Possibility neutrosophic soft sets and PNS-decision making method

Faruk Karaaslan

Department of Mathematics, Faculty of Sciences, Cankırı Karatekin University, 18100 Cankırı, Turkey

A R T I C L E I N F O

Article history:
Received 10 June 2015
Received in revised form 29 June 2016
Accepted 4 July 2016
Available online xxx

Keywords:
Soft set
Neutrosophic set
Neutrosophic soft set
Possibility neutrosophic soft set
Decision making

A B S T R A C T

In this paper, we introduce concept of possibility neutrosophic soft set and define some related concepts such as possibility neutrosophic soft subset, possibility neutrosophic soft null set, and possibility neutrosophic soft universal set. Then, based on definitions of n-norm and n-conorm, we define set theoretical operations of possibility neutrosophic soft sets such as union, intersection and complement, and investigate some properties of these operations. We also introduce AND-product and OR-product operations between two possibility neutrosophic soft sets. We propose a decision making method called possibility neutrosophic soft decision making method (PNS-decision making method) which can be applied to the decision making problems involving uncertainty based on AND-product operation. We finally give a numerical example to display application of the method that can be successfully applied to the problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in engineering, medical sciences, economics and social sciences involve uncertainty. Researchers have proposed some theories such as the theory of fuzzy set [34], the theory of intuitionistic fuzzy set [5], the theory of rough set [26], the theory of vague set [19] in order to resolve these problems. However, all of these theories have their own difficulties which are pointed out by Molodtsov [21]. Therefore, he proposed a completely new approach for modeling uncertainty. Molodtsov displayed soft sets in wide range of field including the smoothness of functions, game theory, operations research. Riemann integration, Perron integration, probability theory and measurement theory. After Molodtsov’s study [21], the operations of soft sets and some of their properties were given by Maji et al. [24]. Some researchers such as Ali et al. [1], Çagman and Enginoğlu [9], Sezgin and Atagün [30], Zhu and Wen [36], Çagman [12] made some modifications and contributions to the operations of soft sets.

Application of soft set theory in decision making problems was first studied by Maji et al. [23]. Subsequent works were published by many researchers. Çagman and Enginoğlu [9] proposed the uni-int decision making method to reduce the alternatives. Feng et al. [17] generalized the uni-int decision making based on choice value soft sets. Qin et al. [27] improved some algorithms which require relatively fewer calculations compared with the existing decision making algorithms. Zhi et al. [35] presented an efficient decision making approach in incomplete soft set.

In 1986, intuitionistic fuzzy sets were introduced by Atanassov [3] as an extension of Zadeh’s [34] notion of fuzzy set. Maji [22] combined intuitionistic fuzzy with soft sets. Çagman and Karataş [11] redefined intuitionistic fuzzy sets and proposed a decision making method using the intuitionistic fuzzy soft sets. Agarwal et al. [2] defined generalized intuitionistic fuzzy soft sets (GIFSS), and investigated properties of GIFSS. They also put forward similarity measure between two GIFSSs. Das and Kar [13] proposed an algorithmic approach based on intuitionistic fuzzy soft set (IFSS) which explores a particular disease reflecting the agreement of all experts. They also demonstrated effectiveness of the proposed approach using a suitable case study. Deli and Çagman [16] defined intuitionistic fuzzy parameterized soft sets as an extension of fuzzy parameterized soft sets [10], and suggested a decision making method based on intuitionistic fuzzy parameterized soft sets. Recently, many researchers published interesting results on intuitionistic fuzzy soft set theory.

Neutrosophic logic theory and neutrosophic sets were proposed by Smarandache [31,32], as a new mathematical tool for dealing with problems involving incomplete, indeterminant, and inconsistent knowledge. Neutrosophy is a new branch of philosophy that generalizes fuzzy logic, intuitionistic fuzzy logic, and paraconsistent logic. Fuzzy sets are characterized by membership functions, and intuitionistic fuzzy sets by membership functions and non-membership functions. In some real life problems for proper description of an object in...
uncertain and ambiguous environment, we need to discuss the indeterminate and inconsistent information. However, fuzzy sets and intuitionistic fuzzy sets do not discuss the indeterminant and inconsistent information.

Alkhazaleh et al. [4] first introduced concept of the possibility fuzzy soft sets and their operations, and gave applications of this theory in a decision making problem. They also introduced a similarity measure between two possibility fuzzy soft sets, and gave an application of proposed similarity measure method in a medical diagnosis problem. In 2012, Bashir et al. [6] introduced concept of possibility intuitionistic fuzzy soft set and their operations, and discussed similarity measure between two possibility intuitionistic fuzzy sets. They also gave an application of this similarity measure.

Possibility neutrosophic soft sets are generalization of possibility fuzzy soft sets and possibility intuitionistic fuzzy soft sets. Fuzzy sets and intuitionistic fuzzy sets are very useful in order to model some decision making problems containing uncertainty and incomplete information. However, they sometimes may not suffice to model indeterminate and inconsistent information encountered in real world. This problem also exists in fuzzy soft sets and intuitionistic fuzzy soft sets. Therefore, concepts of neutrosophic set and neutrosophic soft set have a very important role in modeling of some problems which contain indeterminate and inconsistent information. In the definition of neutrosophic soft set [20,25], parameter set is a classical set, and possibility of each element of initial universe related to each parameter are considered as 1. This poses a limitation in modeling of some problems. In a possibility neutrosophic soft set, possibility of each element of initial universe related to each parameter may be different from 1. Therefore, possibility neutrosophic soft sets present a more general perspective than neutrosophic soft sets. If we are to explain the idea of possibility neutrosophic soft set, let us give an example, consider the last ten days of April and the parameter “rainy”. First day of last ten days, the possibility of action of rainfall can be 0.8. However, amount of water can be (0.3, 0.3, 0.6). Based on the parameter “rainy”, other nine days can be expressed with some possibility neutrosophic values. For last ten days and for parameters more than one, we need possibility neutrosophic soft sets to show all of the corresponding possibility neutrosophic values.

From this point of view, we introduce concept of possibility neutrosophic soft sets based on idea that each of elements of initial universe has got a possibility degree related to each element of parameter set. Furthermore, we define set theoretical operations between two possibility neutrosophic soft sets, and investigate some of their properties. We also propose a new decision making method using AND-product of possibility neutrosophic soft sets called possibility neutrosophic soft (PNS) decision making method. We finally give a numerical example to show the method that can be successfully applied to the problems studied.

2. Preliminary

We first present basic definitions and propositions required in next sections. The concepts given in this section can be found inRefs. [4,6,12,20,21,25].

Throughout this paper U is an initial universe, E is a set of parameters, $P(U)$ is power set of U and A is an index set.

Definition 1 ([21]). Let U be a set of objects, E be a set of parameters and $\emptyset \neq A \subseteq E$. Mapping given by $f : A \rightarrow P(U)$ is called a soft set over U and denoted by (f, A).

Set theoretical operations of soft sets are given in [12] as follows:

Let f and g be two soft sets. Then,

1. If $f(e) = \emptyset$ for all $e \in E$, then f is called null soft set and denoted by Φ.
2. If $f(e) = \emptyset$ for all $e \in E$, then f is called absolute soft set and denoted by \bar{U}.
3. If $f(e) \subseteq g(e)$ for all $e \in E$, f is said to be a soft subset of g and denoted by $f \subseteq g$.
4. If $g \subseteq f$ and $g \neq f$, then f is called a soft complement of g.
5. Soft union of f and g, denoted by $f \cup g$, is a soft set over U and defined by $f \cup g : E \rightarrow P(U)$ such that $(f \cup g)(e) = f(e) \cup g(e)$ for all $e \in E$.
6. Soft intersection of f and g, denoted by $f \cap g$, is a soft set over U and defined by $f \cap g : E \rightarrow P(U)$ such that $(f \cap g)(e) = f(e) \cap g(e)$ for all $e \in E$.
7. Soft complement of f is denoted by \bar{f} and defined by $\bar{f} : E \rightarrow P(U)$ such that $\bar{f}(e) = \overline{f(e)}$ for all $e \in E$.

Definition 2 ([20,25]). A neutrosophic soft set (or namely ns-set) f over U is a neutrosophic set valued function from E to $AU(U)$. It can be written as

$$f = \{(e, (u, tf(u)(e), \tilde{f}(e)(u), \bar{f}(e)(u)) : u \in U) : e \in E\}$$

where, $AU(U)$ denotes set of all neutrosophic sets over U. Here, each of $tf(u)$, $\tilde{f}(e)(u)$, and $\bar{f}(e)(u)$ is a function from U to interval $[0, 1]$ and they denote truth, indeterminacy and fallacy membership degrees of element of initial universe U related to parameter $e \in E$, respectively. Note that if $f(e) = (u, 0, 1, 1 : u \in U)$, the element $(e, f(e))$ is not appeared in the neutrosophic soft set f. Set of all ns-sets over U is denoted by NS.

Definition 3 ([20]). Let $f, g \in NS$, f is said to be neutrosophic soft subset of g if $tf(u)(e) \leq \tilde{f}(e)(u)$, $\tilde{f}(e)(u) \leq \bar{f}(e)(u)$, $\bar{f}(e)(u) \leq \tilde{f}(e)(u)$, $\forall e \in E$, $\forall u \in U$. We denote it by $f \subseteq g$. f is said to be neutrosophic soft super set of g if g is a neutrosophic soft subset of f. We denote it by $f \supseteq g$.

If f is neutrosophic soft subset of g and g is neutrosophic soft subset of f, we denote it $f = g$. Here, if we take $tf(u)(e) \leq \tilde{f}(e)(u)$, it can be shown that the definition is identical to definition of neutrosophic soft subset given by Maji [25].
Proposition 1 [20]. Let \(f, g, h \in NS \). Then,

1. \(\tilde{\Phi} \subseteq f \)
2. \(f \subseteq \tilde{U} \)
3. \(g \subseteq f \)
4. \(f \subseteq g \) \& \(g \subseteq h \rightarrow f \subseteq h \)

Proposition 2 [20]. Let \(f \in NS \). Then,

1. \(\tilde{\Phi}^c = \tilde{U} \)
2. \(\tilde{U}^c = \Phi \)
3. \((f^c)^c = f \)

Definition 8 [20]. Let \(f, g \in NS \). Then ‘OR’ product of ns-sets \(f \) and \(g \) denoted by \(f \vee g \), is defined as follows:

\[
\forall u \in U : \quad (e, e') \in f \vee g \iff (e, e') \in f \text{ or } (e, e') \in g.
\]

Definition 9 [20]. Let \(f, g \in NS \). Then ‘AND’ product of ns-sets \(f \) and \(g \) denoted by \(f \wedge g \), is defined as follows:

\[
\forall u \in U : \quad (e, e') \in f \wedge g \iff (e, e') \in f \text{ and } (e, e') \in g.
\]

Proposition 4 [20]. Let \(f, g \in NS \). Then,

1. \((f \vee g)^c = f^c \wedge g^c \)
2. \((f \wedge g)^c = f^c \vee g^c \)

Definition 10 [4]. Let \(U = \{u_1, u_2, \ldots, u_n\} \) be the universe set of elements and \(E = \{e_1, e_2, \ldots, e_m\} \) be the universal set of parameters. The pair \((U, E)\) will be called a soft universe. Let \(F : E \rightarrow \P(U) \) and \(\mu \) be a fuzzy subset of \(E \), that is \(\mu : E \rightarrow [0, 1] \), where \(\P(U) \) is the collection of all fuzzy subsets of \(U \). Let \(F_{\mu} : E \rightarrow \P(U) \times \P(U) \) be a function defined as follows:

\[
F_{\mu}(e) = (F(e)(u), \mu(e)(u)), \quad \forall u \in U.
\]

Then \(F_{\mu} \) is called a possibility fuzzy soft set (PFSS in short) over the soft universe \((U, E)\). For each parameter \(e \), \(F_{\mu}(e) = (F(e)(u), \mu(e)(u)) \) indicates not only the degree of belongingness of the elements of \(U \) in \(F(e) \), but also the degree of possibility of belongingness of the elements of \(U \) in \(F(e) \), which is represented by \(\mu(e) \).
Definition 11 ([6], 2016). Let \(U = \{u_1, u_2, \ldots, u_m\} \) be the universal set of elements and \(E = \{e_1, e_2, \ldots, e_m\} \) be the universal set of parameters. The pair \((U, E)\) will be called a soft universe. Let \(F : E \rightrightarrows P(U) \) where \((I \times I)^U \) is the collection of all intuitionistic fuzzy subsets of \(U \) and \(\mu_U \) is the collection of all fuzzy subsets of \(U \). Let \(p \) be a fuzzy subset of \(E \), that is, \(p : E \rightarrow \mu_U \) and let \(F_p : E \rightrightarrows (I \times I)^U \) be a function defined as follows:

\[
F_p(e) = \{ (\mu(e), \nu(e)) \mid \mu(e) = \mu(U, \nu(u)) \}, \quad \forall u \in U.
\]

Then \(F_p \) is called a possibility intuitionistic fuzzy soft set (PIFSS in short) over the soft universe \((U, E)\). For each parameter \(e_i \), \(F_p(e_i) = \{ (\mu(e_i), \nu(e_i)) \mid e_i \in E \} \) indicates not only the degree of belongingness of the elements of \(U \) in \(F(e_i) \), but also the degree of possibility of belongingness of the elements of \(U \) in \(F(e_i) \), which is represented by \(p(e_i) \).

3. Possibility neutrosophic soft sets

In this section, we introduce the concepts of possibility neutrosophic soft set, possibility neutrosophic set null set, possibility neutrosophic soft universal set, and possibility neutrosophic soft set operations.

Definition 12. Let \(U \) be an initial universe, \(E \) be a parameter set, \(\mathcal{N}(U) \) be the collection of all neutrosophic sets of \(U \) and \(\mu_U \) is collection of all fuzzy subset of \(U \). A possibility neutrosophic soft set \((PNS - \text{set}) f_u \) over \(U \) is a set of ordered pairs defined by

\[
f_u = \left\{ \left(e_k, \left\{ \frac{u_j}{f(e_k)(u_j)} : u_j \in U \right\} \right) : e_k \in E \right\}
\]

or a mapping defined by

\[
f_u : E \rightarrow \mathcal{N}(U) \times \mu_U
\]

where, \(i \in A_1 \) and \(j \in A_2 \), \(f \) is a mapping given by \(f : E \rightarrow \mathcal{N}(U) \) and \(\mu(e_k) \) is a fuzzy set such that \(\mu : E \rightarrow \mu_U \).

For each parameter \(e_k \in E \), \(f(e_k) = \{ u_j : u_j \in U \} \), \(i \in A_1 \) and \(j \in A_2 \) are the membership functions of truth, indeterminacy and falsity respectively of the element \(u_j \in U \). For each \(u_j \in U \) and \(e_k \in E \), \(0 \leq f(e_k)(u_j) + i_f(e_k)(u_j) + f_f(e_k)(u_j) \leq 3 \). Also \(\mu(e_k) \), degrees of possibility of belongingness of elements of \(U \) in \(f(e_k) \). So we can write

\[
f_u(e_k) = \left\{ \left(\frac{u_1}{f(e_k)(u_1)} : \mu(e_k)(u_1), \frac{u_2}{f(e_k)(u_2)} : \mu(e_k)(u_2), \ldots, \frac{u_n}{f(e_k)(u_n)} : \mu(e_k)(u_n) \right) \right\}
\]

From now on, we will show set of all possibility neutrosophic soft sets over \(U \) with \(\mathcal{P}(U, E) \) such that \(E \) is parameter set.

Example 1. Let \(U = \{u_1, u_2, u_3\} \) be a set of three cars. Let \(E = \{e_1, e_2, e_3\} \) be a set of qualities where \(e_1 = \text{cheap}, e_2 = \text{equipment}, e_3 = \text{fuel consumption} \) and let \(\mu : E \rightarrow \mu_U \). We can define a function \(f_u : E \rightarrow \mathcal{N}(U) \times \mu_U \) as follows:

\[
f_u(e_1) = \left\{ \left(\frac{u_1}{0.5, 0.2, 0.5} : 0.8, \frac{u_2}{0.7, 0.3, 0.5} : 0.4, \frac{u_3}{0.4, 0.5, 0.8} : 0.7 \right) \right\}
\]

\[
f_u(e_2) = \left\{ \left(\frac{u_1}{0.8, 0.4, 0.5} : 0.6, \frac{u_2}{0.5, 0.7, 0.2} : 0.8, \frac{u_3}{0.7, 0.3, 0.9} : 0.3 \right) \right\}
\]

\[
f_u(e_3) = \left\{ \left(\frac{u_1}{0.6, 0.7, 0.5} : 0.2, \frac{u_2}{0.5, 0.3, 0.7} : 0.0, \frac{u_3}{0.6, 0.5, 0.4} : 0.5 \right) \right\}
\]

also we can define a function \(g_u : E \rightarrow \mathcal{N}(U) \times \mu_U \) as follows:

\[
g_u(e_1) = \left\{ \left(\frac{u_1}{0.6, 0.3, 0.3} : 0.4, \frac{u_2}{0.6, 0.5, 0.5} : 0.7, \frac{u_3}{0.2, 0.6, 0.4} : 0.8 \right) \right\}
\]

\[
g_u(e_2) = \left\{ \left(\frac{u_1}{0.5, 0.4, 0.3} : 0.3, \frac{u_2}{0.4, 0.6, 0.5} : 0.6, \frac{u_3}{0.7, 0.2, 0.5} : 0.8 \right) \right\}
\]

\[
g_u(e_3) = \left\{ \left(\frac{u_1}{0.7, 0.5, 0.3} : 0.8, \frac{u_2}{0.4, 0.4, 0.6} : 0.5, \frac{u_3}{0.8, 0.5, 0.3} : 0.6 \right) \right\}
\]

For the purpose of storing a possibility neutrosophic soft set in a computer, we can use matrix notation of possibility neutrosophic soft set \(f_u \). For example, matrix notation of possibility neutrosophic soft set \(f_u \) can be written as follows: for \(m, n \in A \),

\[
f_u = \begin{pmatrix}
(0.5, 0.2, 0.6, 0.8) & (0.7, 0.3, 0.5, 0.4) & (0.4, 0.5, 0.8, 0.7) \\
(0.8, 0.4, 0.5, 0.6) & (0.5, 0.7, 0.2, 0.8) & (0.7, 0.3, 0.9, 0.4) \\
(0.6, 0.7, 0.5, 0.2) & (0.5, 0.3, 0.7, 0.6) & (0.6, 0.5, 0.4, 0.5)
\end{pmatrix}
\]

where the \(m \)-th row vector shows \(f(e_m) \) and \(n \)-th column vector shows \(u_n \).

Definition 13. Let \(f_u, g_u \in \mathcal{P}(U, E) \). Then, \(f_u \) is said to be a possibility neutrosophic soft subset \((PNS - \text{subset}) \) of \(g_u \), and denoted by \(f_u \subseteq g_u \), if

1. \(\mu(e) \) is a fuzzy subset of \(v(e) \), for all \(e \in E \)
2. \(f \) is a neutrosophic subset of \(g \).
Example 2. Let \(U = \{u_1, u_2, u_3\} \) be a set of tree houses, and let \(E = \{e_1, e_2, e_3\} \) be a set of parameters where \(e_1 = \text{modern}, e_2 = \text{big and} \) \(e_3 = \text{cheap} \). Let \(f_{\mu} \) be a PNS-set defined as follows:

\[
\begin{aligned}
&f_{\mu}(e_1) = \left\{ \left(\frac{1}{2}, 0.2, 0.6 \right), 0.8 \right\}, \\
&f_{\mu}(e_2) = \left\{ \left(\frac{1}{2}, 0.3, 0.5 \right), 0.4 \right\}, \\
&f_{\mu}(e_3) = \left\{ \left(0.4, 0.5, 0.9 \right), 0.7 \right\}
\end{aligned}
\]

\[
\begin{aligned}
g_{f_1} : E &\rightarrow \mathcal{N}(U) \times I^U \\
g_{f_2} : E &\rightarrow \mathcal{N}(U) \times I^U \\
g_{f_3} : E &\rightarrow \mathcal{N}(U) \times I^U
\end{aligned}
\]

it is clear that \(f_{\mu} \) is PNS – subset of \(g_{f} \).

Definition 14. Let \(f_{\mu}, g_{f} \in \mathcal{P}(U, E) \). Then, \(f_{\mu} \) and \(g_{f} \) are called possibility neutrosophic soft equal set and denoted by \(f_{\mu} = g_{f} \), if \(f_{\mu} \subseteq g_{f} \) and \(f_{\mu} \supseteq g_{f} \).

Definition 15. Let \(f_{\mu} \in \mathcal{P}(U, E) \). Then, \(f_{\mu} \) is said to be possibility neutrosophic soft null set, denoted by \(\phi_{f_{\mu}} \), if \(\forall e \in E, \phi_{f_{\mu}} : E \rightarrow \mathcal{N}(U) \times I^U \) such that \(\phi_{f_{\mu}}(e) = (\{0\} \cup \{u\}, 0, 1, 1) : u \in U \) and \(\mu(\phi_{f_{\mu}}) = (\{0\} : u \in U) \).

Definition 16. Let \(f_{\mu} \in \mathcal{P}(U, E) \). Then, \(f_{\mu} \) is said to be possibility neutrosophic soft universal set denoted by \(U_{\mu} \), if \(\forall e \in E, U_{\mu} : E \rightarrow \mathcal{N}(U) \times I^U \) such that \(U_{\mu}(e) = (\{1\} \cup \{u\}, 0, 1, 1) : u \in U \) and \(\mu(\phi_{U_{\mu}}) = (\{1\} : u \in U) \).

Proposition 5. Let \(f_{\mu}, g_{f}, \) and \(h_{\delta} \in \mathcal{P}(U, E) \). Then,

1. \(\phi_{f_{\mu}} \subseteq f_{\mu} \)
2. \(f_{\mu} \subseteq U_{\mu} \)
3. \(f_{\mu} \subseteq g_{f} \) and \(g_{f} \subseteq h_{\delta} \rightarrow f_{\mu} \subseteq h_{\delta} \)

Proof. It is clear from Definitions 14–16.

Definition 17. Let \(f_{\mu} \in \mathcal{P}(U, E) \), where \(f_{\mu}(e_k) = (f(e_k)(u_j), \mu(e_k)(u_j)) : e_k \in E, u_j \in U \) and \(f(e_k) = (\{t_{e_k}(u_j), l_{e_k}(u_j), r_{e_k}(u_j), f_{e_k}(u_j)\}) \) for all \(e_k \in E, u \in U \). Then for \(e_k \in E \) and \(u_j \in U \),

1. \(f_{\mu} \) is said to be truth-membership part of \(f_{\mu} \),

\[
f_{\mu} = (f_{\mu}(e_k), \mu_{\mu}(e_k))
\]

and

\[
f_{\mu}(e_k) = (u_j, t_{e_k}(u_j)), \mu_{\mu}(e_k) = (u_j, \mu(e_k)(u_j))
\]

2. \(f_{\mu} \) is said to be indeterminacy-membership part of \(f_{\mu} \),

\[
f_{\mu} = (f_{\mu}(e_k), \mu_{\mu}(e_k))
\]

and

\[
f_{\mu}(e_k) = (u_j, l_{e_k}(u_j)), \mu_{\mu}(e_k) = (u_j, \mu(e_k)(u_j))
\]

3. \(f_{\mu} \) is said to be falsity-membership part of \(f_{\mu} \),

\[
f_{\mu} = (f_{\mu}(e_k), \mu_{\mu}(e_k))
\]

and

\[
f_{\mu}(e_k) = (u_j, f_{e_k}(u_j)), \mu_{\mu}(e_k) = (u_j, \mu(e_k)(u_j))
\]

Please cite this article in press as: F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.013
We can write a possibility neutrosophic soft set in form $f_{t\mu} = (f^p_{t\mu}, f^d_{t\mu}, f^c_{t\mu})$.

A possibility neutrosophic soft set can be expressed in matrix form.

Let us consider possibility neutrosophic soft $f_{t\mu}$ given in Example 1. Then, possibility neutrosophic soft $f_{t\mu}$ can be expressed in matrix form as follows:

$$
f^p_{t\mu} = \begin{pmatrix}
(0.5, 0.8) & (0.7, 0.4) & (0.4, 0.7) \\
(0.8, 0.6) & (0.5, 0.8) & (0.7, 0.4) \\
(0.6, 0.2) & (0.5, 0.6) & (0.6, 0.5)
\end{pmatrix}
$$

$$
f^d_{t\mu} = \begin{pmatrix}
(0.2, 0.8) & (0.3, 0.4) & (0.5, 0.7) \\
(0.4, 0.6) & (0.7, 0.8) & (0.3, 0.4) \\
(0.7, 0.2) & (0.3, 0.6) & (0.5, 0.5)
\end{pmatrix}
$$

$$
f^c_{t\mu} = \begin{pmatrix}
(0.6, 0.8) & (0.5, 0.4) & (0.8, 0.7) \\
(0.5, 0.6) & (0.2, 0.8) & (0.9, 0.4) \\
(0.5, 0.2) & (0.7, 0.6) & (0.4, 0.5)
\end{pmatrix}
$$

Definition 18 ([28]). A binary operation $\otimes : [0, 1] \times [0, 1] \to [0, 1]$ is continuous t-norm if \otimes satisfies the following conditions:

1. \otimes is commutative and associative,
2. \otimes is continuous,
3. $a \otimes 1 = a, \forall a \in [0, 1]$,
4. $a \otimes b \leq c \otimes d$ whenever $a \leq c, b \leq d$ and $a, b, c, d \in [0, 1]$.

Definition 19 ([28]). A binary operation $\oplus : [0, 1] \times [0, 1] \to [0, 1]$ is continuous t-conorm (s-norm) if \oplus satisfies the following conditions:

1. \oplus is commutative and associative,
2. \oplus is continuous,
3. $a \oplus 0 = a, \forall a \in [0, 1]$,
4. $a \oplus b \leq c \oplus d$ whenever $a \leq c, b \leq d$ and $a, b, c, d \in [0, 1]$.

Definition 20. Let $P = [0, 1] \times [0, 1]$ and $N(P) = \{(a, b, c) : a, b, c \in [0, 1]\}$. Then $(N(P), \oplus, \otimes)$ be a lattices together with partial ordered relation \leq, where order relation \leq on $N(P)$ can be defined by for $(a, b, c), (d, e, f) \in N(P)$

$$(a, b, c) \leq (d, e, f) \Rightarrow a \leq d, b \leq e, c \geq f$$

Smarandache [31] defined n-norm and n-conorm for non-standard unit interval $[-0, 1^+]$, and referred that definitions of n-norm and n-conorm can be adapted for normal standard real unit interval $[0, 1]$. Therefore, we can give definitions of n-norm and n-conorm for normal standard real unit interval $[0, 1]$ as follows:

Definition 21. A binary operation

$$\odot : ([0, 1] \times [0, 1] \times [0, 1])^2 \to [0, 1] \times [0, 1] \times [0, 1]$$

is continuous n-norm if \odot satisfies the following conditions:

1. \odot is commutative and associative,
2. \odot is continuous,
3. $a \odot \emptyset = \hat{a}, a \odot \hat{1} = a, \forall a \in [0, 1] \times [0, 1] \times [0, 1], (\hat{1} = (1, 0, 0))$ and $(\hat{0} = (0, 1, 1))$
4. $a \odot b \leq c \odot d$ whenever $a \leq c, b \leq d$ and $a, b, c, d \in [0, 1] \times [0, 1] \times [0, 1]$.

Here, $a \odot b = \odot((t(a), \hat{l}(a), f(a)), (t(b), \hat{l}(b), f(b))) = (t(a) \otimes t(b), \hat{l}(a) \oplus \hat{l}(b), f(a) \oplus f(b)$

Definition 22. A binary operation

$$\oslash : ([0, 1] \times [0, 1] \times [0, 1])^2 \to [0, 1] \times [0, 1] \times [0, 1]$$

is continuous n-conorm if \oslash satisfies the following conditions:

1. \oslash is commutative and associative,
2. \oslash is continuous,
3. $a \oslash \emptyset = a, a \oslash \hat{1} = a, \forall a \in [0, 1] \times [0, 1] \times [0, 1], (\hat{1} = (1, 0, 0))$ and $(\hat{0} = (0, 1, 1))$
4. $a \oslash b \leq c \oslash d$ whenever $a \leq c, b \leq d$ and $a, b, c, d \in [0, 1] \times [0, 1] \times [0, 1]$.

Here, $a \oslash b = \oslash((t(a), \hat{l}(a), f(a)), (t(b), \hat{l}(b), f(b))) = (t(a) \ominus t(b), \hat{l}(a) \oplus \hat{l}(b), f(a) \oplus f(b)$
Definition 23. Let \(f_\mu, g_v \in P\mathcal{N}(U, E) \). The union of two possibility neutrosophic soft sets \(f_\mu \) and \(g_v \) over \(U \), denoted by \(f_\mu \cup g_v \), is defined by

\[
f_\mu \cup g_v = \{(e_k, ((\alpha, \mu_{k|j}(e_k) \oplus \nu_{k|j}(e_k)): u_j \in U)) : e_k \in E\}
\]

where

\[
a = \frac{u_j}{(f_{\mu,j}(e_k) \oplus g_{v,j}(e_k) \mathbin{\ominus} f_{\mu,j}(e_k) \mathbin{\ominus} g_{v,j}(e_k) \mathbin{\ominus} f_{\mu,j}(e_k) \mathbin{\ominus} g_{v,j}(e_k))}
\]

Definition 24. Let \(f_\mu, g_v \in P\mathcal{N}(U, E) \). The intersection of two possibility neutrosophic soft sets \(f_\mu \) and \(g_v \) over \(U \), denoted by \(f_\mu \cap g_v \), is defined by

\[
f_\mu \cap g_v = \{(e_k, ((\theta, \mu_{k|j}(e_k) \ominus \nu_{k|j}(e_k)): u_j \in U)) : e_k \in E\}
\]

where

\[
\theta = \frac{u_j}{(f_{\mu,j}(e_k) \ominus g_{v,j}(e_k) \mathbin{\ominus} f_{\mu,j}(e_k) \mathbin{\ominus} g_{v,j}(e_k) \mathbin{\ominus} f_{\mu,j}(e_k) \mathbin{\ominus} g_{v,j}(e_k))}
\]

Example 3. Let us consider the possibility neutrosophic soft sets \(f_\mu \) and \(g_v \) defined as in Example 1. Let us suppose that \(t \)-norm is defined by \(a \mathbin{\circ} b = \min\{a, b\} \) and the \(t \)-conorm is defined by \(a \mathbin{\circ} b = \max\{a, b\} \) for \(a, b \in [0, 1] \). Then,

\[
f_\mu \cup g_v = \begin{cases} \left(f_{\mu,j}(e_1) \right) = \left(\frac{u_1}{(0.6, 0.2, 0.6)}, \frac{u_2}{(0.7, 0.3, 0.5)}, \frac{u_3}{(0.4, 0.5, 0.4)} \right) \\ \left(f_{\mu,j}(e_2) \right) = \left(\frac{u_1}{(0.8, 0.4, 0.3)}, \frac{u_2}{(0.5, 0.6, 0.2)}, \frac{u_3}{(0.7, 0.2, 0.5)} \right) \\ \left(f_{\mu,j}(e_3) \right) = \left(\frac{u_1}{(0.7, 0.3, 0.3)}, \frac{u_2}{(0.5, 0.3, 0.6)}, \frac{u_3}{(0.8, 0.5, 0.3)} \right) \end{cases}
\]

and

\[
f_\mu \cap g_v = \begin{cases} \left(f_{\mu,j}(e_1) \right) = \left(\frac{u_1}{(0.5, 0.3, 0.8)}, \frac{u_2}{(0.6, 0.5, 0.5)}, \frac{u_3}{(0.2, 0.6, 0.8)} \right) \\ \left(f_{\mu,j}(e_2) \right) = \left(\frac{u_1}{(0.5, 0.4, 0.5)}, \frac{u_2}{(0.4, 0.7, 0.5)}, \frac{u_3}{(0.7, 0.3, 0.9)} \right) \\ \left(f_{\mu,j}(e_3) \right) = \left(\frac{u_1}{(0.6, 0.7, 0.5)}, \frac{u_2}{(0.4, 0.5, 0.7)}, \frac{u_3}{(0.6, 0.5, 0.4)} \right) \end{cases}
\]

Proposition 6. Let \(f_\mu, g_v, h_3 \in P\mathcal{N}(U, E) \). Then,

1. \(f_\mu \cap f_\mu = f_\mu \) and \(f_\mu \cup f_\mu = f_\mu \)
2. \(f_\mu \cap g_v = g_v \cap f_\mu \) and \(f_\mu \cup g_v = g_v \cup f_\mu \)
3. \(f_\mu \cap \phi = \phi \) and \(f_\mu \cup \phi = f_\mu \)
4. \(f_\mu \cup \phi = f_\mu \) and \(f_\mu \cup \phi = \phi \)
5. \(f_\mu \cap (g_v \cup h_3) = (f_\mu \cap g_v) \cup h_3 \) and \(f_\mu \cap (g_v \cup h_3) = (f_\mu \cup g_v) \cup h_3 \)
6. \(f_\mu \cap (g_v \cup h_3) = (f_\mu \cap g_v) \cup (f_\mu \cap h_3) \) and \(f_\mu \cup (g_v \cup h_3) = (f_\mu \cup g_v) \cup (f_\mu \cup h_3) \).

Proof. The proof can be obtained from Definitions 23 and 24. \(\square \)

Definition 25 ([18, 33]). A function \(N : [0, 1] \rightarrow [0, 1] \) is called a negation if \(N(0) = 1, N(1) = 0 \) and \(N \) is non-increasing \((x \leq y \rightarrow N(x) \geq N(y)) \). A negation is called a strict negation if it is strictly decreasing \((x < y \rightarrow N(x) > N(y)) \) and continuous. A strict negation is said to be a strong negation if it is also involutive, i.e., \(N(N(x)) = x \).

Smarandache [31] defined unary neutrosophic negation operator by interchanging truth \(t \) and falsity \(f \) vector components.

Now we define negation and strict negation operators with similar way to Definition 25 as follows:

Definition 26. A function \(n_N : [0, 1] \times [0, 1] \rightarrow [0, 1] \times [0, 1] \times [0, 1] \times [0, 1] \times [0, 1] \) is called a negation if \(n_N(0) = 1, n_N(1) = 0 \) and \(n_N \) is non-increasing \((x \leq y \rightarrow n_N(x) \geq n_N(y)) \). A negation is called a strict negation if it is strictly decreasing \((x < y \rightarrow N(x) > N(y)) \) and continuous.

Definition 27. Let \(f_\mu \in P\mathcal{N}(U, E) \). Complement of possibility neutrosophic soft set \(f_\mu \), denoted by \(f_\mu^c \), is defined by

\[
f_\mu^c = \left\{ e, \left(\frac{u_j}{n_N(f_{\mu,j}(e_k))}, N(\mu_{k|j}(e_k)) \right) : u_j \in U \right\} \quad : e \in E
\]

where

\[
(n_N(f_{\mu,j}(e_k))) = (N(f_{\mu,j}(e_k)), N(f_{\mu,j}(e_k)), N(f_{\mu,j}(e_k))), \quad \text{for all } k \in A_1, j \in A_2.
\]

Please cite this article in press as: F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.013
Example 4. Let us consider the possibility neutrosophic soft set f_μ define in Example 1. Suppose that the negation is defined by $N(f^c_{lj}(e_k)) = f^c_{lj}(e_k), N(f^l_{lj}(e_k)) = 1 - f^l_{lj}(e_k)$ and $N(\mu_{lj}(e_k)) = 1 - \mu_{lj}(e_k)$, respectively. Then, f^c_{μ} is defined as follow:

\[
\begin{align*}
 f^c_{\mu}(e_1) &= \left\{ \left(\frac{u_1}{0.6, 0.8, 0.5}, 0.2 \right), \left(\frac{u_2}{0.5, 0.7, 0.7}, 0.6 \right), \left(\frac{u_3}{0.8, 0.5, 0.4}, 0.3 \right) \right\} \\
 f^c_{\mu}(e_2) &= \left\{ \left(\frac{u_1}{0.5, 0.6, 0.8}, 0.4 \right), \left(\frac{u_2}{0.2, 0.3, 0.5}, 0.2 \right), \left(\frac{u_3}{0.9, 0.7, 0.7}, 0.6 \right) \right\} \\
 f^c_{\mu}(e_3) &= \left\{ \left(\frac{u_1}{0.5, 0.3, 0.6}, 0.8 \right), \left(\frac{u_2}{0.7, 0.7, 0.5}, 0.4 \right), \left(\frac{u_3}{0.4, 0.5, 0.6}, 0.5 \right) \right\}
\end{align*}
\]

Proposition 7. Let $f_\mu \in \mathcal{P}(\mathcal{N}(U, E))$. Then,

(1) $\phi_\mu = U_\mu$
(2) $\overline{f_\mu} = \phi_\mu$
(3) $(f^c_{\mu})^c = f_\mu$.

Proof. It is clear from Definition 27. □

Proposition 8. Let $f_\mu, g_\nu \in \mathcal{P}(\mathcal{N}(U, E))$. Then, De Morgan’s law is valid.

(1) $(f_\mu \cup g_\nu)^c = f^c_\mu \cap g^c_\nu$
(2) $(f_\mu \cap g_\nu)^c = f^c_\mu \cup g^c_\nu$

Proof.

(1) Let $i, j \in A$

\[
(f_\mu \cup g_\nu)^c = \left\{ e \in E \left| \exists u \in U \left(\left(f^l_{uj}(e_k) \cup g^l_{uj}(e_k), f^c_{uj}(e_k) \cup g^c_{uj}(e_k), (\mu_{uj}(e_k) \cup \nu_{uj}(e_k)) \right) \subseteq U \right) \right) \right\}
\]

\[
= \left\{ e \in E \left| \exists u \in U \left(\left(f^l_{uj}(e_k) \cup g^l_{uj}(e_k), N(f^l_{uj}(e_k) \cup g^l_{uj}(e_k)), f^c_{uj}(e_k) \cup g^c_{uj}(e_k) \right) \subseteq U \right) \right) \right\}
\]

\[
= \left\{ e \in E \left| \exists u \in U \left(N(\mu_{uj}(e_k) \cup \nu_{uj}(e_k)) \subseteq U \right) \right) \right\}
\]

\[
\cap \left\{ e \in E \left| \exists u \in U \left(N(\mu_{uj}(e_k)) : u_j \in U \right) \right) \right\}
\]

\[
= \left\{ e \in E \left| \exists u \in U \left(\mu_{uj}(e_k) \subseteq U \right) \right) \right\}
\]

(2) The techniques used to prove (2) are similar to those used for (1), therefore we skip the proof. □

Definition 28. Let f_μ and $g_\nu \in \mathcal{P}(\mathcal{N}(U, E))$. Then ‘AND’ product of PNS-set f_μ and g_ν, denoted by $f_\mu \land g_\nu$, is defined as follows:

\[
f_\mu \land g_\nu = \left\{ (e_k, e_l) \mid f^l_{lj}(e_k) \land g^l_{lj}(e_l), f^c_{lj}(e_k) \lor g^c_{lj}(e_l), (\mu_{lj}(e_k) \land \nu_{lj}(e_l)) : (e_k, e_l) \in E \times E, j, k, l \in A \right\}
\]

Definition 29. Let f_μ and $g_\nu \in \mathcal{P}(\mathcal{N}(U, E))$. Then ‘OR’ product of PNS-set f_μ and g_ν, denoted by $f_\mu \lor g_\nu$, is defined as follows:

\[
f_\mu \lor g_\nu = \left\{ (e_k, e_l) \mid f^l_{lj}(e_k) \lor g^l_{lj}(e_l), f^c_{lj}(e_k) \lor g^c_{lj}(e_l), (\mu_{lj}(e_k) \lor \nu_{lj}(e_l)) : (e_k, e_l) \in E \times E, j, k, l \in A \right\}
\]
4. PNS-decision making method

In this section, we construct a decision making method over the possibility neutrosophic soft set that is called possibility neutrosophic soft decision making method (PNS-decision making method).

Definition 30. Let \(g_\nu, h_\mu \in \mathcal{P}(U, E) \), \(f_\mu = g_\nu \land h_\mu \), and \(f_\mu^I, f_\mu^F \) and \(f_\mu^S \) be the truth, indeterminacy and falsity matrices of \(\land \)-product matrix, respectively. Then, weighted matrices of \(f_\mu^I, f_\mu^F \) and \(f_\mu^S \), denoted by \(\land^I, \land^F \) and \(\land^S \), are defined as follows:

\[
\land^I(e_{ij}, u_r) = (g_\nu(e_{ij}) \land h_\mu(e_{ij})u_r) + (\nu_h(e_{ij}) \land \rho_h(e_{ij})u_r) - (g_\nu(e_{ij}) \land \nu_h(e_{ij})u_r) \times (\mu_h(e_{ij}) \land \rho_h(e_{ij})u_r)
\]

\[
\land^F(e_{ij}, u_r) = (g_\nu(e_{ij}) \land h_\mu(e_{ij})u_r) \times (\nu_h(e_{ij}) \land \rho_h(e_{ij})u_r)
\]

\[
\land^S(e_{ij}, u_r) = (g_\nu(e_{ij}) \land h_\mu(e_{ij})u_r) \times (\nu_h(e_{ij}) \land \rho_h(e_{ij})u_r)
\]

for \(j, k, r \in A \).

Definition 31. Let \(g_\nu, h_\mu \in \mathcal{P}(U, E) \), \(f_\mu = g_\nu \land h_\mu \), and let \(\land^I, \land^F \) and \(\land^S \) be the weighed matrices of \(f_\mu^I, f_\mu^F \) and \(f_\mu^S \), respectively. Then, in the weighted matrices \(\land^I, \land^F \) and \(\land^S \) scores of \(u_n \in U \), denoted by \(s^I(u_n) \), \(s^F(u_n) \) and \(s^S(u_n) \), are defined as follows:

\[
s^I(u_n) = \sum_{k, j \in A} \delta^I_{kj}(u_n)
\]

\[
s^F(u_n) = \sum_{k, j \in A} \delta^F_{kj}(u_n)
\]

\[
s^S(u_n) = \sum_{k, j \in A} \delta^S_{kj}(u_n)
\]

where

\[
\delta^I_{kj}(u_n) = \begin{cases} \land^I(e_{kj}, u_n), & \land^I(e_{kj}, u_n) = \max(\land^I(e_{kj}, u_m) : u_m \in U) \\ 0, & \text{otherwise} \end{cases}
\]

\[
\delta^F_{kj}(u_n) = \begin{cases} \land^F(e_{kj}, u_n), & \land^F(e_{kj}, u_n) = \max(\land^F(e_{kj}, u_m) : u_m \in U) \\ 0, & \text{otherwise} \end{cases}
\]

\[
\delta^S_{kj}(u_n) = \begin{cases} \land^S(e_{kj}, u_n), & \land^S(e_{kj}, u_n) = \max(\land^S(e_{kj}, u_m) : u_m \in U) \\ 0, & \text{otherwise} \end{cases}
\]

Definition 32. Let \(s^I(u_n), s^F(u_n) \) and \(s^S(u_n) \) be scores of \(u_n \in U \) in the weighted matrices \(\land^I, \land^F \) and \(\land^S \). Then, decision score of \(u_n \in U \), denoted by \(ds(u_n) \), is defined by

\[
ds(u_n) = s^I(u_n) - s^F(u_n) - s^S(u_n)
\]

Now, we construct a PNS-decision making method by the following algorithm:

Algorithm.

Step 1: Input the possibility neutrosophic soft sets,
Step 2: Construct the \(\land \)-product matrix,
Step 3: Construct the truth, indeterminacy and falsity matrices of the \(\land \)-product matrix,
Step 4: Construct the weighed matrices \(\land^I, \land^F \) and \(\land^S \),
Step 5: Compute score of \(u_n \in U \), for each of the weighted matrices,
Step 6: Compute decision score, for all \(u_n \in U \),
Step 7: The optimal decision is to select \(u_i = \max ds(u_i) \).

Example 5. Assume that \(U = \{u_1, u_2, u_3\} \) is a set of houses and \(E = \{e_1, e_2, e_3\} = \{\text{cheap, large, moderate}\} \) is a set of parameters which is attractiveness of houses. Suppose that Mr. X wants to buy the most suitable house.

Step 1: Based on the choice parameters of Mr. X, possibility neutrosophic soft sets \(g_\nu \) and \(h_\mu \) constructed by two experts are as follows:

\[
g_\nu = \begin{bmatrix} g_\nu(e_1) = \begin{cases} u_1 = (0.5, 0.3, 0.7) & 0.6 \\ u_2 = (0.6, 0.2, 0.5) & 0.2 \\ u_3 = (0.7, 0.6, 0.5) & 0.4 \end{cases} \\ g_\nu(e_2) = \begin{cases} u_1 = (0.35, 0.2, 0.6) & 0.4 \\ u_2 = (0.7, 0.8, 0.3) & 0.5 \\ u_3 = (0.2, 0.4, 0.4) & 0.6 \end{cases} \\ g_\nu(e_3) = \begin{cases} u_1 = (0.7, 0.2, 0.5) & 0.5 \\ u_2 = (0.4, 0.5, 0.2) & 0.3 \\ u_3 = (0.5, 0.3, 0.6) & 0.2 \end{cases} \end{bmatrix}
\]

Please cite this article in press as: F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method, Appl. Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.07.013
Step 2: Let us consider possibility neutrosophic soft set \wedge-product $f_{\mu} = g_\wedge h_\mu$ which is the mapping $\wedge : E \times E \rightarrow \mathcal{N}(U) \times I(U)$ given as follows:

$$
\begin{array}{ccc}
\wedge & u_1, \mu & u_2, \mu & u_3, \mu \\
\hline
e_{11} & (0.3, 0.4, 0.7, 0.2) & (0.6, 0.3, 0.5, 0.2) & (0.4, 0.6, 0.5, 0.3) \\
e_{12} & (0.4, 0.6, 0.7, 0.3) & (0.2, 0.5, 0.5, 0.2) & (0.4, 0.6, 0.5, 0.4) \\
e_{13} & (0.2, 0.3, 0.7, 0.6) & (0.6, 0.4, 0.5, 0.2) & (0.6, 0.6, 0.5, 0.4) \\
e_{21} & (0.3, 0.4, 0.6, 0.2) & (0.7, 0.8, 0.4, 0.5) & (0.2, 0.5, 0.5, 0.3) \\
e_{22} & (0.35, 0.6, 0.6, 0.3) & (0.2, 0.8, 0.3, 0.5) & (0.2, 0.6, 0.5, 0.6) \\
e_{23} & (0.2, 0.2, 0.6, 0.4) & (0.7, 0.8, 0.5, 0.4) & (0.2, 0.4, 0.5, 0.4) \\
e_{31} & (0.3, 0.4, 0.5, 0.2) & (0.4, 0.5, 0.4, 0.3) & (0.4, 0.5, 0.6, 0.2) \\
e_{32} & (0.4, 0.6, 0.5, 0.3) & (0.2, 0.5, 0.3, 0.3) & (0.4, 0.6, 0.6, 0.2) \\
e_{33} & (0.2, 0.2, 0.6, 0.5) & (0.4, 0.5, 0.5, 0.3) & (0.5, 0.4, 0.6, 0.2) \\
\end{array}
$$

Matrix representation of \wedge-product

Step 3: We construct matrices f^t_{μ}, f^i_{μ} and f^f_{μ} as follows:

$$
\begin{array}{ccc}
\wedge & u_1, \mu & u_2, \mu & u_3, \mu \\
\hline
e_{11} & (0.3, 0.2) & (0.6, 0.2) & (0.4, 0.3) \\
e_{12} & (0.4, 0.3) & (0.2, 0.2) & (0.4, 0.4) \\
e_{13} & (0.2, 0.6) & (0.6, 0.2) & (0.6, 0.4) \\
e_{21} & (0.3, 0.2) & (0.7, 0.5) & (0.2, 0.3) \\
e_{22} & (0.35, 0.3) & (0.2, 0.5) & (0.2, 0.6) \\
e_{23} & (0.2, 0.4) & (0.7, 0.4) & (0.2, 0.4) \\
e_{31} & (0.3, 0.2) & (0.4, 0.3) & (0.4, 0.2) \\
e_{32} & (0.4, 0.3) & (0.2, 0.3) & (0.4, 0.2) \\
e_{33} & (0.2, 0.5) & (0.4, 0.3) & (0.5, 0.2) \\
\end{array}
$$

Matrix f^t_{μ} of \wedge-product

$$
\begin{array}{ccc}
\wedge & u_1, \mu & u_2, \mu & u_3, \mu \\
\hline
e_{11} & (0.4, 0.2) & (0.3, 0.2) & (0.6, 0.3) \\
e_{12} & (0.6, 0.3) & (0.5, 0.2) & (0.6, 0.4) \\
e_{13} & (0.3, 0.6) & (0.4, 0.2) & (0.6, 0.4) \\
e_{21} & (0.4, 0.2) & (0.8, 0.5) & (0.5, 0.3) \\
e_{22} & (0.6, 0.3) & (0.8, 0.5) & (0.6, 0.6) \\
e_{23} & (0.2, 0.4) & (0.8, 0.4) & (0.4, 0.4) \\
e_{31} & (0.4, 0.2) & (0.5, 0.3) & (0.5, 0.2) \\
e_{32} & (0.6, 0.3) & (0.5, 0.3) & (0.6, 0.2) \\
e_{33} & (0.2, 0.5) & (0.5, 0.3) & (0.4, 0.2) \\
\end{array}
$$

Matrix f^i_{μ} of \wedge-product
Step 4: We obtain weighted matrices \wedge^t, \wedge^i and \wedge^f by using Definition 30 as follows:

$$
\begin{pmatrix}
\wedge^t \\
e_{11} & (0.7, 0.2) & (0.5, 0.2) & (0.5, 0.3) \\
e_{12} & (0.7, 0.3) & (0.5, 0.2) & (0.5, 0.4) \\
e_{13} & (0.7, 0.6) & (0.5, 0.2) & (0.5, 0.4) \\
e_{21} & (0.6, 0.2) & (0.4, 0.5) & (0.5, 0.3) \\
e_{22} & (0.6, 0.3) & (0.3, 0.5) & (0.5, 0.6) \\
e_{23} & (0.6, 0.4) & (0.5, 0.4) & (0.5, 0.4) \\
e_{31} & (0.5, 0.2) & (0.4, 0.3) & (0.6, 0.2) \\
e_{32} & (0.5, 0.3) & (0.3, 0.3) & (0.6, 0.2) \\
e_{33} & (0.6, 0.5) & (0.5, 0.3) & (0.6, 0.2)
\end{pmatrix}
$$

Step 5: For all $u \in U$, we find scores by using Definition 31 as follows:

$$
\begin{align*}
s^t(u_1) &= 1, 18, \\
s^t(u_2) &= 2, 89, \\
s^t(u_3) &= 2, 68
\end{align*}
$$

$$
\begin{align*}
s^i(u_1) &= 0, 18, \\
s^i(u_2) &= 1, 42, \\
s^i(u_3) &= 0, 66
\end{align*}
$$

$$
\begin{align*}
s^f(u_1) &= 1, 32, \\
s^f(u_2) &= 0, 32, \\
s^f(u_3) &= 0, 57
\end{align*}
$$

Step 6: For all $u \in U$, we find scores by using Definition 31 as follows:

$$
\begin{align*}
ds^t(u_1) &= 1, 18 \cdot 0 = 1, 18 - 1, 32 = -0, 32 \\
ds^t(u_2) &= 2, 89 \cdot 1, 42 - 0, 32 = 0, 90 \\
ds^t(u_3) &= 2, 68 \cdot 0, 66 - 0, 57 = 1, 45
\end{align*}
$$

Step 7: Then the optimal selection for Mr. X is u_3.

5. Conclusion

In this paper, we introduced the concept of possibility neutrosophic soft set and possibility neutrosophic soft set operations, and studied some properties related with operations defined. Also, we presented a decision making method based on possibility neutrosophic soft set, and gave an application of this method to solve a decision making problem. The proposed method may be used in many different applications to solve the related problems. In future, researchers may study on set theoretical operations of possibility neutrosophic soft sets and integrate decision making methods to the TOPSIS, ELECTRE and other some decision making methods.
Acknowledgements

The author would like to thank the anonymous referees for their constructive comments as well as helpful suggestions from the Editor-in-Chief which helped in improving this paper significantly. The author is also grateful to Associate Professor Naim Çağman for his help to improve the linguistic quality of this paper.

References