

I2

= [[[
⟨[0.3, 0.7] , [0.3, 0.5] , [0.3, 0.9]⟩ , ⟨0.2, 0.5, 0.2⟩⟨[0.6, 0.7] , [0.1, 0.8] , [0.2, 0.3]⟩ , ⟨0.1, 0.5, 0.7⟩⟨[0.6, 0.9] , [0.9, 1.0] , [0.3, 0.4]⟩ , ⟨0.7, 0.1, 0.7⟩

]]]
,

I3

= [[[
⟨[0.8, 0.9] , [0.1, 0.2] , [0.8, 0.9]⟩ , ⟨0.9, 0.8, 0.9⟩⟨[0.1, 0.2] , [0.8, 0.9] , [0.3, 0.9]⟩ , ⟨0.9, 0.8, 0.9⟩⟨[0.5, 0.9] , [0.1, 1.0] , [0.4, 0.7]⟩ , ⟨0.9, 0.9, 0.1⟩

]]]
,

I
∗

= [[[
⟨[0.2, 0.4] , [0.3, 0.5] , [0.3, 0.5]⟩ , ⟨0.1, 0.2, 0.4⟩⟨[0.5, 0.7] , [0.0, 0.5] , [0.2, 0.3]⟩ , ⟨0.1, 0.2, 0.2⟩⟨[0.6, 0.8] , [0.0, 0.1] , [0.3, 0.4]⟩ , ⟨0.3, 0.1, 0.7⟩

]]]
.

(25)

Calculate the correlation coefficient of 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I𝑖),𝑖 = 1, 2, 3.𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I1) = 0.93, 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I2) = 0.83,𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I3) = 0.63.
Since 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I1) ≥ 0.7, 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I2) ≥ 0.7, and𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I3) < 0.7, we consider the samples I1 and I2

belong to ideal pattern, and I3 does not belong to the ideal
pattern.

We notice that the result of Example 20 is consistent with
this paper. However, the result of this article is more superior.

Next, we will give another example to illustrate the
approach of this article.

Example 21. The sample patterns I𝑖 (𝑖 = 1, 2) and the ideal
pattern I∗ are given as follows:

I1

= [[[
⟨[0.8, 0.9] , [0.1, 0.2] , [0.8, 0.9]⟩ , ⟨0.9, 0.8, 0.9⟩⟨[0.1, 0.2] , [0.8, 0.9] , [0.3, 0.9]⟩ , ⟨0.9, 0.8, 0.9⟩⟨[0.5, 0.9] , [0.1, 1.0] , [0.4, 0.7]⟩ , ⟨0.9, 0.9, 0.1⟩

]]]
,

I2

= [[[
⟨[0.8, 0.9] , [0.1, 0.2] , [0.8, 0.9]⟩ , ⟨0.8, 0.8, 0.9⟩⟨[0.1, 0.2] , [0.8, 0.9] , [0.7, 0.9]⟩ , ⟨0.3, 0.5, 0.7⟩⟨[0.7, 0.9] , [0.5, 1.0] , [0.5, 0.7]⟩ , ⟨0.7, 0.9, 0.1⟩

]]]
,

I
∗

= [[[
⟨[0.2, 0.4] , [0.3, 0.5] , [0.3, 0.5]⟩ , ⟨0.1, 0.2, 0.4⟩⟨[0.5, 0.7] , [0.0, 0.5] , [0.2, 0.3]⟩ , ⟨0.1, 0.2, 0.2⟩⟨[0.6, 0.8] , [0.0, 0.1] , [0.3, 0.4]⟩ , ⟨0.3, 0.1, 0.7⟩

]]]
.

(26)

Using the method of [50], we can get 𝑑(I1,I∗) =0.51, 𝑑(I2,I∗) = 0.49, so the sample pattern I1 does
not belong to the ideal pattern, and I2 belongs to the ideal
pattern. However, using the method of this paper we will get
result 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I1) = 0.63, and 𝜌𝑆𝑉𝑁𝐶𝑆(I∗,I2) = 0.66;
therefore, according to the principle ofmaximumcorrelation,
we can judge thatI1 does not belong to the ideal pattern, and
I2 also does not belong to the ideal pattern.

Comparative Analysis. In the pattern recognition problems,
the results of Example 21 are different. Using the method
of [50], the recognition standard is 0.5. According to the
minimum distance measures principle (principle of maxi-
mum similarity measures), because 𝑑(I,I1) = 0.51, and𝑑(I,I2) = 0.49 are very close to 0.5, so the judgment
may have certain deviation; it is difficult to make accurate
identification for some distance measures near 0.5. That is to
say, the recognition result will be very fuzzy; therefore, this
standard does not have its superiority in this case. However,
the method of this paper can clearly identify the relationship
between the sample pattern and the ideal pattern, and it
effectively avoids the ambiguity of the result (the correlation
is greater than or equal to 0.7).
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Therefore, using the principle of maximum correlation is
more persuasive and more intuitive to accept.

6. Conclusion

SVNCSs are a generalization of SVNSs, INSs, and CSs. We
start to introduce some concepts of correlation coefficient
of SVNCSs and discuss the properties. We also propose the
decisionmethod by using theweighted correlation coefficient
of SVNCSs and give applications of correlation coefficient of
SVNCSs in pattern recognition. Finally we give examples to
explain the effectiveness of the method and give comparative
analysis to show the superiority of the method.
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