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On the Representation of Winning Strategies of Finite Games by 

Groups and Neutrosophic Groups 

Mohammad Abobala, Tishreen University, Syria 

 

Abstract : In this paper, we show that for a finite game with two players A , B: 

Each winning strategy of the first player A can be represented by a neutrosophic 

subgroup of the neutrosophic group (            , and each winning strategy of the 

second player B can be represented by an elementary abelian group         . 

Also, we introduce the concept of algebraically relative  games and present some 

examples on it. 
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1-Introduction : 

Groups are always very useful in representations of algebraic structures, and finite 

games as a finite steps can be considered. 

 Neutrosophy as a branch of philosophy introduced by F.Smarandache has many 

applications in the real world and the mathematical concepts. The concept of 

neutrosophic group had been defined in[2]  as a generalization of classical groups, 

subgroups and normal subgroups also were defined and studied. 

The most useful understanding of neutrosophic group has been written in [3], we 

consider N(G) as a union of G and GI  i.e N(G)=                           

We will use a neutrosophic subgroup to represent every winning strategy of player A, 

and a classical group to represent every winning strategy of player B.  

This research maybe very useful in the progression of game theory by algebraic 

views. 

2-Preliminaries : 

Definition 2.1 :[2] 

  Let  (G,*) be a group . Then the neutrosophic group is generated by  G and  I under * 

denoted by N(G)=         . 

I is called the indeterminate element (neutrosophic element)  with the property     . 

The most useful understanding of this definition has been written in [3], we consider 

N(G) as a union of G and GI  i.e N(G)=                        . 

Definition 2.2 :[2] 



Let N(G) be a neutrosophic group, then a neutrosophic subgroup is a subset of N(G) 

contains a proper subgroup of G. 

Remark2.3 :[2] 

Neutrosophic subgroup is not a group but contains a group. 

Definition 2.4 :[5] 

An abelian group G is called elementary abelian if it is isomorphic to         for 

such a positive integer n. 

For concepts like game, analyzing game, and combinatorial game see [4]. 

3-Main results and discussion : 

Suppose that G is a game with finite steps. Two players A , B play this game, they 

make their steps alternately,  i.e (their choices) from a finite set of objects 

S={       . 

If we reach to a position which A cannot chose any object then B is the winner, and 

conversely A is the winner. 

Without affecting the generality we can suppose that the alternating choices of two 

players can be realized as : 

B A                                

      

      

                                                 .  …                                 …. 

  

We say that a step i is complete if both players were able to chose objects without 

being losers. 

For each complete step, we can represent it by a bijective map f     wich permutes 

the chosen objectives in this step an fixes the rest of unchosen objectives, i.e if the 

player A chooses the element    and B chooses   , then we represent this complete 

step by the map : f     with f(  )=    and f(  )=   and f(  )=    for each       , 

we can use algebraic symbol as: f = (
   
  

  
  

  
  

  
  . 

Theorem 3.1 : 

Let    be the representation of the complete step i, then   
 
=I (of order 2) , where I is 

the identity map on S. 

Proof : 

It is easy to see that                    . 



We represent the beginning position of the game by I (identity map). 

Theorem 3.2 : 

Each winning strategy of second player B can be represented by a group with type  

    
         

Proof : 

If B has a winning strategy, then we will reach to a position that B can choose and 

player A cannot, as follows : 

B A                                

      

      

                                                 .  …………………………….  

                               ………………………….. 

        

  

We assume that the number of steps is k, we remark that all steps are complete and 

each step's representation is a bijective with order 2, so the group generated by all 

representations is     
 .  

We call the previous group by a strategy representation. 

Definition 3.3 : 

If we reach to a position which A can chose and B cannot, we represent it by the 

indeterminate map J, which it means that A can pick an object and B cannot. 

Remark: The indeterminate map J has the property      , we mean by this property 

that if we reach to a winning position of player A , then the next position is the same. 

 Theorem 3.4 : 

Each winning strategy of first player A can be represented by a neutrosophic 

subgroup with type . 

    
      

Proof : 

If A  has a winning strategy then we will reach to a position that A can choose and 

then B cannot , as the following : 

B A                                

      

      



                                                 .  …………………………….  

                               ………………………….. 

    

  

We assume that the number of steps is k+1 , we remark that all steps are complete 

unless the last step. The group generated by all steps unless the last one is     
 . 

For the last step we can represent it by the indeterminate J, thus the strategy 

representation is the neutrosophic subgroup of N(    
   which is set :  

    
      

Result 3.5 : 

If A is the winner then the strategy representation is a neutrosophic group , and if B is 

the winner then the strategy representation is a classical group 

Definition 3.6 : 

(a) If the player B has a winning strategy, then the winning strategy with minimum 

representation group order is called the perfect strategy of B. 

 (b) If the player A has a winning strategy , then the winning strategy with minimum 

representation group order is called the perfect strategy of A. 

Definition 3.7 : 

If H , K are two finite games , we say that H is algebraically relative or (H-ar-K), if 

there is a perfect strategy of the Player A in both games with the same representation 

neutrosophic group, or a perfect strategy of the player B in both games with same 

representation group . 

Remark : The essential meaning of algebraically relative games is that they have 

winning strategies with the same number of steps.  

Example 3.8 :   

Suppose that we have two players A , B which they are playing Wythoff  game with 

(3,2) as a beginning position , A at least needs two steps to win , we can clarify it by 

the following example:  

B A 

(1,1) (1,2)   (after the choice of A ) 

 A chooses (1,1) and wins 

 The representation neutrosophic subgroup is        

Let the same players play the HIM-Game defined in [4]. The beginning position is  

(2,4,5,10) , A has a perfect strategy as  



B A 

(2,4) after B choice (2,4,2,2) after A choice 

 A chooses (2,4) and wins 

The representation neutrosophic subgroup is        , thus the previous two games 

are algebraically relative. 

4-Conclusion 

In this research, we have introduced a representation of winning strategies of finite 

alternating games by groups and neutrosophic groups. Also, we have introduced the 

notion of algebraically relative games and gave many examples. 
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