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Abstract
The uncertainty principle is one of themost important features inmodeling and solving
linear time-invariant (LTI) systems. The neutrality phenomena of some factors in real
models have been widely recognized by engineers and scientists. The convenience
and flexibility of neutrosophic theory in the description and differentiation of uncer-
tainty terms make it take advantage of modeling and designing of control systems.
This paper deals with the controllability and stabilizability of LTI systems containing
neutrosophic uncertainty in the sense of both indeterminacy parameters and functional
relationships.We define some properties and operators between neutrosophic numbers
via horizontal membership function of a relative-distance-measure variable. Results
on exponential matrices of neutrosophic numbers are well-defined with the notion et A

deployed in a series of neutrosophic matrices. Moreover, we introduce the concepts
of controllability and stabilizability of neutrosophic systems in the sense of Granular
derivatives. Sufficient conditions to guarantee the controllability of neutrosophic LTI
systems are established. Some numerical examples, related to RLC circuit and DC
motor systems, are exhibited to illustrate the effectiveness of theoretical results.

Keywords Neutrosophic numbers · Controllability · Stabilizability · Granular
computing

1 Introduction

A recent neutrosophic theory is a unifying field in logics that extends the concept of
fuzzy sets using an indeterminacy value. The fundamental concepts of the neutrosophic
set were introduced in [26–30]. There are many areas in which the neutrosophic theory
is successfully applied [5,7–9,22]. In indeterminate problems, neutrosophic numbers,
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which appear in forma+bU , easily express determinate and/or indeterminate informa-
tion and are applied to fault diagnosis of gasoline engines and steam turbines using the
similarity of neutrosophic numbers [12]. Additionally, some neutrosophic optimiza-
tion techniques with applications were developed in [33–35]. Some other applications
of neutrosophic theory in reliability test, monitoring the variability or sampling plans,
were investigated [1–3]. For more details, readers can find in some recent researches,
such as [6,11,14,19,31,36,37].

There exist many significant problems that must be investigated. For example, the
first problem is to define an appropriate difference operator to make the space of
neutrosophic numbers become a linear space, or furthermore, define the concept of
the neutrosophic derivative. In [38], the difference was given in the form

z1 − z2 = (a1 − a2) + (b1 − b2)U . (1)

where z1 = a1 + b1U , z2 = a2 + b2U are neutrosophic numbers andU = [U−,U+]
is the indeterminacy. However, we can see that this subtraction cannot be a candidate
for defining derivatives or constructing analysis properties on the set of neutrosophic
numbers. For example, let z1 = 4 +U be a neutrosophic number with the indetermi-
nacy U = [0, 1]. Then, we can directly see that the difference of z1 − z1 is different
from z1 + (−1)z1. Indeed, according to the formula (1), we obtain that

z1 − z2 = (4 − 4) + (1 − 1)U = 0,

while

z1 + (−1)z1 = 4 +U + (−4) + (−1)U = [0, 1] + (−1)[0, 1] = [−1, 1] �= 0,

that follows the space of neutrosophic numbers is not a linear space. This leads to a
lot of challenges and difficulties in defining further analysis properties on the space of
neutrosophic numbers. For further aim, there are considerable questions such as how
to define the derivatives of neutrosophic number functions, how to understand control
problems under neutrosophic uncertainty and how to apply the stability of control
problems in signal processing under neutrosophic environments.

Besides, the control problems for neutrosophic linear time-invariant systems are
interesting and worth being studied. The controllability is one of the fundamental
concepts in mathematical control theory, which plays an important role in many
engineering control systems. The concept of controllability was firstly introduced
by Kalman in 1960, which leads to several important results regarding the behavior of
dynamical systems [10]. However, there are only a few studies on the controllability
of neutrosophic differential systems, except to recent paper of Ye and Cui [39] for
SISO neutrosophic linear systems

dx

dt
= A(U )x + B(U )u, y = C(U )x (2)

where the coefficients are neutrosophic numbers and no neutrosophic derivative was
considered. In our point of view, because the input of a system may be impacted
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by neutrosophic uncertainty, the output should be a neutrosophic-valued function.
Thus, we need to extend the considered dynamical system in the new setting with
neutrosophic differentiability.

This paper deals with the stabilizability of linear time-invariant systems (LTI
systems) in the case that the underlying functions are neutrosophic-valued and the
neutrosophic calculus is taken into account. We focus on establishing some sufficient
and necessary conditions to guarantee the controllability and stabilizability of neu-
trosophic control systems (14) in connection with granular control systems (15) via
horizontal membership functions. The idea of horizontal membership functions was
originally introduced by Piegat et al. [13,25] and developed for granular differentia-
bility of fuzzy-valued functions by Mazandarani et al. [16–18] and Son et al. [31,32].
Recently, granular computing has been used in decision making [21], soft computing
[13] and signal processing [25].

LTI theory came from applied mathematics, and then, it has been directly employed
to circuits, signal processing, control theory and nuclear magnetic resonance spec-
troscopy, etc [23,40]. Unlike state machines, LTI systems have a memory of past states
as well as the ability to predict the long-term behavior of systems. Thus, LTI systems
aremost popularly applied to the controller in power companies. Themain difficulty in
studying these problems is the lack of calculus tools in neutrosophic numbers spaces
that makes neutrosophic dynamical systems more complex. In this paper, we study
the controllability and stabilizability of the following LTI neutrosophic system:

dgrx(t)

dt
= Ax(t) + Bu(t),

where x(t) is the state variables taking values in neutrosophic environment, A, B
are neutrosophic matrices with appropriate dimensions, u(t) is the input control, and
dgr(.) stands for granular derivative of neutrosophic function. The main contributions
and detail approach of this paper can be highlighted as follows:

• The first important highlight of this work is based on the indeterminate expres-
sion of neutrosophic numbers in [38] and the idea of horizontal membership
function approach [16], where we convert each neutrosophic number into a
class of real parametric form. The advantage of this approach was represented
in our previous work for triangular neutrosophic numbers [31]. The appear-
ance of the relative-distance-measure variable μ ∈ [0, 1] helps to convert each
neutrosophic number z = a + b[U−,U+] into parametric forms zgr(μ) =
a + bU− + b

(
U+ −U−)μ, μ ∈ [0, 1]. This representation has the advantage

that we can further define the arithmetic operations, the derivatives, the integral of
neutrosophic number functions as well as build the numerical algorithms.

• We define the granular difference between neutrosophic numbers—one important
step to define further differentiability of neutrosophic number functions as well as
neutrosophic differential equations and their applications to neutrosophic dynamic
systems. The superiority of the proposed method lies on the fact that it does not
necessitate the increasing of diameter of neutrosophic-valued function ormulticase
of solution related to so-called switching points as we often face in fuzzy analysis,
see [4,15].
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• We also attain the first step in building topological structures of neutrosophic
numbers space by introducing granular metric and complete metric space (E, ρgr).
By ensuring the convergence of Cauchy sequences in E , we can further study some
qualitative and quantitative properties of solutions to dynamical systems arising
in the fields of science and engineering, for example, experimental approximation
solution algorithms canbedeveloped through the convergenceof solution sequence
in neutrosophic complete metric spaces.

• In Sect. 2.3, we propose the novel concept of the exponential matrix. Firstly, based
on arithmetic operations in E , we introduce some neutrosophic matrix operations
such as addition, subtraction, multiplication, scalar multiplication, matrix trans-
pose and matrix inverse. Next, in order to define explicitly the solution formula of
a linear system

dgrx(t)

dt
= Ax(t) + Bu(t), x(0) = x0, (3)

we introduce the concept of exponential matrix et A and then, we give some char-
acteristic properties of this matrix. Hence, the explicit formula of solution to the
system (3) is given in Corollary 2.3.

• The controllability and stabilizability of neutrosophic linear time-invariant systems
are introduced and investigated and in addition, some necessary and sufficient con-
ditions for the controllability of an LTI neutrosophic system are given in Theorems
3.1 and 3.2 . Especially, a criterion of Kalman’s criterion type is given in Corol-
lary 3.1, which is an effective tool to ensure the controllability of LTI neutrosophic
systems. After representating neutrosophic LTI system by Liénard form, we study
the stabilizability criterion for LTI neutrosophic systems.

• We demonstrate the effectiveness and significance of obtained theoretical results
by some numerical examples on Liénard equation and some engineering problems
related to the RLC circuit control model and DC motor system model.

This paper is organized as follows: Section 2 presents some preliminaries on gran-
ular calculus of neutrosophic numbers, such as the neutrosophic limit, neutrosophic
gr-derivative and neutrosophic gr-integral. Additionally, we introduce the concept of
neutrosophic matrices and matrix operations. The main results on the controllability,
stability and stabilizability of the neutrosophic LTI system are presented in Sect. 3.
Section 4 illustrates the theoretical results by some numerical examples. Finally, the
conclusions and future works are discussed in Sect. 5.

2 Preliminaries

2.1 Space of Neutrosophic Numbers

A neutrosophic number [28] is the number consisting of the determinate part a and
the indeterminate part bU and is denoted by z = a + bU , where a ∈ R, b ∈ R

+ and
U is the indeterminacy. We denote E by the set of all neutrosophic numbers.
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Remark 2.1 Assume that the possible changeable range of the determinacyU is given
by
[
U−,U+]. Then, a neutrosophic number z = a+bU can be specified as a change-

able interval number z = [
a + bU−, a + bU+] . In particular, if either b = 0 or

U− = U+ that means bU = 0 or bU ∈ R then z = a or z = a + bU can be degener-
ated to a real number, while in the case a = 0, z is degenerated to the indeterminate
part z = bU .

Definition 2.1 (Granular representation) Let z = a + bU be a neutrosophic number
for a, b ∈ R and the indeterminate part U = [U−,U+]. Then, by denoting �[U ] =
U+ − U−—the length of changeable interval, the number z can be rewritten in the
horizontal membership function form as follows

zgr : [0, 1] → R, μz �→ zgr(μz) = a + bU− + b�[U ]μz

where “gr” represents for the granule of information included in [a+bU−, a+bU+],
μz ∈ [0, 1] is called relative-distance-measure variable. The horizontal membership
function of z ∈ E is denoted by L(z) � zgr(μz).

Remark 2.2 The interval representation of z ∈ E can be obtained from the granular
representation by using the following transformation

N (zgr(μz)) =
[

min
μz∈[0,1] z

gr(μz), max
μz∈[0,1] z

gr(μz)

]
. (4)

Definition 2.2 Let z1 and z2 be two neutrosophic numbers. Then

i. z1 = z2 if and only if L(z1) = L(z2) for all μz1 = μz2 ∈ [0, 1].
ii. z1 ≥ z2 if and only if L(z1) ≥ L(z2) for all μz1 = μz2 ∈ [0, 1].
Next, based on gr-representation approach, we introduce the concept of arithmetic

operations in E .
Definition 2.3 Let z1 and z2 be two neutrosophic numbers whose respective horizontal
membership functions areL(z1) andL(z2) and⊗ denotes for one of the four operations
in E , i.e., addition, subtraction, multiplication or division operation. Then, we define

L(z1 ⊗ z2) � L(z1) ∗ L(z2),

where the notion “∗” represents for respective operations in R. Especially, the differ-
ence in this sense is called granular difference (gr-difference) and denoted by 	gr.

Remark 2.3 Based on granular representation approach, the following relations hold
for all z1, z2, z3 ∈ E
i. z1 	gr z2 = −(z2 	gr z1),
ii. z1 	gr z1 = 0,
iii. z1 + (−1)z1 = 0,
iv. z1 	gr (−1)z2 = z1 + z2,
v. (z1 + z2)z3 = z1z2 + z2z3.
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Table 1 The different between arithmetic operations in some recent literature

Literature v = z − z2 v = z(1 − z)

Moore et al. [20] on Moore interval arithmetic −13 + 6U −12 + 6U

Smarandache [28] on Neutrosophic numbers arithmetic −20 + 6U −12 + 6U

Piegat and Landowski [24] on RDM interval arithmetic −12 + 6U −12 + 6U

Remark 2.4 Conventionally, there exist additive and multiplicative identities such as
neutrosophic numbers 0 = 0 + 0U and 1 = 1 + 0U .

The following example will give a comparison of the result obtained by the granular
representation approach with those of some previous approaches in their arithmetic
operations that show the advantage of granular representation in complex problems.

Example 2.1 In this example, let z = 3 + U be a neutrosophic number with the
indeterminacy U = [0, 1]. Note that the neutrosophic number z can be rewritten in
following changeable interval [3, 4]. Now, we will compare the results obtained by
Moore arithmetic operation [20], Smarandache arithmetic operation [28] and RDM
interval arithmetic [24] for following nonlinear equation

v = z − z2. (5)

Note that Eq. (5) can be represented in the following form

v = z(1 − z).

The comparison result is shown in Table 1.
It can be seen that the results of operation obtained by RDM interval arithmetic

do not depend on the form of equation, which proves that the granular approach can
correctly solve more complicated problem.

2.2 Neutrosophic Number Functions and Their Calculus Properties

Definition 2.4 A function f : [a, b] ⊂ R → E given by t �→ f (t) is said to be a
neutrosophic number -valued function or E-valued function. If the E-valued function
f includes n distinct neutrosophic numbers z1, z2, . . . , zn then the horizontal mem-
bership function of f at t ∈ [a, b], denoted by L( f (t)) � f gr(t, μ f ), can be given
as

f gr : [a, b] × [0, 1] × · · · × [0, 1] → R,

where μ f � (μ1, μ2, . . . , μn).

Example 2.2 Let U = [0, 1] and z1 = 5 + 2U , z2 = −4 + U be two neutro-
sophic numbers with respective horizontal membership functions zgr1 (μ1) = 5+2μ1,
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Fig. 1 The E-valued function f (t) = z1 cos 3t + z2t for t ∈ [0, 10]

zgr2 (μ2) = −4 + μ2, where μ1, μ2 ∈ [0, 1]. Here, we define an E-valued function
f (t) = z1 cos 3t + z2t on the interval [0, 10]. Then, the horizontal membership func-
tion of f (t) is given by

f gr(t, μ f ) = L( f (t)) = zgr1 (μ1) cos 3t + zgr2 (μ2)t = (5 + 2μ1) cos 3t + (−4 + μ2)t,

for μ f = (μ1, μ2) and the graphical representation of E-valued function f (t) is
shown in Fig. 1.

Next, we introduce the concept of metric on the set of neutrosophic numbers.

Definition 2.5 (Granular metric) For z1 = a1 + b1U1, z2 = a2 + b2U2 ∈ E , the
distance between these numbers is the function ρgr : E × E → R

+ ∪ {0} given as
follows:

ρgr(z1, z2) = max
μ1,μ2

∣∣zgr1 (μ1) − zgr2 (μ2)
∣∣

= max
μ1,μ2

∣
∣(a1 + b1U

−
1 + b1�[U1]μ1

)− (
a2 + b2U

−
2 + b2�[U2]μ2

)∣∣ .

(6)

Proposition 2.1 The function ρgr defined by (6) is a metric on E , namely granular
metric.

Proof Let z and z̃ be two numbers in E with respective granular representation

zgr(μ1) = a1 + b1U
−
1 + b1�[U1]μ1 and z̃gr(μ2) = a2 + b2U

−
2 + b2�[U2]μ2.

By definition of ρgr, we obtain that ρgr(z, z̃) ≥ 0 and if ρgr(z, z̃) = 0 then

∣∣zgr(μ1) − z̃gr(μ2)
∣∣ = 0 ⇐⇒ zgr(μ1) = z̃gr(μ2),

for all μ1, μ2 ∈ [0, 1]. Thus, according to Definition 2.2 (i), it follows that z = z̃.
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Since the symmetry property of the function ρgr can be easily seen from its defini-
tion, the rest of our proof is to show that

ρgr(z1, z2) ≤ ρgr(z1, z3) + ρgr(z3, z2) for all z1, z2, z3 ∈ E . (7)

Indeed, since the fact that the inequality

∣∣zgr1 (μ1) − zgr2 (μ2)
∣∣ ≤ ∣∣zgr1 (μ1) − zgr3 (μ3)

∣∣+ ∣∣zgr3 (μ3) − zgr2 (μ2)
∣∣

holds for all μ1, μ2, μ3 ∈ [0, 1], one gets
∣∣zgr1 (μ1) − zgr2 (μ2)

∣∣ ≤ max
μ1,μ2

{∣∣zgr1 (μ1) − zgr3 (μ3)
∣∣}+ max

μ1,μ2,μ3

{∣∣zgr3 (μ3) − zgr2 (μ2)
∣∣}

Hence, it follows maxμ1,μ2

∣∣zgr1 (μ1) − zgr2 (μ2)
∣∣ ≤ maxμ1,μ3

∣∣zgr1 (μ1) − zgr3 (μ3)
∣∣ +

maxμ2,μ3

∣∣zgr3 (μ3) − zgr2 (μ2)
∣∣. This means the inequality (7) holds. The proof is com-

plete. ��
Theorem 2.1 The space E endowed with ρgr is a metric space. Moreover, it is a com-
plete metric space.

Proof Assume that a sequence {zn}n≥1 ⊂ E is Cauchy sequence in E , which means
that for all ε > 0, there exists n0 ∈ N

∗ such that for all n, p ∈ N, n ≥ n0 and p ≥ 1,
we have

ρgr(zn+p, zn) < ε ⇔ max
μ1,μ2

∣∣zgrn+p(μn+p) − zgrn (μn)
∣∣ < ε.

Thus, it implies that
∣
∣zgrn+p(μn+p) − zgrn (μn)

∣
∣ < ε for all μn , μn+p ∈ [0, 1], which

means
{
zgrn (μn)

}
n≥1 is aCauchy sequence inR, and hence, it is convergent. In addition,

since the sequence
{
zgrn (μn)

}
n≥1, given by

zgrn (μ) = an + bn
[
U−
n + (

U+
n −U−

n

)
μ
] = an + bnU

−
n + [

(an + bnU
+
n ) − (an + bnU

−
n )
]
μ

is convergent for all μ ∈ [0, 1], which follows that the sequences
{
an + bnU−

n

}
n≥1,{

an + bnU+
n

}
n≥1 are also convergent corresponding to the cases μ = 0 and μ = 1.

Here, with no loss of generality, we assume that

lim
n→∞

(
an + bnU

−
n

) = c−, lim
n→∞

(
an + bnU

+
n

) = c+.

In addition, since an + bnU−
n ≤ an + bnU+

n , ∀ n ≥ 1, it implies c− ≤ c+. Moreover,
since c−, c+ ∈ R, there existU−,U+ ∈ R such that c− = a + bU−, c+ = a + bU+,
where a, b are limits of sequences {an}, {bn}, respectively. Hence, by denoting z =
[c−, c+] = a + b[U−,U+], we can conclude that z is a neutrosophic number with
indeterminate part U = [U−,U+] and it is the limit of Cauchy sequence {zn}n≥1.
This completes the proof. ��
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Definition 2.6 (Limit of E-valued function) Let f : [a, b] ⊂ R → E and t0 ∈ [a, b].
Then, we say that the function f has the finite limit as t tends to t0 if and only if there
exists τ ∈ E such that limt→t0 ρgr( f (t), τ ) = 0, that is ∀ ε > 0, ∃ δ(t0, ε) > 0 such
that ∀t ∈ [a, b] : 0 < |t − t0| < δ, it implies ρgr( f (t), τ ) < ε.

Definition 2.7 (The continuity) An E-valued function f : (a, b) ⊂ R → E is said to
be continuous on (a, b) if for each t0 ∈ (a, b), for all ε > 0, there exists δ > 0 such that
∀t ∈ (a, b) : |t−t0| < δ thenρgr( f (t), f (t0)) < ε, i.e., limt→t0 ρgr( f (t), f (t0)) = 0.

Definition 2.8 (The differentiability) Let f : (a, b) ⊂ R → E and t0 ∈ (a, b). Then,
we say that f is granular differentiable (gr-differentiable) at the point t0 if there exists
dgr f (t0)

dt
∈ E such that the limit

lim
h→0

f (t0 + h) 	gr f (t0)

h
= dgr f (t0)

dt

holds. Then, we call the value
dgr f (t0)

dt
the granular derivative (or gr-derivative for

short) of function f at the point t0. As a result, the function f is said to be gr-

differentiable on the interval (a, b) if and only if the gr-derivative
dgr f (t)

dt
exists for

all t ∈ (a, b). Then, the mapping t �→ dgr f (t)

dt
is called the gr-derivative of f on

(a, b) and denoted by
dgr f (t)

dt
or f ′

gr(t).

Next, we give a necessary and sufficient condition for the gr-differentiability of
neutrosophic function.

Proposition 2.2 Let f : (a, b) ⊂ R → E and t0 ∈ (a, b). Then, the function f is
gr-differentiable at the point t0 if and only if its horizontal membership function is
differentiable at the point t0. Then, we have

L
(
dgr f (t0)

dt

)
= ∂ f gr(t0, μ f )

∂t
.

Proof By using the assumption E-valued function f is gr-differentiable at the point
t0 ∈ (a, b), we have for all ε > 0, there exists δ > 0 such that for all h ∈ (0, δ),

ρgr
(

f (t0 + h) 	gr f (t0)

h
,
dgr f (t0)

dt

)
< ε.

Next, by using the definition of granular metric, the above inequality becomes

max
μ f ,μ f ′

∣
∣∣∣
1

h

(
f gr(t0 + h, μ f ) − f gr(t0, μ f )

)−
(
dgr f

dt

)gr

(t0, μ f ′)

∣
∣∣∣ < ε for all μ f , μ f ′ ,
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that is equivalent to

∣∣∣∣
1

h

(
f gr(t0 + h, μ f ) − f gr(t0, μ f )

)−
(
dgr f

dt

)gr

(t0, μ f ′)

∣∣∣∣ < ε,

for all ε > 0 and h ∈ (0, δ). Then, by letting h → 0, we obtain that

lim
h→0

f gr(t0 + h, μ f ) − f gr(t0, μ f )

h
=
(
dgr f

dt

)gr

(t0, μ f ′),

for all μ f , μ f ′ , which leads to the differentiability of the horizontal membership
function of f . The converse statement can be obtained by using similar arguments.
The proof is complete. ��
Proposition 2.3 Assume that f and g are differentiable E-valued functions on (a, b).
Then, the following statements are fulfilled:

i.
dgr(z0)

dt
= 0 for all z0 ∈ E .

ii.
dgr (α f (t) ± βg(t))

dt
= α

dgr f (t)

dt
± β

dgrg(t)

dt
for all t ∈ (a, b) and α, β ∈ R.

iii.
dgr[ f (t)g(t)]

dt
= g(t)

dgr f (t)

dt
+ f (t)

dgrg(t)

dt
for all t ∈ (a, b).

Example 2.3 Let f (t) = z1 cos 3t + z2t be an E − valued function defined on the
interval [0, 10], where z1 = 5+ 2U and z2 = −4+U are two neutrosophic numbers
with the indeterminate part U = [0, 1]. From Example 2.2, it is easy to see that the
horizontal membership function of f , given by L( f (t)) = (5+ 2μ1) cos 3t + (−4+
μ2)t , is a differentiable function on [0, 10]. Moreover, its derivative is

∂ f gr(t, μ1, μ2)

∂t
= −3(5 + 2μ1) sin 3t + (−4 + μ2) for all μ1, μ2 ∈ [0, 1].

Thus, we deduce that the function f is gr-differentiable on [0, 10]. In addition, thanks
to (4), the gr-derivative of f can be given as follows

dgr f (t)

dt
= N

(
∂ f gr(t, μ1, μ2)

∂t

)

=
[
min
μ1,μ2

{(−15 − 6μ1) sin 3t + μ2 − 4}, max
μ1,μ2

{(−15 − 6μ1) sin 3t + μ2 − 4}
]

= [−21,−15] sin 3t + [−4,−3].

Therefore, we obtain the gr-derivative
dgr f (t)

dt
= (−21 + 6U ) sin 3t + (−4+U ),

whose graphical representation is shown in Fig. 2.
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Fig. 2 The gr-derivative
dgr f (t)

dt
of E-valued function f (t) on [0, 10]

Definition 2.9 Assume that 
 : [a, b] → E is a continuous E-valued function and its
horizontal membership functionL (
(t)) := 
(t, μ) is integrable on [a, b], i.e., there
exists a number I(μ) ∈ R such that I(μ) =

∫ b

a

(t, μ)dt . Then, the neutrosophic

number I, obtained by the transformation I = N (I(μ)), is said to be the granular

integral (gr-integral) of function 
 on [a, b] and denoted by I =
∫ b

a

(t)dt .

Remark 2.5 By analogous arguments as in Proposition 2.2, we can also prove that the
granular integrability of neutrosophic number function f and the integrability of its
horizontal membership function are equivalent.

Corollary 2.1 Let 
 : [a, b] → E be an E-valued function and c ∈ [a, b]. Then,
if the function 
 is gr-integrable on [a, b] then 
(t) is also gr-integrable on each
sub-interval [a, c] ⊆ [a, b]. Moreover, we have

∫ b

a

(t)dt =

∫ c

a

(t)dt +

∫ b

c

(t)dt .

The following theorem is the extension of the fundamental result of real analysis
that determines the form of anti-derivative of an E-valued function.

Theorem 2.2 Let 
 be a continuous E − valued function defined on [a, b]. Then, for
each t ∈ [a, b], the function �, given by �(t) =

∫ t

a

(s)ds, is an anti-derivative of

the function 
(t).

Proof Let t0 ∈ [a, b] be fixed. By the assumption that the function 
 is continuous
at t0, we deduce that ∀ ε > 0, ∃ δ > 0 such that ∀t ∈ [a, b] : |t − t0| < δ then
ρgr(
(t),
(t0)) < ε. Next, for h is a number sufficiently near 0, we consider the
following quotient

��

�t

∣
∣∣
t=t0

= 1

h

[
�(t0 + h) 	gr �(t0)

] = 1

h

[∫ t0+h

a

(s)ds 	gr

∫ t0

a

(s)ds

]
.
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Using horizontal membership function approach, we obtain

L
(

��

�t

∣
∣∣
t=t0

)
= 1

h

[∫ t0+h

a

gr(s0 + h, μ)ds −

∫ t0

a

gr(s0, μ)ds

]

= 1

h

∫ t0+h

t0

gr(s0 + h, μ)ds.

Next, by the use of mean value theorem, we get

L
(

��

�t

∣
∣∣
t=t0

)
= 1

h

∫ t0+h

t0

gr(s0 + h, μ)ds = 
gr(t0 + τh, μ),

where τ ∈ (0, 1). Here, note that t0 + τh tends to t0 as h → 0. Thus, it implies that

L
(
dgr�(t0)

dt

)
= lim

h→0
L
(

��

�t

∣∣∣
t=t0

)
= lim

h→0

gr(t0 + τh, μ) = 
gr(t0, μ),

which follows
dgr�(t0)

dt
= 
(t0). Additionally, since t0 ∈ [a, b] is chosen arbitrarily,

the proof is complete. ��
Corollary 2.2 As a consequence of Theorem 2.2, we have that

dgr
dt

(∫ t

a

(s)ds

)
= 
(t), t ∈ [a, b].

Theorem 2.3 (Newton–Leibniz formula) Assume that φ : [a, b] ⊆ R → E is gr-

differentiable on [a, b] and the function
(t) := dgrφ(t)

dt
is continuous on this interval.

Then 
 is gr-integrable and

∫ b

a

(t)dt = φ(b) 	gr φ(a).

Proof As a result of Theorem 2.2, function �(t) =
∫ t

a

(s)ds is an anti-derivative

of the function f on [a, b] and its granular representation is

�gr(t, μ�) =
∫ t

a

gr(s, μ
)ds, t ∈ [a, b].

This expression means that�gr(t, μ�) is an anti-derivative of the function
gr(t, μ
)

on [a, b]. Thus, if φgr(t, μφ) is another anti-derivative of 
gr(t, μ
) on [a, b] then

φgr(t, μφ) = �gr(t, μ�) + C =
∫ t

a

gr(s, μ
)ds + C, t ∈ [a, b] (8)
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where C is a real constant. Next, by substituting t = a into the equality (8), we obtain
that C = φgr(a, μφ). Then, the integral equality (8) becomes

φgr(t, μφ) =
∫ t

a

gr(s, μ
)ds + φgr(a, μφ),

or equivalently,
∫ t

a

gr(s, μ
)ds = φgr(t, μφ) − φgr(a, μφ). Let t = b then we

immediately get

∫ b

a

gr(s, μ
)ds = φgr(b, μφ) − φgr(a, μφ),

Finally, by using the transformation (4), we can see that

∫ b

a
N (


gr (s, μ
)
)
ds = N (

φgr (b, μφ) − φgr (a, μφ)
)
,

that means the integral equality
∫ b

a

(t)dt = φ(b) 	gr φ(a) holds. ��

Example 2.4 Let�(t) = z1e−t+z2 cos 2t be anE-valued function defined on the inter-
val [0, 2π ], where z1 = 4 +U , z2 = −6 +U ∈ E . Then, the horizontal membership
function of the function �(t) is given by

�gr(t, μ1, μ2) = zgr1 (μ1)e
−t + zgr2 (μ2) cos 2t = (4 + μ1) e

−t + (−6 + μ2) cos 2t .

By similar method as in Example 2.3, we can prove that the function �(t) is
gr-differentiable on [0, 2π ] and its derivative is denoted by f (t) whose granular rep-
resentation is

f gr (t, μ1, μ2) = ∂�gr(t, μ1, μ2)

∂t
= (−4 − μ1) e

−t + (12 − 2μ2) sin 2t,

where μ1, μ2 ∈ [0, 1]. Then, by employing the transformation (4), we get that

f (t) = (−5 +U ) e−t + (10 + 2U ) sin 2t .

In addition, it is easy to prove that the function f is continuous on [0, 2π ]. Then,
we can see that all assumptions of Theorem 2.3 are fulfilled. Hence, we immediately
obtain that

∫ 2π

0
f (t)dt = �(7) 	gr �(0) = (

z1e
−2π + z2

)	gr (z1 + z2) = 5(e−2π − 1) + (
1 − e−2π )U .

The graphical representation of two functions �(t) and f (t) is shown in Fig. 3.
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Fig. 3 Representation of the E-valued functions �(t) and f (t)

Fig. 4 The amplitude modulation system

Example 2.5 Consider an information-bearing signal u(t) applied as an input to anAM
system referred to as an amplitude modulator. In communications, the input u(t) to a
modulator is called the modulating signal, while its output x(t) is called the modulated
signal. The steps involved in an amplitude modulator are illustrated in Fig. 4, where
the modulating signal u(t) is first processed by attenuating it by a factor λ = 0.3 and
adding a DC offset such that the resulting signal 1 + λu(t) is positive for all time t .
The modulated signal is produced by multiplying the processed input signal 1+λu(t)
with a high-frequency carrier f (t) = A cos

(
2πω f t

)
. Multiplication by a sinusoidal

wave of frequency ω f shifts the frequency content of the modulating signal u(t)
by an additive factor of ω f . The amplitude modulated signal x(t) is mathematically
expressed as follows

x(t) = A [1 + λu(t)] cos
(
2πω f t

)
, t > 0, (9)

where A and ω f are the amplitude and frequency of the sinusoidal carrier, respec-
tively. It should be noted that the amplitude A and frequency ω f of the carrier signal
along with the attenuation factor λ used in the modulator are fixed and thus, Eq. (9)
provides a direct relationship between the input and the output signals of an ampli-
tude modulator. However, rather than the particular value, we may have only the
vague, imprecise and incomplete information about the amplitude A and frequency
ω f being a result of errors in measurement, observations, experiment, or it may be
maintenance-induced errors, which are uncertain in nature. Therefore, to overcome
these uncertainties and vagueness, based on approximate realistic measurements, one
may present these uncertain values as following neutrosophic numbers
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Fig. 5 The amplitude modulated signal x(t) on [0, 10]

A = 2 + 0.1U ω f = (1.5 + 0.2U ) × 108.

In addition, let us assume that the input signal u(t) is given by u(t) = sin(108π t).
Then, based on the horizontal membership function approach, the signal Eq. (9) can
be represented as follows

xgr (t, μ) = (2 + 0.1μ1)
[
1 + 0.3ugr (t, μ)

]
cos

(
2 × 108π(1.5 + 0.2μ2)t

)
, μ1, μ2 ∈ [0, 1].

The graphical representation of the signal x(t) is given in Fig. 5.

2.3 Neutrosophic Matrices

Definition 2.10 [37] A neutrosophic matrix A of order m × n is defined as

A =

⎛

⎜⎜⎜
⎝

z11 z12 . . . z1n
z21 z22 . . . z2n
...

...
. . .

...

zm1 zm2 . . . zmn

⎞

⎟⎟⎟
⎠

where zi j is a given neutrosophic number for each i = 1,m, j = 1, n. In special
case, if m = n then the matrix A is called a square neutrosophic matrix of order n. In
addition, the gr-representation of A can be given by

Agr (μA) =

⎛

⎜⎜
⎜
⎝

zgr11(μ11) zgr12(μ12) . . . zgr1n(μ1n)

zgr21(μ21) zgr22(μ22) . . . zgr2n(μ2n)
...

...
. . .

...

zgrn1(μn1) z
gr
n2(μn2) . . . zgrnn(μnn)

⎞

⎟⎟
⎟
⎠

,

for each μi j ∈ [0, 1].
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Remark 2.6 Based on arithmetic operations in E introduced in Definition 2.3 and the
classical matrix operations (e.g., matrix addition–subtraction, scalar multiplication,
matrix transpose, matrix inverse, and so on), we can perform the neutrosophic matrix
operations.

Example 2.6 Let A and B be two neutrosophic matrices given as follows

A =
(

3 +U 2
−1 +U 5

)
and B =

(
2 +U 3

0 3 +U

)
,

with the indeterminacy U = [0, 1]. Then, by gr-representation, we can rewrite these
matrices in the form

Agr (μA) =
(

3 + μ1 2
−1 + μ2 5

)
Bgr (μB) =

(
2 + μ3 3

0 3 + μ4

)
,

where μi ∈ [0, 1] (i = 1, 4). Then, we can introduce the following matrix operations:

• Matrix addition The granular representation of matrices A + B is

(A + B)gr (μA+B) = Agr (μA) + Bgr (μB) =
(
5 + μ1 + μ3 5

−1 + μ2 8 + 3μ4

)
.

By using the transformation (4), we obtain

N (
Agr (μA) + Bgr (μB)

)

=

⎛

⎜⎜
⎝

[
min
μ1,μ3

(5 + μ1 + μ3) , max
μ1,μ3

(5 + μ1 + μ3)

]
5

[
min
μ2,μ5

(−1 + μ2) , max
μ2,μ5

(−1 + μ2)

] [
min
μ4

(8 + 3μ4) ,max
μ4

(8 + 3μ4)

]

⎞

⎟⎟
⎠ .

Therefore, the matrix A + B =
(
5 + 2U 5
−1 +U 8 + 3U

)
, where U = [0, 1] is the

indeterminacy.
• Matrix subtraction The granular representation of the gr-difference A 	gr B can
be given as follows

(A 	gr B)gr(μA	gr B) = Agr(μA) − Bgr (μB) =
(
1 + μ1 − μ3 −1

−1 + μ2 2 − μ4

)
.

By using the transformation (4), we obtain

N (
Agr(μA) − Bgr (μB)

)

=

⎛

⎜⎜
⎝

[
min
μ1,μ3

(1 + μ1 − μ3) , max
μ1,μ3

(1 + μ1 − μ3)

]
−1

[
min
μ2

(−1 + μ2) ,max
μ2

(−1 + μ2)

] [
min
μ4

(2 − μ4) ,max
μ4

(2 − μ4)

]

⎞

⎟⎟
⎠ .
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Therefore, the gr-difference matrices A 	gr B =
(

2U −1
−1 +U 1 +U

)
with the

indeterminacy U = [0, 1].
• Scalar multiplication The gr-representation of scalar multiplication of A with

λ = 2 is given by

(2A)gr (μ2A) = 2Agr(μA) =
(

6 + 2μ1 4
−2 + 2μ2 10

)
.

Then, by using the transformation (4), we obtain

N (
2Agr (μA)

) =

⎛

⎜⎜
⎝

[
min
μ1

(6 + 2μ1) ,max
μ1

(6 + 2μ1)

]
4

[
min
μ2

(−2 + 2μ2) ,max
μ2

(−2 + 2μ2)

]
10

⎞

⎟⎟
⎠ .

Therefore, the matrix 2A =
(

6 + 2U 4
−2 + 2U 10

)
with the indeterminacy U = [0, 1].

• Multiplying matrices The gr-representation of the product of A and B can be given
by

(AB)gr(μAB) = Agr(μA)Bgr(μB)

=
(

μ1μ3 + 2μ1 + 3μ3 + 6 3μ1 + 2μ4 + 15
μ2μ3 + 2μ2 − μ3 − 2 3μ2 + 5μ4 + 12

)

=
(


1(μ1, μ3) 
2(μ1, μ4)


3(μ2, μ3) 
4(μ2, μ4)

)
.

Then, by using the transformation (4), we obtain that

N (Agr(μA)Bgr(μB))

=

⎛

⎜⎜
⎝

[
min
μ1,μ3


1(μ1, μ3), max
μ1,μ3


1(μ1, μ3)

] [
min
μ1,μ4


2(μ1, μ4), max
μ1,μ4


2(μ1, μ4)

]

[
min
μ2,μ3


3(μ2, μ3), max
μ2,μ3


3(μ2, μ3)

] [
min
μ2,μ4


4(μ2, μ4), max
μ2,μ4


4(μ2, μ4)

]

⎞

⎟⎟
⎠ .

Therefore, the multiplication of two matrices AB =
(

6 + 6U 15 + 5U
−3 + 4U 12 + 8U

)
with

U = [0, 1].
• Matrix transpose The granular representation of transpose matrix AT is

(AT)gr(μAT) = (Agr(μA))T =
(
3 + μ1 −1 + μ2

2 5

)
.
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Then, by using the transformation (4), we obtain that

N
((

Agr(μA)
)T) =

⎛

⎝

[
min
μ1

(3 + μ1) ,max
μ1

(3 + μ1)

] [
min
μ2

(−1 + μ2) ,max
μ2

(−1 + μ2)

]

2 5

⎞

⎠ .

Therefore, the transpose matrix AT =
(
3 +U −1 +U

2 5

)
whereU = [0, 1] is the

indeterminacy.
• Matrix inverse The granular representation of inverse matrix A−1 is

(A−1)gr(μA−1) = (Agr(μA))−1 =
(

5
17+5μ1−2μ2

−2
17+5μ1−2μ2

1−μ2
17+5μ1−2μ2

3+μ1
17+5μ1−2μ2

)

.

Then, by using the transformation (4), we obtain that

N (
(Agr(μA))−1)

=

⎛

⎜⎜
⎝

[
min
μ1,μ2

(
5

17+5μ1−2μ2

)
, max
μ1,μ2

(
5

17+5μ1−2μ2

)] [
min
μ1,μ2

( −2
17+5μ1−2μ2

)
, max
μ1,μ2

( −2
17+5μ1−2μ2

)]

[
min
μ1,μ2

(
1−μ2

17+5μ1−2μ2

)
, max
μ1,μ2

(
1−μ2

17+5μ1−2μ2

)] [
min
μ1,μ2

(
3+μ1

17+5μ1−2μ2

)
, max
μ1,μ2

(
3+μ1

17+5μ1−2μ2

)]

⎞

⎟⎟
⎠ .

Therefore, the inverse matrix A−1 =
( 5

22 + 7
66U − 2

15 + 7
165U

1
17U

3
17 + 2

85U

)
with indetermi-

nacy U = [0, 1].

Remark 2.7 Wecan see that some results ofmatrix operations on the set of neutrosophic
matrices such as the subtraction, matrices multiplication or matrix inverse are quite
different from classical results.

Definition 2.11 Let A = [
zi j
]
n×n be a square neutrosophic matrix of order n. We call

a number λ ∈ E an eigenvalue of A if and only if det
(
λgr (μ)In − Agr (μA)

) = 0,
where det(·) and In represent for the determinant and the n × n identity matrix,
respectively.

Next, we define the concept of exponential matrix et A, t > 0 for the class of
neutrosophic matrix A, which can be considered as a key for presenting solution of
LTI neutrosophic differential systems.

Definition 2.12 (exponential matrix) Consider a time-invariant linear system

⎧
⎨

⎩

dgrx(t)

dt
= Ax(t), t ≥ 0

x(0) = x0.
(10)
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The exponential matrix of the system (10) is defined as

et A :=
∞∑

k=0

1

k! (t A)k = In + (t A) + 1

2! (t A)2 + 1

3! (t A)3 + . . . + 1

n! (t A)n + · · ·
(11)

Some common properties of exponential matrix still hold for the case of neutro-
sophic matrix

Proposition 2.4 The exponential matrix et A has following properties

i.
dgr
dt

(
et A

) = Aet A.

ii. e0A = In.
iii. e(t+s)A = et AesA.
iv.

(
et A

)−1 = e−t A.

Proof Firstly, we can see that the gr-representation of the exponential matrix et A can
be given by

et Agr (μexp) = Igr
n (μI) + t Agr (μ) + 1

2! t
2 (Agr (μ)

)2 + · · · + 1

n! t
n (Agr (μ)

)n + · · ·

where μ ∈ [0, 1]. Therefore, we have following results

i. The gr-derivative of the exponential matrix et Agr (μexp) can be computed as

d

dt

[
et Agr (μexp)

]
= d

dt

[
I
gr
n (μI) + t Agr(μ) + t2

2!
(
Agr(μ)

)2 + · · · + tn

n!
(
Agr(μ)

)n + · · ·
]

= Agr(μ)

[
Igr
n (μI) + t Agr (μ) + · · · + tn−1

(n − 1)!
(
Agr (μ)

)n + · · ·
]

= Agr(μ)et Agr (μexp).

By using the transformation (4), the assertion (i) holds.
ii. For t = 0, we have

e0Agr (μexp) = I
gr
n (μI) + 0Agr(μ) + 1

2!
(
0Agr(μ)

)2 + · · · + 1

n!
(
0Agr(μ)

)n + · · · = Igr
n (μI).

Hence, we obtain that the exponential matrix e0A = In .
iii. By the formula (11), we have

e(t+s)A = In + (t + s)A + (t + s)2

2! A2 + (t + s)3

3! A3 + · · · + (t + s)n

n! An + · · ·

whose granular representation is given as
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e(t+s)Agr (μexp) = I
gr
n (μI) + (t + s)Agr(μ)

+ (t + s)2

2!
(
Agr(μ)

)2 + · · · + (t + s)n

n!
(
Agr (μ)

)n + · · ·

On the other hand,

et Agr (μexp)e
sAgr (μexp)

=
[
I
gr
n (μI) + t Agr(μ) + · · · + tn

n!
(
Agr (μ)

)n + · · ·
]

[
I
gr
n (μI) + s Agr(μ) + · · · + sn

n!
(
Agr(μ)

)n + · · ·
]

=I
gr
n (μI) + (t + s)Agr(μ) + (

t2 + ts + s2
) (

Agr (μ)
)2 + · · ·

+
(
tn

n! + tn−1s

(n − 1)! + · · · + tn−ksk

(n − k)!k! + · · · + tsn

(n − 1)! + sn

n!
) (

Agr(μ)
)n + · · ·

=I
gr
n (μI) + (t + s)Agr (μ) + (t + s)2

2!
(
Agr(μ)

)2 + · · · + (t + s)n

n!
(
Agr(μ)

)n + · · ·
= e(t+s)Agr (μexp).

iv. From the assertion (ii) and (iii), we have

In = e0A = e(t−t)A = e(t+(−t))A = et Ae−t A,

which implies the assertion (iv) is fulfilled. ��
Proposition 2.5 The system (10) can be represented as

x(t) = et Ax0. (12)

Proof Firstly, we prove that (12) satisfies the state equation. Indeed, by Proposition 2.4
(i), we have

dgrx(t)

dt
= dgr

dt

(
et Ax0

)
= Aet Ax0 = Ax(t).

In addition, from the assertion (ii) of Proposition 2.4, we have

x(0) = e0Ax0 = Inx0 = x0,

that means x(t) satisfies the initial condition x(0) = x0. ��
Corollary 2.3 Consider the linear system

dgrx(t)

dt
= Ax(t)+ Bu(t) subject to the ini-

tial condition x(0) = x0 and the input u(t), t ≥ 0. As a consequence of Proposition 2.5,
it follows that the response is given by

x(t) = et Ax0 +
∫ t

0
e(t−s)ABu(s)|rmds. (13)
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Proof Indeed, it is easy to see that x(t) given by (13) satisfies the initial condition

x(0) = e0Ax0 +
∫ 0

0
e(t−s)ABu(s)ds = x0.

Thanks to Corollary 2.2, we also have

dgrx(t)

dt
= dgr

dt

(
et Ax0

)
+ dgr

dt

(∫ t

0
e(t−s)ABu(s)ds

)

= Aet Ax0 + Ae(t−t)ABu(t) +
∫ t

0
Ae(t−s)ABu(s)ds

= A

(
et Ax0 + A

∫ t

0
e(t−s)ABu(s)ds

)
+ Bu(t)

= Ax(t) + Bu(t),

that means x(t) given by (13) satisfies the state equation
dgrx(t)

dt
= Ax(t) +

Bu(t). ��

Remark 2.8 To compute the exponential matrix et Agr (μexp), we need to find some
more effective methods and one of them is the use of Laplace transformation, which
is considered as one of the most effective methods. It is not difficult to see that the
Laplace transformation of et Agr (μexp), denoted by L[et Agr (μexp)], is given as follows

L[et Agr (μexp)] = (
λgr(μ)In − Agr(μ)

)−1
.

Hence, the matrix et Agr (μexp) can be obtained by using inverse Laplace transform

L−1
[(

λgr(μ)In − Agr(μ)
)−1

]
.

Example 2.7 Consider a neutrosophic matrix

A =
(
3 0
0 2 +U

)

whose gr-representation is Agr(μA) =
(
3 0
0 2 + μ

)
for all μ ∈ [0, 1].

We can see that the inverse matrix of λgr(μ)In − Agr(μA) is

(
λgr(μ)I

gr
n (μ) − Agr(μ)

)−1 =
(

1
λgr (μ)−3 0

0 1
λgr (μ)−(2+μ)

)

.
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Then, by using inverse Laplace transform, the exponential matrix et Agr (μexp) can be
calculated by

et Agr (μexp) = L−1
[(

λgr(μ)In − Agr(μ)
)−1

]
=
(
e3t 0
0 e(2+μ)t

)
.

Therefore, we obtain et A =
(
e3t 0
0 e(2+U )t

)
.

Example 2.8 Let us find the output response y(t) of the following neutrosophic LTI

systemwith the initial condition x(0) =
(

1
1 +U

)
and the control input u(t) = π+U .

⎧
⎪⎪⎨

⎪⎪⎩

dgrx(t)

dt
=
(

0 1

−3 −4

)

x(t) +
(
0

1

)

u(t)

y(t) =
(
1 0

)
x(t),

where the indeterminate part U = [0, 1]. Here, for simplicity, let us denote

A =
(

0 1
−3 −4

)
, B =

(
0
1

)
, C = (

1 0
)
.

By similar arguments as in Example 2.7, we have

et Agr (μ) =
(

3
2e

−t − 1
2e

−3t − 3
2e

−t + 3
2e

−3t

1
2e

−t − 1
2e

−3t 3
2e

−3t − 1
2e

−t

)

.

Hence, we have

xgr (t, μ) = et Agr (μ)xgr0 (μ) +
∫ t

0
esAgr (μ)Bgr (μ)ugr (t − s, μ)ds

=
(

2e−3t+3(e−3t−e−t )μ
2

2e−3t+(3e−3t−e−t )μ
2

)

+ (π + μ)

∫ t

0

(
3e−3s−3e−s

2
3e−3s−e−s

2

)

ds

=
(

2e−3t+3(e−3t−e−t )μ
2

2e−3t+(3e−3t−e−t )μ
2

)

+ (π + μ)

(
3e−s−e−3s

2
e−s−e−3s

2

) ∣∣∣
t

0

=
(
e−3t + π

2

(
3e−t − e−3t

)+ (
e−3t + 1

)
μ

e−3t + π
2

(
e−t − e−3t

)+ e−3tμ

)

.

Then, we obtain that ygr (t, μ) can be calculated as
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Fig. 6 The graphical representation of y(t) with the indeterminacy U = [0, 1]

ygr(t, μ) = (
1 0

) (e−3t + π
2

(
3e−t − e−3t

)+ (
e−3t + 1

)
μ

e−3t + π
2

(
e−t − e−3t

)+ e−3tμ

)

= e−3t + π

2

(
3e−t − e−3t

)
+
(
e−3t + 1

)
μ.

By the transformation (4), the output response y(t) = e−3t + π
2

(
3e−t − e−3t

) +(
e−3t + 1

)
U . The graphical representation of the output response y(t) is shown in

Fig. 6.

3 Main Results

Consider a linear time-invariant neutrosophic control system

⎧
⎨

⎩

dgrx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t),
t ≥ 0, (14)

where A ∈ Matn×n(E), B ∈ Matn×m(E), C ∈ Matp×n(E) are given neutrosophic

matrices,
dgrx(t)

dt stands for the gr-derivative of state vector x(t) and u(t) is the control
input. By gr-representation approach, the corresponding granular LTI system of the
system (14) is

⎧
⎨

⎩

∂xgr(t, μ)

∂t
= Agr(μ)xgr(t, μ) + Bgr(μ)ugr(t, μ)

ygr(t, μ) = Cgr(μ)xgr(t, μ),
(15)

where μ ∈ [0, 1] and t ≥ 0.
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3.1 The Controllability for Linear Time-Invariant Neutrosophic Systems

Definition 3.1 The LTI neutrosophic system (14) is called controllable if for every
state x1 ∈ En and for every � > 0, there exists an input control u(t), t ∈ [0,�] such
that under the control u(t), the state vector x(t) can be steered from the initial state
x0 to the final state x1 at the time t = �. In particular,

• If for every� > 0, there exists an input control u(t), t ∈ [0,�] such that under this
input, the state vector x(t) can be steered from the initial state x0 �= 0 to the origin
x1 = 0 at the time t = � then we say that the system (14) is null controllable.

• If for every � > 0, there exists an input control u(t), t ∈ [0,�] such that under
this input, the state vector x(t) can be steered from the origin x0 = 0 to an other
state x1 �= 0 at the time t = � then we say that the system (14) is reachable.

Remark 3.1 The LTI neutrosophic system (14) is controllable (reachable, null con-
trollable) if and only if its granular linear time-invariant system (15) is controllable
(reachable, null controllable) for all μ ∈ [0, 1].
Remark 3.2 To check the controllability of the system (14), let this system start at the
initial state x(0) = x0 and then, by the integral formula (13), we investigate its state
response at the time t = �:

x(�) = eA�x(0) +
∫ �

0
e(�−τ)ABu(τ )dτ = eA�x(0) +

∫ �

0
eτ ABu(� − τ)dτ

whose granular representation is as

xgr (�,μ) = eAgr�(μ)xgr (0, μ) +
∫ �

0
eτ Agr (μ)Bgr (μ)ugr (� − τ, μ)dτ (16)

for each μ ∈ [0, 1]. It can be seen that the state response only depends on the matrices
A, B. Hence, when we discuss the controllability of the system, we only need discuss
the controllability of the pair (A, B).

Definition 3.2 For each input control u(t) and � > 0, let the system start at x(0) = 0
and then, we have the zero-state response at t = � is given as follows

xu(�, 0) =
∫ �

0
eτ ABu(� − τ)dτ.

Then, we say that a state x0 �= 0 is uncontrollable if it is orthogonal to the
state xu(�, 0), for all � > 0 and for all control input u(t), t ∈ [0,�], that is(
xgr0 (μ)

)T
xgru (�, 0, μ) = 0 for all � > 0 and for all μ ∈ [0, 1].

Next, we give a necessary and sufficient condition for the controllability of LTI
neutrosophic system (14).

Theorem 3.1 The LTI neutrosophic system (14) is controllable if and only if it has no
uncontrollable state.
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Proof As a consequence of Remark 3.1, we only need to prove that the corresponding
granular LTI system of the system (14) is controllable for all μ ∈ [0, 1] if and only if
it has no uncontrollable state.

The necessary condition If the granular linear time-invariant system
(
Agr(μ), Bgr

(μ)
)
has no uncontrollable state then we consider following matrix

�(�) =
∫ �

0
eτ Agr (μ)Bgr (μ)

[
Bgr (μ)

]T [
eτ Agr (μ)

]T
dτ

for each μ ∈ [0, 1]. Our aim is to prove that the matrix �(�) is positively defined for
all μ ∈ [0, 1]. Otherwise, we assume by contrary that there exists xgr0 (μ) �= 0 such
that

[
xgr0 (μ)

]T
(∫ �

0
eτ Agr (μ)Bgr (μ)

[
Bgr(μ)

]T [
eτ Agr (μ)

]T
dτ

)
xgr0 (μ) = 0

⇒
∫ �

0

[
xgr0 (μ)

]T
eτ Agr (μ)Bgr (μ)

([
xgr0 (μ)

]T
eτ Agr (μ)Bgr(μ)

)T
dτ = 0,

that means
[
xgr0 (μ)

]T
eτ Agr (μ)Bgr (μ) = 0 for a.e t ∈ [0,�]. Thus, it follows

[
xgr0 (μ)

]T
∫ �

0
eτ Agr (μ)Bgr (μ)ugr (� − τ, μ)dτ = 0,

which means
[
xgr0 (μ)

]T
xgru (�, 0, μ) = 0 for all μ ∈ [0, 1]. This leads to a contra-

diction. Hence, we have �(�) is positive-defined and so, �(�)−1 exists.
Now, for every states xgr0 (μ), xgr1 (μ) and for � > 0, consider the control input

ugr (t, μ)

ugr(� − τ, μ) =
[
eτ Agr (μ)Bgr(μ)

]T
�(�)−1

(
xgr1 (μ) − e(�−τ)Agr (μ)xgr0 (μ)

)
.

By this control input, the state of the system
(
Agr (μA), Bgr(μB)

)
is steered from the

initial state xgr0 (μ) to the final state xgr1 (μ) at the time �. Indeed, we have

xgr(�,μ) = e(�−τ)Agr (μ)xgr0 (μ)+
∫ �

0
eτ Agr (μ)Bgr (μ)

[
eτ Agr (μ)Bgr (μ)

]T
�(�)−1

(
xgr1 (μ) − e(�−τ)Agr (μ)xgr0 (μ)

)
dτ

= e(�−τ)Agr (μ)xgr0 (μ)+
(∫ �

0
eτ Agr (μ)Bgr (μ)

[
eτ Agr (μ)Bgr (μ)

]T
dτ

)
�(�)−1

(
xgr1 (μ) − e(�−τ)Agr (μ)xgr0 (μ)

)

= e(�−τ)Agr (μ)xgr0 (μ) + �(�)�(�)−1
(
xgr1 (μ) − e(�−τ)Agr (μ)xgr0 (μ)

)
= xgr1 (μ).

Hence, the system is controllable.
The sufficient condition If there exists a state x0 �= 0 such that for all � > 0 and

for all control u(t), t ∈ [0,�], the state x0 is orthogonal to the zero-state response
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xu(�, 0), that is
(
xgr0 (μ)

)T
xgru (�, 0, μ) = 0 for all � > 0, μ ∈ [0, 1] and for all

control u(t), then it is easy to see that there has no control that can steer the state
xgr (t, μ) from the initial state xgr (0, μ) = 0 to the final state xgr0 (μ) in time �.
This implies the system (15) is not controllable, and thus, the system (14) is also
uncontrollable. ��

By Theorem 3.1, checking the controllability of the system (14) is equivalent to the
existence of an uncontrollable state x �= 0, which can be shown by following theorem

Theorem 3.2 A state x �= 0 is an uncontrollable state if and only if

xT
(
B AB A2B · · · An−1B

) = 0.

Proof For this proof, we need to show that the state xgr(μ) satisfies

(
xgr(μ)

)T (Bgr (μ) Agr(μ)Bgr (μ) A2
gr (μ)Bgr (μ) · · · An−1

gr (μ)Bgr (μ)
) = 0, μ ∈ [0, 1].

Indeed, let us consider the zero-state response xgru (�, 0, μ) of the system (14)

xgru (�, 0, μ) =
∫ �

0
esAgr (μ)Bgr (μ)ugr (� − s, μ)ds, μ ∈ [0, 1].

Additionally, by Definition 3.2, a state xgr (μ) �= 0 is uncontrollable if and only if

(
xgr (μ)

)T
xgru (�, 0, μ) = 0 for all � > 0, μ ∈ [0, 1],

and for all control u(t). Here, we can see that

(
xgr (μ)

)T
xgru (�, 0, μ) = (

xgr (μ)
)T
(∫ �

0
eτ Agr (μ)Bgr (μ)ugr (� − τ, μ)dτ

)

=
∫ �

0

(
xgr (μ)

)T
eτ Agr (μ)Bgr (μ)ugr (� − τ, μ)dτ,

for all � > 0, μ ∈ [0, 1] and for all control u(t). It follows that
(
xgr(μ)

)T
eτ Agr (μ)

Bgr (μ) = 0 for all � > 0, τ ∈ [0,�] and μ ∈ [0, 1]. Therefore, we have

BT
gr (μ)eτ AT

gr (μ)xgr(μ) = 0,

or equivalently,

(
xgr(μ)

)T (Bgr(μ) Agr(μ)Bgr (μ) A2
gr(μ)Bgr(μ) · · · An−1

gr (μ)Bgr (μ)
) = 0,

for all μ ∈ [0, 1]. Then, by using the transformation (4), we obtain

xT
(
B AB A2B · · · An−1B

) = 0.



Circuits, Systems, and Signal Processing

Therefore, the proof is complete. ��
Corollary 3.1 We can conclude that (A, B) is controllable if and only if for all state
x ∈ En\{0}, we have

(
xgr(μ)

)T (Bgr(μ) Agr(μ)Bgr (μ) A2
gr (μ)Bgr (μ) · · · An−1

gr (μ)Bgr (μ)
) �= 0,

or equivalently,

rank
(
Bgr (μ) Agr (μ)Bgr (μ) A2

gr (μ)Bgr (μ) · · · An−1
gr (μ)Bgr (μ)

) = n.

Thus, we define the controllability matrix by

K := (
B AB A2B · · · An−1B

)

whose granular representation is given as

Kgr (μ) = (
Bgr (μ) Agr (μ)Bgr (μ) A2

gr (μ)Bgr (μ) · · · An−1
gr (μ)Bgr (μ)

)
, μ ∈ [0, 1].

Then, the system is controllable if and only if its granular controllability matrix is full
row rank.

(A, B) is controllable ⇔ rank
(
Kgr(μ)

) = n (17)

3.2 The Stabilizability for Linear Time-Invariant Neutrosophic Systems

Consider a neutrosophic system

dgrx(t)

dt
= A (x(t)) , (18)

where x(t) ∈ En is the state variables and A : En → En is an E-valued function.

Definition 3.3 A state x∗ ∈ En is said to be an equilibrium point of the system (18) if

A(x∗) = 0̂,

that means xgr∗ (μ) is a solution of the system Agr (x
gr∗ (μ), μ) = 0 for all μ ∈ [0, 1].

Remark 3.3 Without loss of generality, we can assume that x∗ ≡ 0̂ is an equilibrium
of the neutrosophic system (18), that is A(x∗) = 0̂, or equivalently, Agr(0, μ) = 0 for
all μ ∈ [0, 1].
Definition 3.4 An equilibrium point x0 ≡ 0̂ of the system (18) is said to be

(i) stable if for all ε > 0, there exists δ(ε) > 0 such that for all solution x(t) of the
system (18) satisfying ρgr(x(0), 0̂) < δ(ε), it follows that ρgr(x(t), 0̂) < ε.
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(ii) asymptotically stable if it is stable and there exists c > 0 such that if x(t) is a
solution of the system (18) satisfying ρgr (x0) < c, limt→∞ ρgr (x(t), 0̂) = 0.

Example 3.1 Consider following Liénard neutrosophic differential equation

d2grx(t)

dt2
= (−4 +U )

dgrx(t)

dt
+ (−3 +U )x(t), (19)

with the initial conditions x(0) = 1 and
dgrx(0)

dt = 0.

Then, by denoting x1(t) = x(t) and x2(t) = dgrx(t)
dt + x(t), Eq. (19) can be trans-

formed into following linear time-invariant neutrosophic system

(
dgrx1(t)

dt
dgrx2(t)

dt

)

=
(−1 1

0 −3 +U

)(
x1(t)
x2(t)

)
(20)

with initial condition

(
x1(0)
x2(0)

)
=
(
0
1

)
and the indeterminacy U = [0, 1]. For sim-

plicity, we denote

X(t) =
(
x1(t)
x2(t)

)
, A =

(−1 1
0 −3 +U

)
.

Then, the given LTI neutrosophic system becomes
dgrX(t)

dt = AX(t) and it is easy

to see that the state Xe = (
0 0

)T is an equilibrium point of (20). Now, we will prove
that Xe is asymptotically stable. Indeed, the respective granular linear time-invariant
system of the system (20)

⎛

⎜⎜
⎝

∂xgr1 (t, μ)

∂t
∂xgr2 (t, μ)

∂t

⎞

⎟⎟
⎠ =

(−1 1
0 −3 + μ

)(xgr1 (t, μ)

xgr2 (t, μ)

)

(21)

has the characteristic equation (λgr(μ))2 + (4 − μ)λgr(μ) + (3 − μ) = 0 for each
μ ∈ [0, 1]. Then, the eigenvalues of the above system are

λ
gr
1 (μ) = −1 and λ

gr
2 (μ) = −3 + μ,

corresponding to the eigenvectors v
gr
1 (μ) =

(
1
0

)T

and v
gr
2 (μ) =

(
1

μ − 2

)T

for all

μ ∈ [0, 1]. Thus, we obtain the solution of granular LTI system (21) satisfying initial
condition

(
xgr1 (0, μ) xgr2 (0, μ)

) = (
0 1

)
is

{
xgr1 (t) = 1

2−μ
e−t + 1

μ−2e
(−3+μ)t

xgr2 (t) = e(−3+μ)t .
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Fig. 7 The asymptotic behavior of the solution [x1(t) x2(t)]T in Example 3.1

Hence, we can conclude that the solution Xe is asymptotically stable. The asymptotic
behavior of the solution Xe is presented by Fig. 7.

Definition 3.5 The LTI neutrosophic system (14) is called stabilizable by a state-
feedback control if there exists a neutrosophic matrix P ∈ Matm×n(E) such that the
corresponding closed-loop system

⎧
⎨

⎩

dgrx(t)

dt
= (A + BP) x(t), t > 0,

x(0) = x0

is asymptotically stable.

Remark 3.4 Stabilizability is related to both stability and controllability. It is well-
known that if a system is stable then it is stabilizable, while if this system is controllable
then we can use a state-feedback control to steer its eigenvalues to any locations in the
s-plane. Hence, it follows that we can always use a state-feedback control to stabilize
a controllable system, i.e., this state-feedback control will move the eigenvalues to the
open left half of the s-plane. However, if the system is not controllable then we may
not be always able to stabilizable it by using a state-feedback (Fig. 8).

Definition 3.6 Let A ∈ Matn×n(E) and λ be an eigenvalue of the matrix A. Then,

(i) An eigenvalue λ is said to be unstable if Reλ ≥ 0.
(ii) An eigenvalue λ is not controllable if it cannot be moved by a state feedback.

Definition 3.7 The linear time-invariant neutrosophic system (14) is said to be stabi-
lizable if all its unstable eigenvalues are controllable.

Here, the following theorem is used to discuss the stabilizability of LTI neutrosophic
system (14). It is well-known that checking stabilizability is too complex, which we
first need tofindall eigenvalues of the systemand thendetermine if they are controllable
or not.
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Fig. 8 Feedback control system with the gain controller P

Theorem 3.3 Assume that λi is an eigenvalue of neutrosophic matrix A. Then, the
eigenvalue λi ∈ λ(A) is controllable if and only if its corresponding eigenvector vi
satisfies the condition vTi B �= 0̂.

Proof Let λ
gr
i (μi ) and v

gr
i (μi ) be eigenvalue and eigenvector of the granular LTI

system (15), respectively. We will prove that the controllability of the eigenvalue
λ
gr
i (μi ) is equivalent to v

gr
i (μi )Bgr(μ) �= 0 for all μ,μi ∈ [0, 1]. Here, we only

consider the case when all eigenvalues λ
gr
1 (μ1), λ

gr
2 (μ2), . . . , λ

gr
n (μn) are distinct

real numbers. It is well-known that there exists a transformation matrix Sgr(μ) such
that

Ãgr(μ) = (
Sgr (μ)

)−1
Agr (μ)Sgr (μ) =

⎛

⎜⎜⎜
⎝

λ
gr
1 (μ1) 0 · · · 0
0 λ

gr
2 (μ2) · · · 0

· · · . . . · · ·
0 · · · · · · λ

gr
n (μn)

⎞

⎟⎟⎟
⎠

, (22)

and

B̃gr(μ) = (
Sgr(μ)

)−1
Bgr (μ), μ ∈ [0, 1].

On the other hand, it is well-known that the matrix Qgr (μ) =(
v
gr
1 (μ1) v

gr
2 (μ2) · · · v

gr
n (μn)

)
is such that the matrix (Qgr (μ))−1 (Agr (μ)

)T
Qgr (μ)

has the diagonal form

⎛

⎜⎜⎜
⎝

λ
gr
1 (μ1) 0 · · · 0
0 λ

gr
2 (μ2) · · · 0

· · · . . . · · ·
0 · · · · · · λ

gr
n (μn)

⎞

⎟⎟⎟
⎠

.
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Then, by using transpose transformation, we obtain

(
Qgr(μ)

)T
Agr (μ)

[(
Qgr (μ)

)−1
]T =

⎛

⎜⎜⎜
⎝

λ
gr
1 (μ1) 0 · · · 0
0 λ

gr
2 (μ2) · · · 0

· · · . . . · · ·
0 · · · · · · λ

gr
n (μn)

⎞

⎟⎟⎟
⎠

.

Thus, by choosing (Sgr (μ))−1 = [
Qgr (μ)

]T, the matrix equality (22) is satisfied. In
addition, we can see that

B̃gr(μ) = (
Sgr (μ)

)−1
Bgr(μ) = [

Qgr (μ)
]T

Bgr(μ)

= (
v
gr
1 (μ1)Bgr (μ) v

gr
2 (μ2)Bgr (μ) · · · vgrn (μn)Bgr (μ)

)
.

Since the fact that the matrix Ãgr (μ) is of the Jordan canonical form, it follows that
the eigenvalue λ

gr
i (μi ) is controllable if and only if v

gr
i (μ)Bgr (μ) �= 0 for all μ ∈

[0, 1]. ��

4 Numerical Examples

To illustrate our obtained result, let us consider following examples.

Example 4.1 Consider a mechanical water pump consisting of a tank, two valves V1,
V2 and an electrical circuit to control the system. The operation of this system is
based on the following principle: The electrical circuit controls the amount of water
flowing into the pump through the valve V1 while the valve V2 works mechanically
as the outlet. The rate of the outlet flow depends on the height of the water in the
mechanical pump. A higher level of water exerts more pressure on the mechanical
valve V2, creating a wider opening in the valve, thus releasing water at a faster rate.
As the level of water drops, the opening of the valve that narrows the outlet flow of
water is reduced. (see Fig. 9).
Next, we will construct the mathematical model for the mechanical pump. Firstly,
assume that the rate of flow fin := fin(t) at the input of the pump is a function of input
control voltage v(t), that is fin = κv(t), where κ > 0 is called the linearity constant.

Fig. 9 The mechanical water
pump
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The valve V2 is designed such that the outlet flow rate fout := fout(t) = λh(t) with
h(t) is the height of water level and λ > 0 denotes the outlet flow constant.

Let us denote V (t) and S by the total volume of the water inside the tank and the
cross-sectional area of the water tank, respectively, and assume that the initial height
of water level is measured as [h0, h0+ε], ε > 0, whichmeans that we can consider the
initial height of water level as a neutrosophic number h̃0 = h0 + εU with U = [0, 1]
is the indeterminacy. Then, we immediately obtain

⎧
⎨

⎩

dgrV (t)

dt
= fin − fout = κv(t) − λh(t)

V (0) = Ah(0).

Due to the fact that V (t) = Sh(t), this system is equivalent to

⎧
⎨

⎩
S
dgrh(t)

dt
= κv(t) − λh(t)

h(0) = h̃0.
(23)

For simplicity, we denote α = λ
S and β = κ

S . Now, to solve the system (23), we
multiply both sides of the differential equation of this system by eαt , and then by some
fundamental computations, we get

dgr

dt

(
eαt h(t)

) = βv(t).

By using Theorem 2.3, the solution of the system (23) is given as follows

h(t) = h̃0 + β

∫ t

0
e−α(t−τ)v(τ )dτ, t > 0 (24)

In addition, by the formula (24), we can see that the mechanical water pump is con-
trollable by the input control voltage v(t) for all t > 0.

Remark 4.1 According to Theorem 3.3, it implies that for the stabilizability of the
neutrosophic LTI differential system (14), we need to show that all of its unstable
eigenvalues are controllable, that means the corresponding eigenvector v satisfies
vTB �= 0. Here, we will give an example to demonstrate this statement.

Example 4.2 Consider the following neutrosophic system

dgrx(t)

dt
=
⎛

⎝
−2 0 0
0 1 + 0.1U 0
0 4 −1

⎞

⎠ x(t) +
⎛

⎝
0
2
1

⎞

⎠ u(t), (25)
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where x(t) = [x1(t) x2(t) x3(t)]T is the state variables and the indeterminacy U =
[0, 1]. By using the granular representation approach, we obtain following system

∂xgr (t, μ)

∂t
=
⎛

⎝
−2 0 0
0 1 + 0.1μ 0
0 4 −1

⎞

⎠ xgr(t, μ) +
⎛

⎝
0
2
1

⎞

⎠ ugr(t, μ).

Here, we denote

Agr (μ) =
⎛

⎝
−2 0 0
0 1 + 0.1μ 0
0 4 −1

⎞

⎠ , Bgr(μ) =
⎛

⎝
0
2
1

⎞

⎠ (μ ∈ [0, 1]).

Then, the system
∂xgr(t, μ)

∂t
= Agr (μ)xgr (t, μ)+ Agr(μ)ugr (t, μ) has the eigenval-

ues

λ
gr
1 (μ) = −2, λ

gr
2 (μ) = −1, λ

gr
3 (μ) = 1 + 0.1μ.

Moreover, the corresponding eigenvectors of Agr (μ) are

v
gr
1 (μ) = (

1 0 0
)T ; v

gr
2 (μ) = (

0 0 1
)T ; v

gr
3 (μ) = (

0 0.5 + 0.025μ 1
)T

.

ByDefinition 3.7 andTheorem3.3, the system (25) is said to be stabilizable iff its unsta-
ble eigenvalue λ

gr
3 (μ) = 1 + 0.1μ is controllable, that means

(
v
gr
3 (μ)

)T
Bgr(μ) �= 0

for all μ ∈ [0, 1]. Indeed, we have

(
v
gr
3 (μ)

)T
Bgr (μ) = (

0 0.5 + 0.025μ 1
)
⎛

⎝
0
2
1

⎞

⎠ = 2 + 0.05μ �= 0 for all μ ∈ [0, 1].

Hence, the system is stabilizable.

Remark 4.2 Next, in order to demonstrate the effectiveness of theoretical results, we
will give a procedure to investigate controllable problems and stabilizable problems
for neutrosophic LTI differential systems under granular computing:

Step 1. Transform the considered problem into mathematical model of the form (14);
Step 2. Convert the obtainedneutrosophicLTI system (14) into the respective granular

form (15);
Step 3. Employ the matrix criteria (17) to conclude the controllability of the obtained

granular LTI systems. Moreover, if the considered system is controllable then
it is also stabilizable by Remark 3.4.

Step 4. Moreover, we can determine the control û(τ ) of the form

û(τ ) = −BTe(�−τ)AT
[�(� − τ)]−1

(
e�Ax0 	gr x1

)

that transfers the state x0 into the state x1 in time �.
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Fig. 10 The circuit diagram in Example 4.3

Table 2 Parameter values
L1 0.01 H

L2 0.02 H

C [2 × 10−4, 3 × 10−4] F
R1 55 �

R2 [15, 16]�

Example 4.3 Consider a circuit diagram consisting of two resistors R1, R2, two induc-
tors L1, L2, one capacitor C and one voltage source vi p (see Fig. 10). The realistic
values of circuit elements are in Table 2.

Here, the values of the resistor R2 and the capacitorC are uncertain quantities given
in form of neutrosophic numbers due to the errors in measurement and influence
of environmental factors. In this case, neutrosophic number presentation has been
considered as a better description in the formulation of this mathematical model. And,
as a consequence, because of the uncertainty of R2 and C , it follows that the matrix of
state equations is neutrosophic matrix and thus, it also implies the uncertainty in the
form of a solution.

In this example, we choose the currents i1 and i2 in inductors and the voltage vC on
capacitor be the state variables, respectively. Then, by applying Kirchhoff’s voltage
law to the loops (a) and (b), we obtain

vi p = R1i1(t) + L1
dgri1(t)

dt
+ vC (t),

vC (t) = R2i2(t) + L2
dgri2(t)

dt
.

Moreover, by applying Kirchhoff’s current law to node A, we immediately get that

i1(t) = i2(t) + C
dgrvC (t)

dt
.
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From three above equations, we have the following system of neutrosophic state equa-
tions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dgri1(t)

dt
= 1

L1

[
vi p 	gr (R1i1(t) + vC (t))

]

dgri2(t)

dt
= 1

L2
(vC (t) 	gr R2i2(t))

dgrvC (t)

dt
= 1

C

[
i1(t) 	gr i2(t)

]

which has the granular representation as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂i gr1 (t, μ)

∂t
= − R1

L1
i gr1 (t, μ) − 1

L1
vC (t, μ) + 1

L1
vi p(μ)

∂i gr2 (t, μ)

∂t
= − R2

L2
i gr2 (t, μ) + 1

L2
vC (t, μ)

∂v
gr
C (t, μ)

∂t
= 1

C i
gr
1 (t, μ) − 1

C i
gr
2 (t, μ)

(26)

The granular system (26) can be transformed into the following matrix form
⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

∂i gr1 (t, μ)

∂t
∂i gr2 (t, μ)

∂t
∂v

gr
C (t, μ)

∂t

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎝

− R1
L1

0 − 1
L1

0 − R2
L2

1
L2

1
C − 1

C 0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

i gr1 (t, μ)

i gr1 (t, μ)

v
gr
C (t, μ)

⎞

⎟⎟
⎠+

⎛

⎜
⎝

1
L1

0
0

⎞

⎟
⎠ vip.

Assume that we can measure the value of the voltage vop over the resistor R2. Then,
the output is

vop = (
0 Rgr

2 (μ) 0
)

⎛

⎜⎜
⎝

i gr1 (t, μ)

i gr1 (t, μ)

v
gr
C (t, μ)

⎞

⎟⎟
⎠ .

Next, by taking into account the system parameters, we obtain that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎜
⎝

∂i gr1 (t, μ)

∂t
∂i gr2 (t, μ)

∂t
∂v

gr
C (t, μ)

∂t

⎞

⎟⎟⎟⎟
⎟
⎠

=
⎛

⎜
⎝

−5500 0 −100

0 −750 − 50μ1 50
10,000
2+μ2

− 10,000
2+μ2

0

⎞

⎟
⎠

⎛

⎜
⎝
i gr1 (t, μ)

i gr1 (t, μ)

v
gr
C (t, μ)

⎞

⎟
⎠+

⎛

⎜
⎝
100

0

0

⎞

⎟
⎠ vip,

vop =
(
0 15 + μ1 0

)
⎛

⎜
⎝
i gr1 (t, μ)

i gr1 (t, μ)

v
gr
C (t, μ)

⎞

⎟
⎠ ,
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where μ ∈ [0, 1]. Here, we denote

Agr (μ) =

⎛

⎜
⎜
⎝

−5500 0 −100
0 −750 − 50μ1 50

10,000

2 + μ2
−10,000

2 + μ2
0

⎞

⎟
⎟
⎠ ; Bgr (μ) =

⎛

⎝
100
0
0

⎞

⎠ ; Cgr (μ) = (
0 15 + μ1 0

)
.

Thus, we obtain the granular matrix Kgr (μ), given by

Kgr (μ) = (
Bgr (μ) Agr (μ)Bgr (μ) A2

gr (μ)Bgr (μ)
)

= 100

⎛

⎜
⎜
⎝

1 −5500 104
(
3025 − 102

2+μ2

)

0 0 5·106
2+μ2

0 104
2+μ2

− 55·106
2+μ2

⎞

⎟
⎟
⎠

has full row rank, that is rank(Kgr (μ)) = 3 for all μ1, μ2 ∈ [0, 1]. Therefore, as
a result of Theorem 3.2 and Corollary 3.1, we can conclude that the pair (A, B) is
controllable. Moreover, due to Remark 3.4 and the controllability of (A, B), we also
deduce that the considered system is stabilizable.

Example 4.4 An important actuator in control systems isDCmotor system.The electric
circuit of the armature and free-body diagram of the rotor is shown in Fig. 11. The
physical parameters for our example are given in Table 3.

Here, we assume that the electromotive force constant is an uncertain quantity that
can be represented as a neutrosophic number and the gear inertia and friction are

Fig. 11 The schematic of an armature-controlled DC motor system

Table 3 Parameter values
Jeq Effective moment of inertia of the rotor 0.1kgm2

Ke Electromotive force constant [5, 6]V/rad/s
Kt Motor toque constant 5Nm/A

R Electric resistance 1 �

L Electric inductance 0H
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negligible. In addition, the electric inductance is not considered in the DC motor even
though the current in the armature is AC in nature. The reasons for this phenomena
are as follows:

• Since the load is fixed, the current magnitude through a coil-side remains fixed—
though it changes the direction after 180◦ rotation. In this condition, the armature
coils do not need to induce any emf in any other coil;

• In DC motor, the change in direction of current happens because of the physical
change of terminals in the commutator. This change in direction creates opposite
torque on the same conductor giving you motor rotation. The field is also supplied
from DC having fixed current through it. Thus, the inductance does not play any
role here.

Now, we will build the system of state equations of our model. First of all, by
applying Kirchhoff’s voltage law to the armature circuit, we obtain

L
dgri(t)

dt
+ ia R + Ke

dgrθ(t)

dt
= v0, (27)

Moreover, the armature-controlled DC motor uses a constant field current, and thus,
the motor toque is given as τm = Kt ia . In addition, since the motor torque equals the
torque delivered to the load, we can see that

Jeq
d2grθ(t)

dt2
= Kt ia . (28)

Then, by substituting ia in (27) into (28) and dividing both sides of this equation by
Jeq, it yields

d2grθ(t)

dt2
= Kt

Jeq
v0 	gr Kt Ke

Jeq R
· dgrθ(t)

dt
(29)

By using horizontal membership function approach, the equation (29) becomes

∂2θ gr (t, μ)

∂t2
= Kgr

t (μ)

J greq (μ)Rgr (μ)

(
v
gr
0 (t, μ) − Kgr

e (μ)
∂θ gr (t, μ)

∂t

)
.

Next, let xgr1 (μ) = θ gr (t, μ), xgr2 (μ) = ∂θ gr (t, μ)

∂t
and ugr (t, μ) = v

gr
0 (t, μ) be

the state variables and input control, respectively. Then, by taking into account the
system’s parameters, the above equation can be rewritten in following granular state-
space form

⎛

⎜⎜
⎝

∂xgr1 (μ)

∂t

∂xgr2 (μ)

∂t

⎞

⎟⎟
⎠ =

(
0 1
0 −50(5 + μ)

)(xgr1 (μ)

xgr2 (μ)

)

+
(
0
50

)
ugr (t, μ), (30)
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where μ ∈ [0, 1]. For simplicity in representation, let us denote

Agr (μ) =
(
0 1
0 −50(5 + μ)

)
, Bgr (μ) =

(
0
50

)
.

In this example, our aim is to investigate the stabilizability of the system (30) and
find a control u that transfers the system from the initial state xgr (0, μ) = (

9 1
)T to

the final state xgr (2, μ) = (
0 0

)T. For the first aim, let us consider the granular matrix
Kgr (μ), given by

Kgr (μ) = (
Bgr (μ) Agr (μ)Bgr (μ)

) = 50

(
0 1
1 −50(5 + μ)

)
.

Wecan see that the abovematrix has full row rank, thatmeans thepair (Agr (μ), Bgr (μ))

is controllable for all μ ∈ [0, 1]. Thus, we imply the stabilizability of the system (30).
Next, to find the control u(t) as desired, let us recall from (16) the solution’s form of
the controlled system is as

xgr (2, μ) = e2Agr (μ)xgr (0, μ) +
∫ 2

0
e(2−τ)Agr (μ)Bgr (μ)ugr (τ, μ)dτ.

Our goal is to find ugr (t, μ) such that

(
0
0

)
= e2Agr (μ)

(
9
1

)
+
∫ 2

0
e(2−τ)Agr (μ)

(
0
50

)
ugr(τ, μ)dτ.

One can verify that one such ugr(t, μ) has following form

ugr(τ, μ) = −
[
e(2−τ)Agr (μ)Bgr (μ)

]T
[�(2 − τ)]−1 e2Agr (μ)xgr(0, μ),

where

et Agr (μ) =
(
1 1−e−50(5+μ)t

50(5+μ)

0 e−50(5+μ)t

)

,

�(2 − τ) =
∫ 2

0
e(2−τ)Agr (μ)Bgr(μ)

[
e(2−τ)Agr (μ)Bgr(μ)

]T
dτ.

Hence,

�(2 − τ) =
∫ 2

0

(
1 1−e−50(5+μ)(2−τ)

50(5+μ)

0 e−50(5+μ)(2−τ)

)(
0
50

) (
0 50

)
(

1 0
1−e−50(5+μ)(2−τ)

50(5+μ)
e−50(5+μ)(2−τ)

)

dτ

=
⎛

⎝
50(1−e−100(5+μ))

5+μ
0

e−200(5+μ)−2e−100(5+μ)+1
2(5+μ)2

25(1−e−200(5+μ))
5+μ

⎞

⎠ .
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Table 4 The control strategy
ugr(t, μ)

μ Ke ugr(t, μ)

0 5 ugr(t, 0) = 0.3603e250(t−2) − 0.18015

0.2 5.2 ugr(t, 0.2) = 0.36027e260(t−2) − 0.18013

0.4 5.4 ugr(t, 0.4) = 0.36023e270(t−2) − 0.1801

0.6 5.6 ugr(t, 0.6) = 0.36019e280(t−2) − 0.18006

0.8 5.8 ugr(t, 0.8) = 0.36014e290(t−2) − 0.18002

1 6 ugr(t, 1) = 0.3601e300(t−2) − 0.17997

The inverse of the above matrix is

( 5+μ

50(1−e−100(5+μ))
0

− 1
2500(1+e−100(5+μ))

5+μ

25(1−e−200(5+μ))

)

.

Therefore, we obtain the control input ugr (t, μ) is

ugr (t, μ) = − (
0 50

)
(

1 0
1−e−50(5+μ)(2−t)

50(5+μ)
e−50(5+μ)(2−t)

)

×
( 5+μ

50(1−e−100(5+μ))
0

− 1
2500(1+e−100(5+μ))

5+μ

25(1−e−200(5+μ))

)(
1 1−e−100(5+μ)

50(5+μ)

0 e−100(5+μ)

)(
9
1

)

=
[
9 − 50e−100(5+μ)(5 + μ)

25(1 − e−200(5+μ))
+ 1

1250(5 + μ)

]

e50(5+μ)(t−2)

−
[

9

50(1 − e−100(5+μ))
+ 1

2500(5 + μ)

]
.

In order to show the effect of different values of indeterminacy, Table 4 demonstrates
the control input u(t) that steers Eq. (29) from the initial state x(0) = (

9 1
)T to the

state x(2) = (
0 0

)T in time � = 2.
A plot of the control u(t) versus time is given in Fig. 12.

5 Conclusions

We presented new results on granular computing with respect to neutrosophic-
valued functions to form a new concept of derivatives and neutrosophic control
systems. The essential concepts of neutrosophic analysis were introduced such as
neutrosophic matrices, neutrosophic exponential matrix, neutrosophic differentiabil-
ity, neutrosophic integral, neutrosophic complete metric space, etc, which allow us
to consider LTI neutrosophic control systems in a new setting. Thanks to the hori-
zontal membership functions approach, the LTI neutrosophic control systems can be
converted into a class of LTI real control systems depending on parameters. Thus,
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Fig. 12 A plot of the control action versus time of Example 4.4

the necessary and sufficient conditions for the controllability and stabilizability of
neutrosophic LTI systems were investigated. Some real-life examples were examined
to demonstrate the effectiveness of the theoretical results. The numerical examples
showed that the proposed approach can prevent the shortcomings and disadvantages
when operating in uncertain environments such as multiplicity solutions or unnatural
behavior in modeling phenomena. For future research, we will study some open issues
such as neutrosophic random control systems under granular differentiability.
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