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Abstract: The neutrosophic cubic sets are an extension of the neutrosophic sets on the cubic sets.
It contains three variables, which respectively represent the membership degree, non-membership
degree and uncertainty of the element to the set. The score function is an important indicator in the
multi-attribute decision-making problem. In this paper, we consider the possibility that an element
belongs to a set and put forward the definition of possibility neutrosophic cubic sets. On this basis, we
introduce some related concepts and give the binary operation of possibility neutrosophic cubic sets
and use specific examples to supplement the corresponding definition. Meanwhile, a decision-making
method based on the score function of possibility neutrosophic cubic sets is proposed and a numerical
example is given to illustrate the effectiveness of the proposed method.
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1. Introduction

Many practical problems in life are uncertain, such as medical diagnosis, project site selection,
economic activities and so on. Therefore, some scholars have put forward many new theories to solve
these practical problems. In 1965, Zadeh [1] first proposed the fuzzy sets (FSs), breaking the idea of
classical set theory, thinking that things have a certain degree of ambiguity, and using ambiguities can
more accurately express many difficult-to-describe problems in real life. The membership function
is the basis of fuzzy set theory and a generalization of classical set theory. It shows the degree of
membership of an element to a set. The value of the membership function is in the interval [0,1]. The
closer the value is to 1, it indicates the degree of membership is greater. Generally, what we call fuzzy
sets is more abstract, but the membership of fuzzy sets is a specific real number; therefore, fuzzy sets
have significant advantages in real life and have been widely used [2–5]. Based on the advantages
of fuzzy sets, there has been a lot of studies since then which have extended the research on fuzzy
sets [6–9]. Due to the complexity of the problem, the fuzzy set theory presents some shortcomings
in the process of solving the problem. Therefore, some researchers put forward various extended
forms of fuzzy sets, such as intuitionistic fuzzy sets (IFSs) [10], interval valued intuitionistic fuzzy sets
(IVIFSs) [11], hesitant fuzzy sets (HFSs) [12], and various extension sets of fuzzy sets have been used
to solve many uncertain problems [13–16].

Intuitionistic fuzzy sets (IFSs), as an extended form of fuzzy sets (FSs), not only consider the
membership degree of an element to the set, but also consider the non-membership degree of
an element, so it is widely used. Interval-valued intuitionistic fuzzy sets (IVIFSs) expanded the
membership degree and non-membership degree of elements from the numerical value to the subset
of the interval [0,1]. These extended fuzzy sets solved many practical problems and attracted more
and more scholars to research them. As a good tool to solve incomplete, uncertain and inconsistent
problems, neutrosophic sets (NSs) were first proposed by Smarandache [17,18]. In solving practical
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problems, neutrosophic sets not only consider the membership degree and non-membership degree
of elements, but also consider the uncertainty and inconsistency of elements. Compared with fuzzy
sets and intuitionistic fuzzy sets, neutrosophic sets express the incompleteness and inconsistency of
an element to set, which is more suitable for solving practical problems. However, all functions of
neutrosophic sets are defined on a non-standard interval ]−0, 1+[, where T(x), I(x), F(x) : X →]−0, 1+[,
and T(x), I(x) and F(x) satisfy the inequality: −0 ≤ T(x) + I(x) + F(x) ≤ 3+. The non-standard
interval of neutrosophic sets gives it some defects in solving many practical problems in real life.
Therefore, many extended forms of neutrosophic sets (NSs) have been proposed successively, such as
single value neutrosophic sets (SVNSs) [19] and interval neutrosophic sets (INSs) [20], and so forth,
and have been applied to many practical problems [21–23]. In 2013, F. Smarandache [20] proposed
single-valued neutrosophic sets(SVNSs). The single-valued neutrosophic sets defined the value of the
function of the neutrosophic sets in the standard interval [0,1]. Therefore, single-valued neutrosophic
sets have a good application. Huang [24] proposed the distance measure and similarity measure
of single-valued neutrosophic sets, and illustrated its application in decision-making by numerical
examples. In 2017, Shahzadi [25] proposed the application of distance measure and similarity measure
of single-valued neutrosophic sets and applied them to medical diagnosis. In 2013, Ye [26] proposed
the application of correlation coefficients of single-valued neutrosophic sets in multi-attribute decision
making problems. In order to better describe the uncertainty, incompleteness and inconsistency
of many problems in life, Wang et al. [20] proposed interval neutrosophic sets. Then, Broumi [27]
introduced correlation coefficient of interval neutrosophic sets. Chi [28] put forward the application of
interval neutrosophic sets in multi-attribute decision making.

In 2010, Young [29] proposed the definition of cubic sets (CSs) and discussed its related properties.
By extending cubic sets to neutrosophic sets, Young [30] put forward the concept of neutrosophic
cubic sets (NCSs), defined internal and external neutrosophic cubic sets and discussed its related
properties. Subsequently, some researchers have further studied the neutrosophic cubic sets. Tu [31]
proposed the application of a similarity measure of neutrosophic cubic sets in multi-attribute decision
making. Ye [32] proposed the application of the aggregation operator of neutrosophic cubic sets in
multi-attribute decision making. Ye [33] also put forward the R-union of the neutrosophic cubic sets
and R-intersection of neutrosophic cubic sets. In 2019, Xue [34] proposed the correlation coefficient of
neutrosophic cubic sets and illustrated its application in decision-making and pattern recognition by
numerical examples.

In multiple attribute decision making problems, the contain probability of an element will
produce significant influence the result of the decision. The neutrosophic cubic sets only studied
the membership degree, non-membership degree and uncertainty of an element, but there is no
research on the probability that an element belongs to a set, therefore, this paper puts forward the
concept of possibility neutrosophic cubic sets, studies some related concepts of possibility neutrosophic
cubic sets, and the concrete examples illustrate the rationality of them. Finally, according to the score
function, as an important indicator in the multi-attribute decision-making problem, and combining the
scoring function index, we give a solution to solve the multiple attribute decision making problems in
possibility neutrosophic cubic sets, and the specific numerical example illustrates the effectiveness of
the method. This paper considers the application of neutrosophic cubic sets in multi-attribute decision
making problems from a new point of view, which makes the decision process more comprehensive
and the decision result better.

Possibility neutrosophic cubic sets is a generalization of neutrosophic cubic sets. The neutrosophic
cubic sets consider the uncertainty, inconsistencies and incompleteness of the problem when solving
practical problems, so it has been widely studied by many researchers. On the basis of testing the
uncertainty, inconsistencies and incompleteness, the possibility neutrosophic cubic sets is added
according to the specific situation, which makes the solution of the problem more in line with the
objective facts. In neutrosophic cubic sets, the possibility of each element is regarded as 1, so that the
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weight of each element is equal. However, in the possibility neutrosophic cubic sets, the possibility of
each element is considered to be in the interval of [0,1], which conforms to the objective situation.

Alkhazaleh [35] introduced the definition and properties of possibility fuzzy soft set in 2015, and
applied it to multi-attribute decision making problems. Bashir [36] proposed a possibility intuitionistic
fuzzy soft set and studied its application in decision-making problems. Yang [37] proposed the
definition of a possibility interval valued fuzzy soft set and discussed the related properties and
operator operations, and illustrated the application of a possibility fuzzy soft set by numerical examples.
In 2014, Karaaslan [38,39] proposed the definition of possibility neutrosophic soft fuzzy sets, discussed
its operation and properties, and studied its application in multi-attribute decision-making. Hassan [40]
introduced some related concepts of possibility neutrosophic soft set, and put forward the possibility
neutrosophic soft decision method. These sets of introduced probabilities do prove to be more efficient
at solving real problems.

In summary, the main contributions of this article are as follows:
First, in this paper, we put forward a new concept of possibility neutrosophic cubic sets, and the

empty sets, complete sets, complement sets, distance measure and similarity measure of the possibility
neutrosophic cubic sets are defined. At the same time, we give the binary operation of possibility
neutrosophic cubic sets.

Second, possibility neutrosophic cubic sets not only consider the membership, non-membership
and uncertainty of elements, but also consider the possibility of each element in the set, giving different
weights to elements, making the distribution of elements closer to the overall level of the research
problem, so as to make the decision result more real.

Third, a simple linear model is proposed to solve the multi-attribute decision-making problem,
which makes the solution more convenient and relatively simple.

The structure of this article is as follows—in Section 2, the basic concepts of CSs, NSs, SVNSs,
INSs and NCSs are given. The related concepts and properties of possibility neutrosophic cubic sets
are proposed in Section 3. In Section 4, a decision method is given and the feasibility and superiority
of the method is illustrated by comparative analysis. Section 5 concludes the paper.

2. Preliminaries

In this section, we review some definitions to prepare for this article. We first introduce some of
the basic concepts, including fuzzy sets (FSs), interval fuzzy sets (IFSs), neutrosophic sets (NSs), single
valued neutrosophic sets( SVNSs), interval neutrosophic sets (INSs), cubic sets (CSs) and neutrosophic
cubic sets (NCSs), and so forth.

Definition 1. [1] Let X be a universe, then the fuzzy sets (FSs) µ be defined as follows

µ = {µ(x)|x ∈ X},

where µ(x) is membership of x to set µ.
For two fuzzy sets µ(x), ν(x) in X, the join (∨) and meet (∧) of µ and ν are defined by

(µ ∨ ν)(x) = max{µ(x), ν(x)},

(µ ∧ ν)(x) = min{µ(x), ν(x)}.

If the fuzzy sets µ(x) and ν(x) in X satisfy inequality µ(x) ≤ ν(x), for all x ∈ X, we called µ(x) is the
fuzzy subset of ν(x).

Definition 2. [10] Let X be an universe, then the interval value fuzzy sets (IVFs) Ψ is defined as follows

Ψ = {[Ψ−(x), Ψ+(x)]|x ∈ X},
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where [Ψ−(x), Ψ+(x)] is membership of x to set Ψ.
For any interval valued fuzzy sets Ψ1, and Ψ2 in X, the union and intersection of Ψ1, and Ψ2 are defined

as follows:

(Ψ1 ∪Ψ2)(x) = [max(Ψ−1 (x), Ψ−2 (x)), max(Ψ+
1 (x), Ψ+

2 (x))],

(Ψ1 ∩Ψ2)(x) = [min(Ψ−1 (x), Ψ−2 (x)), min(Ψ+
1 (x), Ψ+

2 (x))].

Definition 3. [18] Let X be an universe. The form of neutrosophic sets (NSs) λ in X be defined as

λ = {< x, T(x), I(x), F(x) > |x ∈ X},

where T, I, F : X→]−0, 1+[ define the degree of truth membership function, indeterminacy membership function
and falsehood membership function of x ∈ X to λ, respectively, and −0 ≤ T(x) + I(x) + F(x) ≤ 3+.

Due to neutrosophic sets being defined on a non-standard interval, from a scientific or engineering
perspective, the neutrosophic sets need to be specified. Otherwise, it will be difficult to apply in real
applications.

Definition 4. [19] Let X be a universe. The form of single valued neutrosophic set (SVNS) Γ in X be defined as

Γ = {< x, T(x), I(x), F(x) > |x ∈ X},

where T, I, F : X→ [0, 1] define the degree of truth membership function, indeterminacy membership function
and falsehood membership function of x ∈ X to Γ, respectively, and 0 ≤ T(x) + I(x) + F(x) ≤ 3.

Definition 5. [20] Let X be a universe. An interval neutrosophic set (INS) A in X is a structure of the form:

A = {< x, AT(x), AI(x), AF(x) > |x ∈ X}.

where AT , AI , and AF are interval-valued fuzzy sets in X, respectively, which are called an interval truth
membership function, an interval indeterminacy membership function and an interval falsity membership
function, respectively.

Definition 6. [29] let X be a universe, then a cubic set (CS) has the following form

Ω = {< x, Ψ(x), µ(x) > |x ∈ X},

in which Ψ is an interval value fuzzy set (IVF) and µ is a fuzzy set (FS).

Definition 7. [30] Let X be a universe, the neutrosophic cubic sets (NCSs) Φ is defined as:

Φ = {< x, A(x), λ(x) > |x ∈ X},

where A is an INS and λ is an NS. An NCS can be denoted as Φ =< A, λ >.

Definition 8. [30] Let X be a universe, ΦA = {A, λ} and ΦB = {B, β} are two NCSs in X where

ΦA = {< x, A(x), λ(x) > |x ∈ X},

ΦB = {< x, B(x), β(x) > |x ∈ X}.

then,
(a) (Equality)ΦA = ΦB ⇐⇒ A = B and λ = β.
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(b) (R-order)ΦA ⊆R ΦB ⇐⇒ A ⊆ B and λ ≥ β.

Definition 9. [30] let X be a universe, for neutrosophic cubic sets Φi = {Ai, λi} where

Ai = {< AiT(x), AiI(x), AiF(x) > |x ∈ X},

λi = {< λiT(x), λiI(x), λiF(x) > |x ∈ X},

for i ∈ J and J is any index set, we define
(1)

⋃
R Φi = (

⋃
Ai,

∧
λi) (R− union)

(2)
⋂

R Φi = (
⋂

Ai,
∨

λi) (R− intersection)

where⋃
Ai = {< (

⋃
AiT)(x), (

⋃
AiI)(x), (

⋃
AiF)(x) > |x ∈ X},∨

λi = {< (
∨

λiT)(x), (
∨

λiI)(x), (
∨

λiF)(x) > |x ∈ X},⋂
Ai = {< (

⋂
AiT)(x), (

⋂
AiI)(x), (

⋂
AiF)(x) > |x ∈ X},∧

λi = {< (
∧

λiT)(x), (
∧

λiI)(x), (
∧

λiF)(x) > |x ∈ X}.

Definition 10. [30] Let X be a universe, Φ is a NCS. Then, the complement of Φ = {A, λ} is defined to be
the neutrosophic cubic set Φc = {Ac, λc} where Ac = {< Ac

T(x), Ac
I(x), Ac

F(x) > |x ∈ X} is an interval
neutrosophic set in X and λc = {< λc

T(x), λc
I(x), λc

F(x) > |x ∈ X} is a neutrosophic set in X.

Definition 11. [30] Let X be a universe, ΦA = {A, λ}, ΦB = {B, β}, ΦC = {C, γ} and ΦD = {D, δ} are
neutrosophic cubic sets, then we have

(1) if ΦA ⊆R ΦB and ΦB ⊆R ΦC, then ΦA ⊆R ΦC.
(2) if ΦA ⊆R ΦB then (ΦB)

c ⊆R (ΦA)
c.

(3) if ΦA ⊆R ΦB and ΦA ⊆R ΦC, then ΦA ⊆R ΦB ∩R ΦC.
(4) if ΦA ⊆R ΦB and ΦC ⊆R ΦB, then ΦA ∪R ΦC ⊆R ΦB.
(5)if ΦA ⊆R ΦB and ΦC ⊆R ΦD, then ΦA ∪R ΦC ⊆R ΦB ∪R ΦD and ΦA ∩R ΦC ⊆R ΦB ∩R ΦD.

3. Possibility Neutrosophic Cubic Sets

In this part, we propose the definition of possibility neutrosophic cubic sets, give some related
definitions and binary operation of possibility neutrosophic cubic sets, and discuss its related
properties.

Definition 12. Let X be a universe, E be an attribute set, then a possibility neutrosophic cubic sets PX over X
has the form as follows

PX = {(x,< AT(x), AI(x), AF(x) >,< T(x), I(x), F(x) >, µ(x))|x ∈ X}

where AT(x), AI(x) and AF(x) is interval-valued fuzzy sets, T(x), I(x) and F(x) is fuzzy sets, µ(x) is the
possibility of element x ∈ X to PX , denoted by PX = (ΦA, µ).

Example 1. Let X = {x1, x2, x3} be a set of three companies, and let E = {e1, e2, e3} be a set of attributes,
where e1 =risk, e2 =growth rate, and e3 = environment. According to the above definition, when the
decision-maker evaluates alternative x1 under attribute e1, the evaluation information given as follows:

PX(x1)(e1) = {〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7}.
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The evaluation value for alternative under all attributes constitutes the possibility neutrosophic cubic sets
are as follows

PX(x1) =

(〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.6, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]〉, 〈0.7, 0.4, 0.1〉, 0.8)

 .

Similarly, the evaluation value of different alternatives under the same attribute can also be given in the
form of possibility neutrosophic cubic sets,

PX(x2) =

(〈[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.5)
(〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.3, 0.4〉, 0.8)
(〈[0.5, 0.7], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.2, 0.3〉, 0.7)

 ,

PX(x3) =

(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.3, 0.4], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.6)

 .

For the same alternative, different decision makers may give different possibility neutrosophic cubic sets,
such as

QX(x1) =

(〈[0.5, 0.7], [0.1, 0.3], [0.1, 0.2]〉, 〈0.6, 0.1, 0.3〉, 0.7)
(〈[0.7, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.8, 0.1, 0.1〉, 0.6)
(〈[0.7, 0.9], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.3〉, 0.8)

 ,

QX(x2) =

(〈[0.5, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.5)
(〈[0.6, 0.7], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.1, 0.4〉, 0.8)
(〈[0.5, 0.7], [0.2, 0.3], [0.1, 0.3]〉, 〈0.7, 0.2, 0.3〉, 0.8)

 ,

QX(x3) =

(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.5)
(〈[0.8, 0.9], [0.2, 0.4], [0.1, 0.2]〉, 〈0.9, 0.2, 0.2〉, 0.8)

 .

Definition 13. Let PX = {(x,< AT(x), AI(x), AF(x) >,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X},
QX = {(x,< BT(x), BI(x), BF(x) >,< TB(x), IB(x), FB(x) >, ν(x))|x ∈ X} are two possibility
neutrosophic cubic sets, then PX is called possibility neutrosophic cubic subsets of QX, expressed by
mathematical symbols such as PX ⊆ QX , if

(1)µ(x) ≤ ν(x), for all x ∈ X;
(2)AT(x) ≤ BT(x), AI(x) ≥ BI(x), AF(x) ≥ BF(x), TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥

FB(x), for all x ∈ X.

Example 2. Let X = {x1, x2, x3} be a set of three schools, and let E = {e1, e2, e3} be a set of attributes, where
e1 =cost, e2 = atmosphere and e3 =teaching quality. The two experts give the possibility neutrosophic cubic
sets for evaluating the value of each alternative under each attribute.

PX(x1) =

(〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.6, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]〉, 〈0.7, 0.4, 0.1〉, 0.8)

 ,

PX(x2) =

(〈[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.5)
(〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.3, 0.4〉, 0.8)
(〈[0.5, 0.7], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.2, 0.3〉, 0.7)

 ,
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PX(x3) =

(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.3, 0.4], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.6)

 ,

And another decision maker gives the following possibility neutrosophic cubic set.

QX(x1) =

(〈[0.8, 0.9], [0.0, 0.1], [0.1, 0.2]〉, 〈0.8, 0.0, 0.1〉, 0.8)
(〈[0.7, 0.8], [0.0, 0.1], [0.0, 0.1]〉, 〈0.7, 0.0, 0.1〉, 0.8)
(〈[0.7, 0.9], [0.2, 0.3], [0.0, 0.1]〉, 〈0.8, 0.2, 0.0〉, 0.9)

 ,

QX(x2) =

(〈[0.6, 0.8], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.1, 0.1〉, 0.6)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.7, 0.1, 0.2〉, 0.9)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.8)

 ,

QX(x3) =

(〈[0.8, 0.9], [0.0, 0.1], [0.0, 0.1]〉, 〈0.9, 0.0, 0.1〉, 0.7)
(〈[0.7, 0.8], [0.0, 0.1], [0.0, 0.2]〉, 〈0.8, 0.1, 0.1〉, 0.8)
(〈[0.7, 0.8], [0.2, 0.3], [0.1, 0.2]〉, 〈0.8, 0.1, 0.1〉, 0.7)

 .

Then, according to the above definition we can get PX(xi) is a possibility neutrosophic cubic subset of
QX(xi), (i = 1, 2, 3) expressed as PX ⊆ QX .

Definition 14. Let PX = (ΦA, µ) and QX = (ΦB, ν) be two possibility neutrosophic cubic sets, if ΦA = ΦB
and µ = ν, then PX = (ΦA, µ) and QX = (ΦB, ν) are called equal, denoted by PX = QX .

Combined with the concept of internal and external neutrosophic cubic sets [30], this paper gives
the definition of possibility internal and external neutrosophic cubic sets.

Definition 15. Let X be a universe, PX = {(x,< [A−T (x), A+
T (x)], [A−I (x), A+

I (x)], [A−F (x), A+
F (x)] >

,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} be a possibility neutrosophic cubic set in X, PX is said to be
possibility internal neutrosophic cubic set, if for all x ∈ X, we have

TA(x) ∈ [A−T (x), A+
T (x)],

IA(x) ∈ [A−I (x), A+
I (x)],

FA(x) ∈ [A−F (x), A+
F (x)].

Example 3. Let

PX =

(〈[0.7, 0.9], [0.0, 0.1], [0.0, 0.1]〉, 〈0.8, 0.0, 0.1〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.7, 0.1, 0.2〉, 0.9)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.8)

 ,

be a possibility neutrosophic cubic set, then it is said to be a possibility internal neutrosophic cubic set.

Definition 16. Let X be a universe, PX = {(x,< [A−T (x), A+
T (x)], [A−I (x), A+

I (x)], [A−F (x), A+
F (x)] >

,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} be a possibility neutrosophic cubic set in X, PX is said to be
possibility external neutrosophic cubic set, if for all x ∈ X, we have

TA(x) /∈ [A−T (x), A+
T (x)],

IA(x) /∈ [A−I (x), A+
I (x)],

FA(x) /∈ [A−F (x), A+
F (x)].
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Example 4. Let

PX =

(〈[0.8, 0.9], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.3, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.5, 0.3〉, 0.9)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.3]〉, 〈0.5, 0.3, 0.5〉, 0.8)

 ,

be a possibility neutrosophic cubic set, then it is said to be a possibility external neutrosophic cubic set.

Property 1. Let X be an universe, PX = {(x,< [A−T (x), A+
T (x)], [A−I (x), A+

I (x)], [A−F (x), A+
F (x)] >,<

TA(x),
IA(x), FA(x) >, µ(x))|x ∈ X} and QX = {(x,< [B−T (x), B+

T (x)], [B−I (x), B+
I (x)], [B−F (x), B+

F (x)] >,<
TB(x),
IB(x), FB(x) >, ν(x))|x ∈ X} are two possibility internal neutrosophic cubic sets, if PX and QX satisfy the
following conditions for all x ∈ X

max{A−T (x), B−T (x)} ≤ (λ ∧ β)(x),

max{A−I (x), B−I (x)} ≤ (λ ∧ β)(x),

max{A−F (x), B−F (x)} ≤ (λ ∧ β)(x).

Then, the R-union of PX and QX still be possibility internal neutrosophic cubic sets, where

PX ∪R QX = (ΦA ∩ΦB, µ ∧ ν).

in which λ =< TA(x), IA(x), FA(x) >, β =< TB(x), IB(x), FB(x) >.

Proof. Due to the PX and QX are possibility internal neutrosophic cubic sets, then we have TA(x) ∈
[A−T (x), A+

T (x)], IA(x) ∈ [A−I (x), A+
I (x)], FA(x) ∈ [A−F (x), A+

F (x)], and TB(x) ∈ [B−T (x), B+
T (x)],

IB(x) ∈ [B−I (x), B+
I (x)], FB(x) ∈ [B−F (x), B+

F (x)]. According to the meet of fuzzy sets, we have
(λ ∧ β)(x) = {min{TA, TB},
min{IA, IB}, min{FA, FB}}. By definition of possibility internal neutrosophic cubic sets, min{TA, TB} ≤
max{T+

A , T+
B }, min{IA, IB} ≤ max{I+A , I+B }, min{FA, FB} ≤ max{F+

A , F+
B }. Combined with

known conditions max{A−T (x), B−T (x)} ≤ min{TA, TB}, max{A−I (x), B−I (x)} ≤ min{TA, TB},
max{A−F (x), B−F (x)} ≤ min{TA, TB}. Then we have the R-union of PX and QX still be possibility
internal neutrosophic cubic sets.

Example 5. Let

PX =

(〈[0.8, 0.9], [0.1, 0.2], [0.0, 0.1]〉, 〈0.8, 0.2, 0.1〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.6, 0.2, 0.1〉, 0.8)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.3]〉, 〈0.8, 0.2, 0.2〉, 0.8)

 ,

and

QX =

(〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.2, 0.3〉, 0.7)
(〈[0.7, 0.9], [0.3, 0.5], [0.1, 0.2]〉, 〈0.8, 0.5, 0.2〉, 0.9)
(〈[0.6, 0.8], [0.2, 0.3], [0.1, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.6)

 ,

be two possibility internal neutrosophic cubic sets, and satisfy the conditions in the above definition. Then

PX ∪R QX =

(〈[0.6, 0.7], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.2, 0.1〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.6, 0.2, 0.1〉, 0.8)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.2, 0.2〉, 0.6)

 ,

be possibility internal neutrosophic cubic set.
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Property 2. Let X be an universe, PX = {(x,< [A−T (x), A+
T (x)], [A−I (x), A+

I (x)], [A−F (x), A+
F (x)] >,<

TA(x),
IA(x), FA(x) >, µ(x))|x ∈ X} and QX = {(x,< [B−T (x), B+

T (x)], [B−I (x), B+
I (x)], [B−F (x), B+

F (x)] >,<
TB(x),
IB(x), FB(x) >, ν(x))|x ∈ X} are two possibility internal neutrosophic cubic sets, if PX and QX satisfy the
following condition for all x ∈ X

(λ ∨ β)(x) ≤ min{A+
T (x), B+

T (x)},

(λ ∨ β)(x) ≤ min{A+
I (x), B+

I (x)},

(λ ∨ β)(x) ≤ max{A+
F (x), B+

F (x)}.

Then, the R-intersection of PX and QX are still possibility internal neutrosophic cubic set, where

PX ∩R QX = (ΦA ∩ΦB, µ ∨ ν).

in which λ =< TA(x), IA(x), FA(x) >, β =< TB(x), IB(x), FB(x) >.

Proof. Due to the PX and QX being possibility internal neutrosophic cubic sets, then we have TA(x) ∈
[A−T (x), A+

T (x)], IA(x) ∈ [A−I (x), A+
I (x)], FA(x) ∈ [A−F (x), A+

F (x)], and TB(x) ∈ [B−T (x), B+
T (x)],

IB(x) ∈ [B−I (x), B+
I (x)], FB(x) ∈ [B−F (x), B+

F (x)]. According to the join of fuzzy sets, we have
(λ ∨ β)(x) = {max{TA, TB},
max{IA, IB}, max{FA, FB}}. By the definition of possibility internal neutrosophic cubic
sets, min{A−T (x), B−T (x)} ≤ max{TA(x), TB(x)}, min{A−I (x), B−I (x)} ≤ max{IA(x), IB(x)},
min{A−F (x), B−F (x)} ≤ max{FA(x), FB(x)}. Combined with known conditions max{TA, TB} ≤
min{A+

T (x), B+
T (x)}, max{IA, IB} ≤ min{A+

I (x), B+
I (x)}, max{FA, FB} ≤ min{A+

F (x), B+
F (x)}. Then

we have the R-intersection of PX and QX is still possibility internal neutrosophic cubic sets.

Example 6. Let PX = {〈[0.7, 0.8], [0.2, 0.3], [0.1, 0.3]〉, 〈0.7, 0.2, 0.2〉, 0.7}, QX =

{〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉,
〈0.7, 0.2, 0.3〉, 0.7}

PX =

(〈[0.6, 0.9], [0.2, 0.3], [0.1, 0.2]〉, 〈0.8, 0.2, 0.1〉, 0.7)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.6, 0.2, 0.1〉, 0.8)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.7)

 ,

and

QX =

(〈[0.7, 0.9], [0.3, 0.4], [0.2, 0.3]〉, 〈0.7, 0.3, 0.3〉, 0.7)
(〈[0.8, 0.9], [0.2, 0.3], [0.1, 0.2]〉, 〈0.8, 0.2, 0.2〉, 0.9)
(〈[0.7, 0.8], [0.1, 0.3], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.6)

 ,

be two possibility internal neutrosophic cubic sets, and satisfy the conditions in the above definition, then

PX ∩R QX =

(〈[0.6, 0.9], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.1〉, 0.7)
(〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.6, 0.2, 0.1〉, 0.9)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.7)

 ,

be possibility internal neutrosophic cubic set.

Definition 17. let PX be possibility neutrosophic cubic sets, then PX is called possibility neutrosophic cubic
empty sets, denoted by ∅, if ∀e ∈ E, ∅ = {< [0, 0], [1, 1], [1, 1] >,< 0, 1, 1 >, 0}.
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Definition 18. Let PX be possibility neutrosophic cubic set, then PX be called possibility neutrosophic cubic
complete sets, denoted by U, if ∀e ∈ E, U = {< [1, 1], [0, 0], [0, 0] >,< 1, 0, 0 >, 1}.

Definition 19. let PX = {(x,< AT(x), AI(x), AF(x) >,< T(x), I(x), F(x) >, µ(x))|x ∈ X} be
possibility neutrosophic cubic sets, then the complement of PX denoted by Pc

X, expressed as Pc
X = {(x,<

AF(x), 1− AI(x), AT(x) >,< F(x), 1− I(x), T(x) >, 1− µ(x))|x ∈ X}.

Proposition 1. Let PX , QX , andRX be possibility neutrosophic cubic sets. Then
(1)∅ ⊆PX ;
(2)PX ⊆ U;
(3)PX ⊆ QX , and QX ⊆ RX , then PX ⊆ RX ;
(4)∅c = U;
(5)Uc = ∅;
(6)(Pc

X)
c = PX .

Property 3. Let X be an universe, PX = {ΦA, µ}, QX = {ΦB, ν}, WX = {ΦC, γ} and RX = {ΦD, δ} are
possibility neutrosophic cubic sets in X, then we have

(1) if PX ⊆R QX and QX ⊆R WX , then PX ⊆R WX ;
(2) if PX ⊆R QX , then (QX)

c ⊆R (PX)
c;

(3) if PX ⊆R QX and PX ⊆R WX , then PX ⊆R QX ∩R WX ;
(4) if PX ⊆R QX and WX ⊆R QX , then PX ∪R WX ⊆R QX ;
(5)if PX ⊆R QX and WX ⊆R RX , then PX ∪R WX ⊆R QX ∪R RX and PX ∩R WX ⊆R QX ∩R RX .

Proof. (1) For PX = {ΦA, µ}, and QX = {ΦB, ν}, due to ΦA and ΦB are two neutrosophic cubic sets,
according to the definition of R-order of neutrosophic cubic sets, if PX ⊆R QX and QX ⊆R WX , then
we have ΦA ⊆R ΦB, µ ≤ ν, and ΦB ⊆R ΦC, ν ≤ γ. Therefore ΦA ⊆R ΦB ⊆R ΦC, µ ≤ ν ≤ γ, that is to
say ΦA ⊆R ΦC, µ ≤ γ. Hence, we have PX ⊆R WX .

(2) Because PX ⊆R QX, According to the definition of possibility neutrosophic cubic sets
complement, it is easy to prove (QX)

c ⊆R (PX)
c.

(3) if PX ⊆R QX and PX ⊆R WX, there is ΦA ⊆R ΦB, µ ≤ ν, and ΦA ⊆R ΦC, ν ≤ γ. According
to the meet of neutrosophic cubic sets and fuzzy sets, we can get ΦA ⊆R ΦB ∩ΦC, µ ≤ ν ∧ γ. And that
proves PX ⊆R QX ∩R WX .

(4) if PX ⊆R QX and WX ⊆R QX, then easy to get ΦA ⊆R ΦB, µ ≤ ν, and ΦC ⊆R ΦB, γ ≤ ν.
According to the join of neutrosophic cubic sets and fuzzy sets, we have ΦA ∪ΦC ⊆R ΦB, µ ∨ γ ≤ ν.
So we can get the result PX ∪R WX ⊆R QX .

(5) By combining the proofs of (3) and (4), we can prove that (5) of the Property is true.

In 2017, Ye [41] defined the concept of linguistic neutrosophic cubic sets and proposed the
multi-attribute decision-making method of linguistic neutrosophic cubic sets. According to the content
of Ye [41], this paper gives the score function of the possibility neutrosophic cubic sets, and the accuracy
function and the certainty function as follows.

Definition 20. let X = {x1, x2, · · · , xn}, and PX = {(x,<
[A−T (x), A+

T (x)], [A−I (x), A+
I (x)], [A−F (x), A+

F (x)] >,< T(x), I(x), F(x) >, µ(x))|x ∈ X} be possibility
neutrosophic cubic sets, then its score function, accuracy function and certainty function of PX be defined as
follows:

S(PX) = ∑n
i=1[(4 + A−T (xi) + A+

T (xi)− A−I (xi)− A+
I (xi)− A−F (xi)− A+

F (xi)) + (2 + T(xi)− I(xi)− F(xi)) + µ(xi)]/10

A(PX) =
n

∑
i=1

[A−T (xi) + A+
T (xi)− A−F (xi)− A+

F (xi) + (T(xi)− F(xi)) + µ(xi)]/4
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C(PX) =
n

∑
i=1

[A−T (xi) + A+
T (xi) + T(xi) + µ(xi)]/4

The score function and accuracy function are two important indexes, which can be used to judge
the size of the relationship between two possibility neutrosophic cubic sets. Generally, the higher the
score, the greater the true membership of the possibility neutrosophic cubic sets. If the score functions
of two possibility neutrosophic cubic sets are equal, we can judge their size relationship by comparing
their accuracy function. If the accuracy function is large, the possibility neutrosophic cubic set will be
better. For the certainty function, the larger the true membership function and possibility value, the
more certainty the possibility neutrosophic cubic sets have.

Based on the above definition, the comparison and ranking of possibility neutrosophic cubic sets
are defined as follows:

Definition 21. Let X = {x1, x2, · · · , xn}, PX = {(x,< [A−T (x), A+
T (x)], [A−I (x), A+

I (x)], [A−F (x), A+
F (x)] >

,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} and QX = {(x,<
[B−T (x), B+

T (x)], [B−I (x), B+
I (x)], [B−F (x), B+

F (x)] >,< TB(x), IB(x), FB(x) >, ν(x))|x ∈ X} be two
possibility neutrosophic cubic sets, then the ranking of PX and QX are defined as follows:

(1) If S(PX) > S(QX), then PX > QX ;
(2) If S(PX) = S(QX) and A(PX) > A(QX), then PX > QX .

Example 7. Let X = {x} be an universe, PX and QX are two possibility neutrosophic cubic sets.
(1)Suppose PX = (〈[0.8, 0.9], [0.0, 0.1], [0.0, 0.1]〉, 〈0.9, 0.0, 0.1〉, 0.7) and QX =

(〈[0.7, 0.8], [0.0, 0.1], [0.0, 0.2]〉,
〈0.8, 0.1, 0.1〉, 0.8). From the definition we can get S(PX) = 0.9, S(QX) = 0.86, then S(PX) > S(QX),
therefore PX > QX .

(2)Suppose PX = (〈[0.5, 0.8], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.1, 0.1〉, 0.6) and QX =

(〈[0.6, 0.7], [0.1, 0.3], [0.1, 0.2]〉,
〈0.8, 0.1, 0.2〉, 0.9). From the definition we know S(PX) = 0.8, S(QX) = 0.8, A(PX) = 0.6, A(QX) =

0.625, then S(PX) = S(QX), A(PX) < A(QX), therefore PX < QX .
(3)Suppose PX = (〈[0.5, 0.8], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.1, 0.1〉, 0.6) and QX =

(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉,
〈0.7, 0.1, 0.2〉, 0.9). From the definition we find S(PX) = 0.8, S(QX) = 0.8, A(PX) = 0.6, A(QX) =

0.6, C(PX) = 0.65, C(QX) = 0.725, then S(PX) = S(QX), A(PX) = A(QX), C(PX) < C(QX) =

0.725, therefore PX < QX .

Definition 22. [42] Let g and h be two real numbers, then the Dombi T-norm and T-conorm between g and h
are defined as follows:

D(g, h) =
1

1 + {( 1−g
g )ρ + ( 1−h

h )ρ}
1
ρ

,

Dc(g, h) = 1− 1

1 + {( 1−g
g )ρ + ( 1−h

h )ρ}
1
ρ

,

where (g, h) ∈ (0, 1)× (0, 1) and if ρ > 0 then the operator D(g, h) is conjunctive and Dc(g, h) is disjunctive,
satisfying D(0, 0) = D(0, 1) = D(1, 0) = 0, D(1, 1) = 1, Dc(0, 1) = Dc(1, 0) = Dc(1, 1) = 1 and
Dc(0, 0) = 0 and if ρ < 0 then the operator D(g, h) is disjunctive and the operator Dc(g, h) is conjunctive.

According to the above definition and operations of neutrosophic cubic numbers proposed by
Ye [43] , the binary operation of two possibility neutrosophic cubic numbers are given as follows:
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Definition 23. Let X = {x1, x2, · · · , xn}, be an universe, PX = {(x,<
[A−T (x), A+

T (x)], [A−I (x), A+
I (x)], [A−F (x), A+

F (x)] >,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} and
QX = {(x,< [B−T (x), B+

T (x)], [B−I (x), B+
I (x)], [B−F (x), B+

F (x)] >,< TB(x), IB(x), FB(x) >, ν(x))|x ∈
X} be two possibility neutrosophic cubic sets in X, ρ > 0. Then the binary operations of two possibility
neutrosophic cubic sets are given as follows:

(1)PX ⊕QX =



< [1− 1

1+{(
A−T

1−A−T
)ρ+(

B−T
1−B−T

)ρ}
1
ρ

, 1− 1

1+{(
A+

T
1−A+

T
)ρ+(

B+T
1−B+T

)ρ}
1
ρ
], [ 1

1+{(
1−A−I

A−I
)ρ+(

1−B−I
B−I

)ρ}
1
ρ

,

1

1+{(
1−A+

I
A+

I
)ρ+(

1−B+I
B+I

)ρ}
1
ρ
], [ 1

1+{(
1−A−F

A−F
)ρ+(

1−B−F
B−F

)ρ}
1
ρ

, 1

1+{(
1−A+

F
A+

F
)ρ+(

1−B+F
B+F

)ρ}
1
ρ
] >,

< 1− 1

1+{( TA
1−TA

)ρ+(
TB

1−TB
)ρ}

1
ρ

, 1

1+{( 1−IA
IA

)ρ+(
1−IB

IB
)ρ}

1
ρ

,

1

1+{( 1−FA
FA

)ρ+(
1−FB

FB
)ρ}

1
ρ
>, 1− 1

1+{( µ
1−µ )

ρ+( ν
1−ν )

ρ}
1
ρ


,

(2)PX⊗QX =



< [ 1

1+{(
1−A−T

A−T
)ρ+(

1−B−T
B−T

)ρ}
1
ρ

, 1

1+{(
1−A+

T
A+

T
)ρ+(

1−B+T
B+T

)ρ}
1
ρ
], [1− 1

1+{(
A−I

1−A−I
)ρ+(

B−I
1−B−I

)ρ}
1
ρ

,

1− 1

1+{(
A+

I
1−A+

I
)ρ+(

B+I
1−B+I

)ρ}
1
ρ
], [1− 1

1+{(
A−F

1−A−F
)ρ+(

B−F
1−B−F

)ρ}
1
ρ

, 1− 1

1+{(
A+

F
1−A+

F
)ρ+(

B+F
1−B+F

)ρ}
1
ρ
] >,

< 1

1+{( 1−TA
TA

)ρ+(
1−TB

TB
)ρ}

1
ρ

, 1− 1

1+{( IA
1−IA

)ρ+(
IB

1−IB
)ρ}

1
ρ

,

1− 1

1+{( FA
1−FA

)ρ+(
FB

1−FB
)ρ}

1
ρ
>, 1

1+{( 1−µ
µ )ρ+( 1−ν

ν )ρ}
1
ρ


.

Example 8. Let X = {x} be a universe, PX, QX are two possibility neutrosophic
cubic sets. Suppose that PX = (〈[0.5, 0.8], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.1, 0.1〉, 0.6), QX =

(〈[0.6, 0.7], [0.1, 0.3], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉, 0.9) and ρ = 1. From the above definition we can get
the following results.

PX ⊕QX = {([0.71, 0.86], [0.05, 0.14], [0, 0.07],< 0.86, 0.05, 0.07 >, 0.91)}

PX ⊗QX = {([0.38, 0.60], [0.18, 0.40], [0, 0.80],< 0.60, 0.18, 0.27 >, 0.56)}

Definition 24. Let X = {x1, x2, · · · , xn} be an universe, PX = {(x,<
[A−T (x), A+

T (x)], [A−I (x), A+
I (x)], [A−F (x),

A+
F (x)] >,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} and QX = {(x,<

[B−T (x), B+
T (x)], [B−I (x), B+

I (x)], [B−F (x), B+
F (x)] >,< TB(x), IB(x), FB(x) >, ν(x))|x ∈ X} be two

possibility neutrosophic cubic sets in X. Then the distance measure of PX and QX be defined as follows:

d(PX , QX) =
1
10

n

∑
i=1

(|A−T (xi)− B−T (xi)|+ |A+
T (xi)− B+

T (xi)|+ |A−I (xi)− B−I (xi)|+ |A+
I (xi)− B+

I (xi)|
+|A−F (xi)− B−F (xi)|+ |A+

F (xi)− B+
F (xi)|+ |TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|

+|FA(xi)− FB(xi)|+ |µ(xi)− ν(xi)|)

 ,

Theorem 1. Let PX , QX , WX be possibility neutrosophic cubic sets. Then
(1)d(PX , QX) = d(QX , PX);
(2)0 ≤ d(PX , QX) ≤ 1;
(3)d(PX , QX) = 0, i f f PX = QX ;
(4)d(PX , QX) + d(QX , WX) ≥ d(PX , WX).

Proof. The proof of theorems (1), (2), (3) are very simple. (4) of Theorem 3.1 is easy to prove by using
the properties of inequalities.



Symmetry 2020, 12, 269 13 of 17

Definition 25. Let X = {x1, x2, · · · , xn} be a universe, PX = {(x,<
[A−T (x), A+

T (x)], [A−I (x), A+
I (x)], [A−F (x), A+

F (x)] >,< TA(x), IA(x), FA(x) >, µ(x))|x ∈ X} and
QX = {(x,< [B−T (x), B+

T (x)], [B−I (x), B+
I (x)], [B−F (x), B+

F (x)] >,< TB(x), IB(x), FB(x) >, ν(x))|x ∈
X} be two possibility neutrosophic cubic numbers in X. Then the similarity measure of PX and QX is defined
as follows:

s(PX , QX) = 1− d(PX , QX)

= 1− 1
10

n

∑
i=1

(|A−T (xi)− B−T (xi)|+ |A+
T (xi)− B+

T (xi)|+ |A−I (xi)− B−I (xi)|+ |A+
I (xi)− B+

I (xi)|
+|A−F (xi)− B−F (xi)|+ |A+

F (xi)− B+
F (xi)|+ |TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|

+|FA(xi)− FB(xi)|+ |µ(xi)− ν(xi)|)

 .

Theorem 2. Let PX , QX , WX be possibility neutrosophic cubic sets. Then
(1)s(PX , QX) = s(QX , PX);
(2)0 ≤ s(PX , QX) ≤ 1;
(3)s(PX , QX) = 1, i f f PX = QX .

Proof. The proof of theorems (1), (2), (3) can be proved directly.

Example 9. Let PX , QX , WX , RX be possibility neutrosophic cubic sets. Suppose that

PX =

(〈[0.8, 0.9], [0.0, 0.1], [0.1, 0.2]〉, 〈0.8, 0.0, 0.1〉, 0.8)
(〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.8, 0.1, 0.1〉, 0.6)
(〈[0.5, 0.6], [0.3, 0.4], [0.2, 0.3]〉, 〈0.5, 0.3, 0.2〉, 0.5)

 .

QX =

(〈[0.6, 0.8], [0.1, 0.2], [0.0, 0.1]〉, 〈0.7, 0.1, 0.1〉, 0.6)
(〈[0.5, 0.7], [0.3, 0.5], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.7)
(〈[0.3, 0.5], [0.8, 0.9], [0.4, 0.6]〉, 〈0.5, 0.7, 0.4〉, 0.6)

 .

WX =

(〈[0.7, 0.8], [0.0, 0.1], [0.0, 0.1]〉, 〈0.7, 0.0, 0.1〉, 0.8)
(〈[0.6, 0.8], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.2〉, 0.7)
(〈[0.5, 0.7], [0.3, 0.4], [0.1, 0.3]〉, 〈0.6, 0.2, 0.1〉, 0.7)

 .

RX =

(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.2]〉, 〈0.7, 0.1, 0.2〉, 0.9)
(〈[0.5, 0.7], [0.2, 0.3], [0.2, 0.4]〉, 〈0.7, 0.1, 0.2〉, 0.8)
(〈[0.6, 0.8], [0.2, 0.4], [0.1, 0.3]〉, 〈0.6, 0.3, 0.2〉, 0.7)

 .

From the above definition we can get the following results.

d(PX , QX) = 0.47, d(WX , RX) = 0.21.

s(PX , QX) = 9.53, d(WX , RX) = 9.79.

Combined with the above theoretical knowledge, we present an algorithm to solve the
multi-attribute decision problem.

Suppose that X = {x1, x2, · · · , xn} is an alternative set, and E = {e1, e2, · · · , em} is an attribute
set. If the evaluation results given by all experts are in the form of possibility neutrosophic cubic sets,
the following method can be used to choose the best alternative.

Decision-making algorithm:
step 1: According to the evaluation of experts, the possibility neutrosophic cubic sets is obtained

as follows:

PX = {(x,< AT(x), AI(x), AF(x) >,< T(x), I(x), F(x) >, µ(x))|x ∈ X}.



Symmetry 2020, 12, 269 14 of 17

step 2: The following equality is solved by combining the related definitions of possibility
neutrosophic cubic sets and step 1,

S(PX) = ∑n
i=1[(4 + A−T (xi) + A+

T (xi)− A−I (xi)− A+
I (xi)− A−F (xi)− A+

F (xi)) + (2 + T(xi)− I(xi)− F(xi)) + µ(xi)]/10.

step 3: If S(xi) 6= S(xj) (i 6= j, i, j ∈ n), sort the results of step 2 to get the optimal alternative.
Otherwise, perform step 4.

step 4: If S(xi) = S(xj) (i 6= j, i, j ∈ n), then solve the following equality,

A(PX) =
n

∑
i=1

[A−T (xi) + A+
T (xi)− A−F (xi)− A+

F (xi) + (T(xi)− F(xi)) + µ(xi)]/4.

and sort the results of step 4 to get the optimal alternative.

4. Application and Comparative Analysis

In this part, we give a specific application of the algorithm and make a qualitative comparison
between the proposed method and the existing method to illustrate the superiority of the proposed
method.

4.1. Application

According to the algorithm given above, we can know that for any number of alternatives and
attributes, we can obtain the optimal alternative by calculating their score functions. It can satisfy
both the symmetric structure of n ∗ n and the asymmetric structure of n ∗m. This paper chooses an
asymmetric structure without speciality to illustrate the application of the scoring function in the
possibility neutrosophic cubic sets. The calculation method of the symmetric structure is the same.

Example 10. Mr. Zhang wants to choose a school for his son and there are four schools X = {x1, x2, x3, x4} for
him to choose from. Mr. Zhang analyzes and compares e1 = cost, e2 = atmosphere, and e3 = teachingquality,
and obtained a preliminary evaluation. The evaluation value was given in the form of possibility neutrosophic
cubic sets. Choose the best school according to Mr. Zhang’s evaluation.

step 1: According to the evaluation results, the possibility neutrosophic cubic set is obtained

PX(x1) =

(〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉, 0.5)
(〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉, 0.5)
(〈[0.6, 0.8], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.1〉, 0.7)

 ,

PX(x2) =

(〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.6, 0.1, 0.2〉, 0.6)
(〈[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]〉, 〈0.7, 0.4, 0.1〉, 0.7)

 ,

PX(x3) =

(〈[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉, 0.7)
(〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.3, 0.4〉, 0.6)
(〈[0.5, 0.7], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.2, 0.3〉, 0.6)

 ,

PX(x4) =

(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉, 0.8)
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉, 0.7)
(〈[0.6, 0.7], [0.3, 0.4], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉, 0.6)

 .

step 2: Calculate the score functions of all possibility neutrosophic cubic sets;

S(x1) = 2.11, S(x2) = 2.23, S(x3) = 2.01, S(x4) = 2.28.
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step 3: Ranking the score functions of all alternatives by size, which is the order of the alternative.

S(x4) ≥ S(x2) ≥ S(x1) ≥ S(x3).

Hence, the alternative 4 is the best choice. That is to say, according to the assessment, Mr. Zhang
should choose the fourth school.

4.2. Comparative Analysis

At present, many decisions are multi-attribute decision-making problems, and the choice of
decision-making environment will have a certain impact on the results of decision-making. Therefore, it
is very important to choose a suitable decision-making environment in multi-attribute decision-making
problems. Based on the existing decision environment, this paper proposes a new environment for
multi-attribute decision-making. As this paper proposes a new decision environment, it is impossible to
make a quantitative analysis and comparison in the comparative analysis. Next, we use the qualitative
analysis method and some existing methods for comparative analysis to illustrate the method proposed
in this paper.

Firstly, compared with some existing extension sets of fuzzy sets, such as intuitionistic
fuzzy sets [13] and interval neutrosophic sets [23], we find that they only study the membership
degree and non-membership degree of elements, and do not consider the uncertainty of elements.
The neutrosophic cubic sets are an extension of the neutrosophic sets and the cubic sets. They consider
the membership, non-membership and uncertainty of the elements at the same time, which makes
the decision-making factors more comprehensive. In this way, the decision result is more likely to
approach the ideal result.

Secondly, compared with the decision-making method of neutrosophic cubic sets [31,34],
possibility neutrosophic cubic sets not only consider the membership, non-membership and uncertainty
of elements, but also consider the possibility of each element in the set, giving different weights to
elements, making the distribution of elements closer to the overall level of the research problem, so as
to make the decision result more real.

Finally, a simple linear model is proposed to solve the multi-attribute decision-making problem,
which makes the solution more convenient and relatively simple.

5. Conclusion

The neutrosophic cubic sets are an extension of the neutrosophic sets and the cubic sets. They
also consider the membership, non-membership and uncertainty of the elements in the set, which is
more comprehensive than the fuzzy sets and the hesitant fuzzy sets. According to the current research
on the neutrosophic cubic sets, this paper considers the possibility of the occurrence of elements in the
neutrosophic cubic sets, and puts forward the definition of possibility neutrosophic cubic sets, and
the empty sets, the complete sets, the complement sets, distance measure and similarity measure of
the possibility neutrosophic cubic sets are defined. At the same time, the definition of the equality,
inclusion, R-union and R-intersection of any two possibility neutrosophic cubic sets is given. Under
some certain conditions, the R-union and R-intersection of any two possibility internal neutrosophic
cubic sets are still possibility internal neutrosophic cubic sets. Finally, the score function is an important
indicator in multiple attribute decision making problems; combined with the score function, we give a
solution of possibility neutrosophic cubic sets in multiple attribute decision making, and apply this
method to concrete numerical examples to illustrate the effectiveness of the score function in solving
multiple attribute decision making problems.

The possibility neutrosophic cubic sets consider the membership, non-membership and
uncertainty of the elements of the set, and the possibility that the elements belong to the set.
Therefore, combined with the advantages of the possibility neutrosophic cubic sets, it can be applied
to imperfect systems in actual production to better solve production problems [44]. At the same time,
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in the possibility neutrosophic cubic sets, we propose a simple linear model to solve multi-attribute
decision-making problems. In future research, we can combine the non-linear model method proposed
in the concept lattice of multi-adjoint t-concept lattices [45] and word-level neutrosophic sentiment
similarity [46] to discuss the application of the non-linear model method in the possibility neutrosophic
cubic sets to solve multi-attribute decision-making problems in this environment. It is believed that in
the future, the application of the neutrosophic cubic sets in these aspects will be a good research topic,
which is worth further research.
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