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1. Introduction

There are many theories that have been suggested for dealing with uncertainties in an efficient way
such as the theory of fuzzy sets [1], the theory of intuitionistic fuzzy sets [2], the theory of rough
sets [3], and the theory of neutrosophic sets [4]. However, the idea of fuzzy sets, intuitionistic fuzzy
sets, and neutrosophic sets are not sufficient to cope with parametrization tools. In 1999,
Molodtsov [5] proposed the idea of a soft set that has the ability to deal with this difficulty. The idea
of fuzzy soft (FS) sets and neutrosophic soft sets was proposed by Maji et al. [6, 7], and some
properties of FS sets were discussed by Ahmad and Kharal [8]. Wang et al. [9] proposed the idea of
single-valued neutrosophic sets. Saber et al. [10-13] introduced several concepts including,
r-single-valued neutrosophic compact modulo, and r-single-valued neutrosophic connected sets in
single-valued neutrosophic topological spaces, single-valued neutrosophic ideal open local function,
single-valued neutrosophic #£-separated. Single-valued neutrosophic fuzzy set and multi-attribute


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024023

413

decision-making were introduced by Sasirekha et al. [14]. Masri et al. [15] introduced the idea of a
single-valued trapezoidal neutrosophic number.

Sostak’s single-valued neutrosophic soft topological spaces and single-valued neutrosophic soft
sets were constructed by Saber et al. [16]. The concept of single-valued neutrosophic soft has been
thoroughly explored and advanced by numerous researchers, such as (Shahzadi et al. [17], Cano et
al. [18], Ozkan et al. [19], Al-Hijjawi et al. [20], Jana et al. [21] and Kamal et al. [22]) There are
three alternative approaches to uniformity in the fuzzy case: Lowen’s [23] entourage approach based
on power sets of the form /X, Kotzé’s [24] uniform covering approach, and Hutton’s [25] uniform
operator approach.

It is well known that the theory of neutrosophic sets has been regarded as a generalization of the
theory of fuzzy sets, the theory of intuitionistic fuzzy sets and the theory of rough sets. Furthermore,
this is an important mathematical tool to deal with uncertainty. One of the main contributions of this
paper is to introduce the concepts of single-valued neutrosophic uniformity in the sense of entourage,
which is a generalization of the concepts introduced in Lowen [23], Kotzé [24], Hutton [25] and Abbas
et al. [26].

Motivated by the above discussion, the present work deals with the single-valued neutrosophic
uniformity in the sense of entourage. We introduce the notions of single-valued neutrosophic soft
uniform spaces and single-valued neutrosophic soft uniform bases. The notion of this single-valued
neutrosophic soft uniformities to be stratified is ensured. We investigate the relationship among
single-valued neutrosophic soft uniformities, single-valued neutrosophic soft topologies and
single-valued neutrosophic soft interior operators. We study several single-valued neutrosophic soft
topologies induced by a single-valued neutrosophic soft uniform structure. Finally, we introduce the
product single-valued neutrosophic soft uniformity of a given family of single-valued neutrosophic
soft uniform spaces.

2. Preliminaries

In this section, we give all the basic definitions and results that we need to go through our work.
First, we give the definition of a single-valued neutrosophic set (svn-set) and a single-valued
neutrosophic soft set (svns-set). For more details about svn-set theory and svns-set theory, we refer
to [9, 16]. As usual, (@) denotes the family of all svns-sets on X, and E is the set of all parameters.
Additionally, X indicates an initial universe and ¢* are the sets of all svn-sets on X (where, ¢ = [0, 1]
and ¢, = (0, 1]).

Definition 1. [4]. Let X be a universe set. A neutrosophic set (n-set) ® on X defined as

O = {1 Y T (), o) |y € X, 7, (1), T, (1), S () €170, 171},

where y,(y), n,(y) and ¢,(y) are the truth, the indeterminacy, and the falsity membership functions
respectively.

Definition 2. [9]. Let X be a non-null set. Then, svn-set ® on X is defined as

O = {1,701, 5. () |y € X, ¥,(3), 7, (1), 5, () € {1},

where y,,m,,6, : X = {and 0 <y, (y) + 7, (y) + 6, (y) < 3.
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Remark 1. 7o clarify the relationship between intuitionistic fuzzy sets if-set, neutrosophic sets n-set,
and single-valued neutrosophic sets svn-set, let us confirm that both neutrosophic sets and single-
valued neutrosophic sets are a generalization of the concept of intuitionistic fuzzy sets, as follows:

In IFS, paraconsistent, dialtheist and incomplete information cannot be characterized. This most
important distinction between if-set and n-set is shown in the below neutrosophic cube A’ B’ C’ D’ E’
F’ G’ H’ introduced by J. Dezert [27].

Because only the classical interval [0,1]is used as a range for the neutrosophic parameters in
technical applications (truth, indeterminacy and falsity), we call the cube ABCDEDGH the technical
neutrosophic cube and its extension A’ B C’ D’ E’ F’ G’ H’ the neutrosophic cube or nonstandard
neutrosophic cube, used in the fields where we need to differentiate between absolute and relative
notions like philosophy.
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E(0,04)

-
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Figure 1. Neutrosophic cube.

Definition 3. [16]. f, is an svns-set on X, where f : E — (%, i.e., f, = f(e) is an svn-set on X, for all
ecAand f(e) =(0,1,1), ife ¢ A.

The svn-set f(e) is termed as an element of the svns-set f,. Thus, an svns-set fr on X can be defined
as:

(E) ={(e.f(e) | e € E, fle) € £*]
= {e.(v,(e). 7 (e). 5, () | e € E. f(e) € £},

wherey, 1 E — { (y, is termed as a membership function), ny : E — { (n, is termed as indeterminacy
Junction) and ¢, : E — (g, is termed as a nonmembership function) of svns-set.

An svns-set fp on X is termed as a null svns-set (for short, 6), ify(e)=0,m,(e)=1andg(e) =1,
forany e € E.

An svns-set fp on X is termed as an absolute svns-set (for short, E ), if y,(e) = 1,m,(e) = 0 and
¢.(e) =0, forany e € E.

Definition 4. [16]. Let f,,g, € (ﬁ) be an svns-sets on X. Then,
(1) Inclusion of two sets (for short, f, < g,) defined as:

V@ <y m@2r o), ¢ =5
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(2) The complemented of the set f, denoted by (for short, f¢) defined as:
£ ={(es ). 7 (e). 7, (e)) | e € E}.

Definition 5. [16]. A mapping TV, 3", 3¢ 1 E — ( @&D) js said to be a single-valued neutrosophic soft
topology (svnst) on X if it meets the next criteria, for every e € E:

(T) TY(D) = 1, T(D) = 0, TH(D) = 0 and TUE) = 1 T(E) = 0, TUE) =0,
(T) TS, Mg =2 WA AT, T(fang,) < TV Tg,),

T(f, Mg, STV Tg,), Y fog, € X E),
(T3) fzz% CADER T((f))), SANCARERTRACAD:

Te( Ig(fA)j) < _\E/in((fA)j), Y (f1); € (X.E), jeT.

(Note thjat M and I_f in the definition are clarified in Molodtsov [5]). The quadruple (X,T7, ", T) is
said to be a single-valued neutrosophic soft topological space (svnst-space), where (TL(f,))
representing the degree of openness, (T2(f,)) the degree of indeterminacy and (T¢(f,)) the degree of
non-openness; of a svns-set with respect to that parameter e € E. Sometimes, we will write T for
(T, 37, T).

Let (X, D7) and (G, T*™) be svnst-space. An svns-mapping s, : (zﬁ) - (Q\R) is said to be a
single-valued neutrosophic soft continuous mapping (svasc-map) if

VW) = T, THW(8,) < Ton (),

12

TW, (8,) < T (88),
forall g, € (G,R) and e € E [Saber et al. (2022) [16].

Definition 6. A map I: E X (X,E) x Lo — (X, E) is said to be single-valued neutrosophic soft interior
operator (svnsi-operator) on X if it meets the next criteria, ¥V, e € E, f,,g, € (X,E)and r,s € {:

(I) I(e.E.r) = E,

(L) I(e, f,» 1) = [

(I;) if f, < g, and r < s then I(e, f,,r) < I(e, g,, 5),
(I4) I(e), f, M g, r A s) = I(e, f,, 7)1 I(e, g, ),
(Is) I(e, I(e, f,, 1), 1) = I(e, f,, 7).

Definition 7. [16]. A map C : E X (ﬁ) Xy — (ﬁ) is said to be single-valued neutrosophic
soft closure operator (svnsc-operator) on X if it meets the next criteria, V¥, e € E, f,, g, € (X,E) and
r,sel:

(C1) Cle, @, 7) = O,

(G) Ce, f,, 1) = [

(G)if f, 2 g, and r < s then C(e, f,,r) < Cle, g, 5),
(C4) Cle, f,Lg,, r ANs) 2 (e, f,,r)U (e, g, 9),
(Cs) Cle, Cle, f,, 1), 1) < e, f,, 1),

(Cs) Cle, f,, 1) = [I(e, [, )]
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3. Single-valued neutrosophic soft soft uniform spaces

The main objective of this section is to define and discuss the concepts of single-valued
neutrosophic soft uniformity (svns-uniformity), single-valued neutrosophic soft uniform base
(svns-uniform base) and stratified single-valued neutrosophic soft uniform space (ssvns-uniform
space). Several basic properties and theorems related to these concepts are explored.

In this section, we indicate that (X X X, E) is the family of all svns-sets on X x X and ¥ are the
sets of all svn-sets on X X X. Additionally, for o € £, o(x,y) = o for any (x,y) € X X X.

Definition 8. Let X be a set. A mappings £7,£7,£5 : E — (‘XD s called an svns-uniformity on X if
it meets the next criteria:

(£1) for any e € E, there exists v, € (X X X, E) such that £lw)=1,£(v,) =0, £:(v,) =0,
(£2) if v, 2 p,, then £(v,) < £1(u,), £1(v,) > £(u,), £(v,) > £(u,),
(£3) for every v, ,u, € (XQE), then

£, Mp,) > £w,) ANE,), £, Np,) <£(,) V£ (RW,)
£5(u, M) < £50u,) V £5(1,),
(£4) (T £ v, implies that £(v,) = 0, £7(v,) = 1, £:(v,) = 1, where, ¥ ¢ € E,

(1,0,0), if x=y,

(Me(x,y) = {<0, 1,1y, otherwise,

(85) £10,) < £17), £10,) 2 €1, ££v,) 2 £5)), where v'(x,y) = v, (3, ) for every e € E,
(£6) foreachv, € (X X X,E), e € E,

) <\ : @om)<v),  £w)> \EW): (@opn)<v,),

£w) 2 \NEW,) : @, on,) <v,),
where (v, o ) = \/{v.(x,2) A (2, y)} for each x,y € X.

zeX
A svns-uniformity £,£7,£5 : E — (XD s called stratified if
(£q) £(E,) = 1, £4E,) = 0, £(E,) = 0, where v, = E, ifv, =0 ¥, e € E.
After adding the last condition (X,£",£7,£%) is called ssvns-uniform space. Sometimes, we will

write £ for (£, £7, £9).

Let £27¢ and £ be two svns-uniformities on X. £ is finer than £ (£27 is coarser than £7°),
indicated by £ < £1™¢ provided

£0,) <), £)2£@,), £950,)2£0,), YeeEuv, € XXX,E).

Remark 2. Suppose that (X,£]"°) is an svns-uniform space. Then, by using the two conditions (£;)
and (£,), we obtain, £7(E) =1, £”(E) =0, £§(E) = 0 because v, < Efor everye € E, v, € (X X X E).
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Theorem 1. Let (X,£]") be an svns-uniform space. Define for any e € E, v, € (X X X, E).
Eew,) = \/E(w,) - 1, NE, v, 0€ ),

EDew,) = NE @) - 1, NEy <v,, 0€ 0,
E)ew,) = NEW,) - 1, NE, <v,, 0€ )
77T§

Then, (£])g is the coarsest ssvns-uniformity which is finer than £,

Proof. (£,) There exists v, € (X X X, E) such that £}(v,) = 1, £2(v,) = 0, £:(v,) = 0 for every ¢ € E.
Since v, 1M EQ <uv,, then (£)).w,) =1, (£%).(v,) =0, (£5).(v,) = 0.

(£,) Direct from the definition.

(£3) Let there exist (v),, (v2), € (X ﬁ E) such that for every e € E,

EDe((WD), M (W2),) £ EDe((U1),) A (E])e((v2),),

EDe((W1), M (v2),) £ E)e((V1),) V (£5De((v2),),
EDe((V1), M (@2),) £ E3De(W1),) V (£5)e((v2),).

By using the definition of (£]/)g, then there exists (i), (u2), € (X X X,E) , 01,00 € ¢ with
(ﬂl)c M EQI = (UI)A’ (llz) M EQz =< (Uz) such that

EDe((Wn), M (2),) £ £((1)) A EL (1)),

EDe((V1), M (v2),) £ £((11) ) V £((12),),
(E3)e((W1), M (v2),) £ £5((1),) V E((12),)-
Otherwise, (1), M (u2), N E M Eg2 < (v1), M (v2),. Then, we have
EDe((W1), M (V2),) = £1((u1) M (12),,) = £1((u1)) A £ (12),),

E)e((v1), M (v2),) < £5((1)e M (u2),) < £5((u1)e) V £5((12),),
E5De((W1), M (V2),) < £((u1)e M (U2),) < £5((11)e) V E(12),)-

This is a contradiction. Consequently, (£3) holds.
(£4) Direct from the definition.
(£5) Let

EDeW) £ EDev,),  EW) £ E(v,),  EDe(V) £ (£)e(v,),

V,eeE,u, € (X X X, E). By using the definition of (£2°)g, there exists u, € (X X X,E), 0 € £ with
u, ME, <v,, such that

EDe W) £ (), EDe) £ £, EDe(v)) £ ££(1,).

Since £ is svns-uniformity, then
) £, L) 2 £0), £, 2 £,),
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It follows that
EDe W) 2Ly, EDe() £ £(1,),  E)e(v)) £ £(u,).
On the other hand, My EQ < v;. Hence, foreache € E
EDe@) 2 £ (), E) <E ), (E)(v]) < £(u;).

This is a contradiction. Therefore, (£5) holds.

(£6) Suppose that
E)e(,) £ \/{(f«f,)e((vl)c) D (U)o () 2y,

Eew) # NED(@)) (1), 0 (), S, ),
E)ew,) 2 N EDLw)) + 1) 0 W), 2v,).

for any v, € (X X X,E). From the definition of (£77°)E, there exists u, € (X XX,E), o € ¢ with
1, M E, < v, such that
£, £ \IED L)) : W) 0 W) <v,),

€1, # \EDL(@),) : W) 0 ) <),
£501,) # \MEDLWD) : W) 0 @) 2v,).
Since £ is svns-uniformity on X, then

) < \/{Eo,): 0,00, <u,),

£ (u,) > /\{fg(an) Lo, 00, <),
£5(uy) > /\{£§(0'D) Do, 00, <)
That means, there is 0, € (X ﬁ E) such that op M op < u, and that

£(op) £ \/{(ﬂ, ((W1)o) : (W) o (V) v,

£(op) £ A{(ﬁ’;)e((vl)c) b (W) o (U1 2l

£ # \MEDLWD) : W) 0 ). 2v,).
On the other hand,

(O'DHEQ)O(O'DHEQ)ﬁ(O'DOO'D)I‘IEQ5,113|‘|EQ <v,,
which means that there is (v;),. = op M EQ with (v1), o (v1). 2 v,,
£(0p) < ED(@)) < \IEDL@)) + W), 0 i), <),

£(op) 2 (£)e((v1),) 2 /\{(ﬂ; (V1)) o (W) o (W) v,
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£(0p) = (£5)((v1)o) = /\{(£§,)e((v1)c) D (W) o (W) v, )

It is a contradiction. Thus, (£¢) holds.

(£4) Since E,ME, = E, for each ¢ € , then (£,)z = 1, (£7)7 = 0 and (£5,)7 = 0. Therefore, (£7),
is stratified.

For each v, € (Xf)\(, E), v, N El = v,, we have for each e € E

EDe,) 2 £ W,),  E)Dv,) <EW@,),  (E)(v,) < £,

Hence, (£];°)g is finer than £]™.

Finally, consider £;”™ is an ssvns-uniformity finer than £/ . Let there exists v, € (X X X, E) such
that

EDew,) ££7W,),  EDe,) 2£7(W,),  (E)D(v,) 2 £5,).
From the definition of {(£},).(v,) (€%)c(v,). (£5).(v,)}. there exists 1, € (XX X.E) , ¢ € { with
u, ME, <v, and

£, ££7@W,),  £w) 2£70w,), £, ££°@,).

*YnG -

Since £;" is stratified, then

£(u,) < £7(u,) = £7(u,) AL (E,) < £7(u, NE,) < £(v,),
£0(uy) > £27(1,) = £7(u,) V £7(Ep) > £7(u, UE,) > £5(v,),
£5(uy) > £25(1y) = £2(u,) V £25(E,) > £15(u, U EY) > £5(v,).
It is a contradiction. Hence,
E) W) <£7W,), E)Dev) =£7w,), E)(v,) = £5,),

for each v, € (X X X,E), e € E. Hence, (£/7)g is the coarsest ssvns-uniformity which is finer than

s
£.7. o

Remark 3. Let 77, 7", h* : E — gWAX’E) be a mapping and v, € (X ;)\(, E). Let us define (h.), (h*)
and (hy) as follows for each e € E:

mw)=\/ Bw,), EHw)= \ K@), &Hw)= [\ ©w,).

U, 2Up U, U U, ZUp

Definition 9. A mappings ', W, 1S : E — (*%B js called a svns-uniform base on X if it meets the
next criteria:

(fi1) There exists v, € (X Q, E) such that i}(v,) = 1, i*(v,) = 0, ii(v,) = 0, for all e € E,
(hy) for eachv,,u, € (X X X,E), e € E, such that

D, M) 2 1E(w,) A (), T, Mpy) S TEW,) YV Rig(u,),
(), Mpy) < Rg(u,) Vv hig(uy),

AIMS Mathematics Volume 9, Issue 1, 412-439.
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(3) If (T)a £ vy, then hZ(vB) =0, (v, =1, hig(v,) = 1.
() For every v, € (XX X, E), (h))(vS) 2 hl(v,), ()(W}) < Wi(v,) and (h)(w)) < i(v,),
(his) For every v, € (X Q, E),

V) s o) <ud 2@\ WG : (0 m,) <v,) <H@,),

AW, = (0 m,) <v,} <H@,).

A svns-uniform base (W7, 1", %) is said to be stratified if and only if (W, ", i) satisfies
() hy(EQ) =1, h”(EQ) =0, hg(Eg) =0,Ypel ecE.

In this case (R, 1", k) is stratified single-valued neutrosophic soft uniform base (for short, ssvns-
uniform base). Sometimes, we will write h,"* for (W, h", IrS).

Let n7™ and "™ be two svns-uniform bases on X. Then, W)™ is finer than ™ (W™ is coarser
than 1Y), denoted by W™ < ™ provided

B(W,) < BDW,), B, 2 E)Hw,), B, = R)H©,),

for each e € E, v, € (X X X, E). Obviously, all svns-uniformity £7° on X is a svns- uniform base with
<£77T§'> — £77TS'
E E -

Theorem 2. Let h)* be a svns-uniform base on X, define the mappings W ,i",hs : E — { X<XE) for
anyv, € (X X X,E), e € E as follows:

(Re(w,) = \/ (W) : 1, N Ey v, 0€ ),

e, = \(w,) : 1, M Ey v, 0 € ),

(Do) = \ (@) : g, ME, <v,, 0 € ).

Then,
(1) (R)]*)E is the coarsest ssvns-uniform base which is finer than k),

(2) (g )e) = (B D

Proof. (1) Similar to Theorem 1.
(2) It becomes clear to us from (1), that

(WY <AME), (M) = ((We), (Mg = (B k).
Conversely, let
()W) £ MDa(v,), (B, # D a(v,),  {(T)e)(v,) # (h)a(v,),

for some v, € (X X X E). By the concept of ((7i!*)g), there exists pu, € (X XX, E) with u, < v, such
that

n)e(y) £ Ma,), (e, # By a(v,),  (B5)e(u,) 2 (hS)a(v,).
By the concept of (™), there exists 0. € (X X X,E), 0 € £ with o T EQ < u, such that

n(oe) £ )a,),  Tg(oo) 2 )a(,),  Tg(o) 2 (hg)u(v,).

AIMS Mathematics Volume 9, Issue 1, 412-439.
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On the other hand, 0. M Eg < v, implies that
(W) u(,) 2 (W) (o) 2 hl(o.),  ()u(v,) < () o.) < hl(o,),

(n)s(v,) < (fig)(orp) < TL(op).

It is a contradiction. Hence, (7)), (v,) = () )v,), u(v,) < ()N v,),
(he)s(v,) S A5 e)(W,), and (R )e) = (AL ). m

Theorem 3. Let (X, £]") be an svns-uniform space. For all f, € (X,E)and v, € (X X X, E), the image
v,Lf,] of f, with respect to v, is the svns of X defined by

W LED® = \/I£0) A v, 01, Y, e ANBand x€X.

yeX

For f.,(f,); € (f,\E), U, 1y, € (Xﬁ, E), we have:
(1) f. 2 v,[f.] whenever £}(v,) > 0, £2(v,) < 1, £5(v,) < 1,
(2) v, < v, ov, whenever £}(v,) > 0, £7(v,) < 1, £5(v,) < 1,
(3) (uy o v )] = pylv, [ £ 11,
CIRY [I_I(fp)]] = I_IU (/)]

O4) v, I'IMB)[(fD)l M (fo)2] v, [ ] T [(f)2],
(6) (v, U p)[(f)1 U (2] 2 v, [(f)i 1 U, [()2],
(D v, [ [fDT= S

Proof. Obvious. O

Theorem 4. Let i be a svns-uniform base on X. define the operator I,.,. : E X (X,E)x ¢, » (X,E)

i s
as next for everye € E, r € {, f, € (X, E),

I (e f,1r)= LI{R v IRI=L [, ilv) > R(v,) <1 -r A(v,) <1-r}.

Then, I

e IS an svnsi-operator on X.

Proof. (I;) Since E = v, [E], for all hi(v,) >r, B*(v,) < 1-r, Bi(v,) <1 —r,then Ihy,rg(e,E\,r) =E.
(I2) Whenever R. < v,[R] < f,, ¥ Bi(v,) >r, FF(v,) < 1-r, K(v,) < 1-r, we get that

I,.(e f,r) < f, forall f, € (X,E).
(1) Clearly, I...(e, f,,7) < I,,..(e,R,,s) forevery f, <R,, f,,R, € (X,E)and r < s.
(I4) Assume that

I;,yng(ea (fc)l’ I’) r I;,wrc(e’ (fC)Z’ S) ﬁ I;,wrg(e, (fc)l r (fc)z’ rA S).
Then, there exists (R,)1, (R,)z € (X, E) with v, [(R,)1] < ()1 1, [(R,)2] < (f.), and
Rw,)zr, #Ww)<l-r ku)<l-r

W) >s,  Hu)<l-s,  Bu)<1-s,

such that
(RD)I M (RD)Z %— Ihync(é’(fc)l I (fc)Z’ rA S).
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Since
R, Nu,) =", ANal(u,), h (v, N, <h(v,)V i, u,),
(v, Mu,) <h(v,) Vs (u,),
we get than
(UA HMB)[(RD)I r (RD)Z] =< U, [(RD)I] I_lﬂB[(RD)Z] =< (fc)l M (fc)Z'
Then,

R MRy = Tnele, (f)1 M (fa, 7 A s).

This is a contradiction. Consequently, (I4) holds.
(Is) Assume that I . (e, f.,r) £ I .. (e,I (e, f.,7),r). By using the definition of I, (e, f.,1),
there exists v, € (X 7)?, E)and R, € (ﬁ), such that

hZ(UA) > r, hZ(UA) < 1 ) hg(UA) < 1 - r UA[RD] =< fCa
and R, £ I . (e1I,,/(e, f.,r),r). Otherwise, since

\ ) pyom, <v) 2R W) 2,

AW, = pyop, <v) <H@)<1-r,
N, =y o, <v) <E@) <1-7,
there exists u, € (X % X, E) with U, © 1, 2 v, such that
() >r, W) <1-r ‘() <1-r, wluRI=2v,[R]Z .

By using the definition of I . (e, f.,7), we obtain u,[R)] < I .(e, f.,r). By the concept of
I...(e, I (e f.,r), 1), it follows that

R, 2 I, (e, I (e, fo,1),7).

This is a contradiction. Consequently, (Is) holds. O
Theorem 5. Let 1i)* be a svns-uniform base on X. Define the operator C,,,; : E X (X,E)x(, = (X,E)
as next for everye € E, f, € (X,E), r € (,

Cnle, f,u1) = I_I{Uj[fB] W) > W) <1-r B@w,)<1-r},

Then, C

s VS A svnsc-operator on X.

Proof. (Cy) Since ® = v,[®], forall B (v,) > r, (v,) < 1 —r, hi(v,) < 1 —r, then C,,, (e, D, 1) = D.
(C2) Whenever R. < v,[R.] < f,, forall B)(v,) > r, *(v,) < 1 -1, K(v,) < 1 —r, we get that
C, (e, fp.1) = f, foreach f, € ()/(,\E).
(C3) It is established that C . (e, f,,7) < C, .. (e,R,,s) forevery f, <R, f,, R, € (ﬁ) and r < s.
(C4) Assume that

Cons (€, for YU Cnc(€, R, 8) £ Cncle, fe LUR,,, 7 A s).
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Then, there exists r, s € {,, v,, 14, € (Xﬁ E) with
Rw,)=rAs, HWw)<1l-0As), huv)<1l-(As),

) >sNs, ) <l-(sAs), AW, <1-(As),

such that
VILf U [R,] £ Consle, fo LR, 7 A ).

Since il (v, Up,) > Rl (v, )MAL(u,) > rAs, i (v, Up,) < (v, )URN(u,) < 1—(rVs), hg(v, Up,) <
he(v) Uhe(u,) < 1—(rVvs)and (v, Uu,)'[f, UR,] 2 [f,1Upul[R,], then C (e, f LR, 7 A's) <
vilfol U s [R,]. Itis a contradiction. Thus, (C4) holds.

(Cs) Assume that there exists r € {p, e €E, f. € ()/(,\E), such that

Cone (€, fos 1) 2 Cpnc (€, Conc (e, foy 1), 7).
Using the concept of C, .. (e, f., 7), there exist v, € (X ﬁ E) with
nw,)zr, Ww)<l-r ku)<l-r

such that C, (e, C, . (e, f., ), r) £ V[ f.]. Otherwise, from (7s), we have
\ 02 yom) <v) 2Ry zr AW (,om) <v) <H@)<1-n
AW, : (@, 0p,) <) <H@)<1-r,

which leads to the existence of u, € (X X X,E) with M, ou, v, and
() >r  hu)<l-r ") <l-r
It follows that
Coons (€, Cons ey fos 1), 1) S [Cronc ey foo D] 2 i [ [f 1] S UL

It is a contradiction. Thus, (Cs) holds.
(Cs) We want, for each e € E, f. € (X, E), r € o, to verify that C, .. (e, f.,r) = (I, (e, f5, ). This
means that we need to prove it:

| [ @) 2 nhiw) < 1= K@) <1 -1
=[ IR 0, [R) < £ 1) 2 1 W) < 1= 7, BS(w,) < 1= 1),
Since v, [(V[f.])] < f¢ , from (7) in Theorem 3, we obtain
| [ Ry 2 n @) < V=1 K@) <1 -7
=[RS v, R, < £ 2 1 W) < 1= r BSw) < 1= 1),
Since (v,[R,])" = f,, we obtain v}[f.] < v}[(v,[R,]’]. Then,
AV AR O BN O ES BT ONES Ty
=[RS 0, 1R,) < £, 2 1 Hw,) < 1= r ) < 1= 7).
Thus, (Cg) holds. O
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4. Single-valued neutrosophic soft topologies induced by a single-valued neutrosophic soft
uniformity

In this section, we study several single-valued neutrosophic soft topologies induced by a
single-valued neutrosophic soft uniform structure. We have proved that single-valued neutrosophic
soft uniform base and single-valued neutrosophic soft uniform space are single-valued neutrosophic
soft topological spaces.

Theorem 6. Let h)* be an svns-uniform base on X, define the mappings Z;Yl E - ¢ (ﬁ), T E—
JXB) TL; 1 E — %P as follows for each e € E, r € {, f, € (ﬁ),
@) = \lr: f, = Lule, £,

@ef) = \1=r: fi 2 L(e for),
@) = NI =r: £ 2 Tle, £}

Then, i;l"g is an svnst on X.
(e,zﬁ, r) = ® for each r € lo, e € E, then

Proof. (T,) Since I ,,.(e, E, r)= Eand I

HYrs HYrS

@) =1, D) =0, =T(P)=0,
V(E)=1, T(E)=0, =TI(E)=0.
(T,) To prove the second condition, we follow as follows:
@) ANIDelg) = \1r 1 £ S Tple fo A\ (518, 2 T, (e.8,9))
<\l Aslfng, <T(e fir) NI (e 8, )

<\l Aslfng, ST, f,ng,.rAs)
< (Tef, M 8y

(T (f)V (TDe(8y) = /\{1 —rlf, 2 I(e fi, NV A{l — 518, 2T n(e, 808}
> NlI=rvi-91fug, <T.(ef,NUT.eg,s)
> /\{l —(rAs)|f,Ug, 21 (e, f,Ug,,TAS)

> /\{1 —(rAS) | f,Mg, 21 (e, f, g, ASs)}
> (TD)e(f, T 85)s

(T V@8 = N\I=r1f < Tle, forV N1 =518, < T(e.8,9)
> NI=rvI1-91fiug, 2 Tulef,NUTLe.g,s)
> NI=GADIf U8, < Tlef,Ug,r A
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> /\{1 —(rAS)|f,Mg, 21 (e, f, Mg, 1rASs)
> (T))e(f, M 8,).

(T3) Assume that there exists a collection {(f,); : j € I'} such that

(AN EFARH A (Il TADERVEA A

jer jer jer jer
(I GADERVEACAN
jer jer
For every j € I, there exist r; € {j such that (f,); < I . (e, f,,7) and that
v JoonE N = oo 2 \a=-n, = sp g \/a-n,
jer jer jer jer jer jer

Putting r = A rjand 1 —r = \/(1 - r);, from Theorem 4, we get that

jer jer
LA = U Ty (e (£)50m) = L (s (£)7) = T (en LCFD 27
jer jer jer Jer

It follows that

| o= Ar=rn = oo \a-n=1-n

jer jer jer jer
| oo \Ja=-n=1-r
jer jer
It is a contradiction. Thus, T5 holds. m]

Definition 10. Let f, € (X,\E) andv, € (X XX, E). Define va e (X XX, E), for each e € AN B related
with f, by
(1,0,0), if x=y,

otherwise.

WM)e(x,y) = {

’yfe N fe()? ﬂ-fe OV fe)? g‘fe V)

Theorem 7. Let (X,£]") be an svns-uniform space, define the mappings T,”, T, T,7 1 E > { XD g
follows:

) 1, if f,=®,
Iy = ’ v y
( £ )E(fB) {£Z(U£B)a l.f‘fB (S (X’E) - (I)’
O, lf fB :6’
z*ne ) = — =
T, {£Z,(U§B), if f, € X B)-,
l:f fB :6’

0
‘I*g e = ’ ; Y B o

Then, T,™ is an svnst on X.
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Proof. (T1) (F7)(®) = 1, (T7)(@) = 0, (T)e(®) = 0 and (I)(E) = £F) = 1, (T7)(E) =
£7F) = 0, (T9)(E) = £50F) = 0.
(T,) Since v’ M UARC = va e for every f,,R. € (ﬁ), by (£3), we have

£y = W N = L) A @),

@l = £l nul) < £ v W),

£y = £l nuye) < £ v EW).
Thus,
@EN(f, TR = £W7) = €W ALW) = (X)) A (TR,
TP)(f, TR = £:W™) < £ v £ 05) = T@M(f) V (TR,
(T (f, MR = W) < £V E@WL) = (TE)elf,) V (TE)(R).
(T3) Similar to the proof in (T3) from Theorem 6. |

Theorem 8. Let (X,£]") be a svns-uniform space, define the mappings Ig*y, T, Ez*g E—> ¢ X.E)
as follows:

-

TN = N\ |y )

xeX | v, [x1=7,

-

@) =\ |\ £,

xeX | v, [x]ﬁfA

@) =\ |[Er@a ) £

xeX | v, [x1=f,

Then, T;*"™ is an svnst on X, where (v,[x])(y) < v,(y, x) for all e € A.

Proof. (T;) Obvious.
(T,) Assume that

\V o gwon \ gyt \/ gk

v, X2/, 1 [XI=(f,)), ke [X1=(), N(f)y
SO R AN (75 T2 AN < OO
v, [x]=(f,), pp[X1=(f), ke [X1=(), N(fp),

A gy A g N £,

v, XI=(f,), ppX1=(f;y), ke [X1=(f), M(f )y
Then, there exists v,, u, with v, [x] < (f,),, u,[x] < (f,), such that

Cu)A @)t k) Fe)VEE)E N\ £k,

ke X1=(p) MUp ), Kk X1=(p) Mp),
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£5(v,) V £5(u,) # A £5(k,).
ke [X=(fp), 1(f,y),

This results in (v, M w,)[x] < (f,), M (f,), such that

£3/(KC) > £Z(UA Mu,) > ;EZ(UA) A £Z(pB),
ke [X1=(), M),

£7(k,) < £5(v, M pt,) < £7w,) V £ (1),
ke X1=(fp), N(fp),

£§(KC) < £§(UA Mu,) < £§(UA) \Y £j(p3).
ke [X1=(), M)y

It is a contradiction. Thus,

(Tg *7)e>((f0)1) A TTNA(S)2)

A gnwy £Z(UA)]/\[/\

xeX | v, [x]s(fD)1 xeX

Fnmv \/ £Z<uB>D

pg =),

AlEa@y /) €w) /\[(ff)z(x)v \/ £3<u,,)”

xeX | v, [x1=(fp), Hp[XI=(f)),

IA

< AlEnuEmmmy \/ €woa \/ £3</13>]

xeX | v, [K=(f,), pyl¥I(f,),

< A [ u (e v \ £(v, Np,)

xeX W, M RIS, M),

< (TN, T,

(T *”)e>((fD)1) V(ZF)e((f)2)

=\ [ \/ £§<vA>]v[\/[<ﬁ>z<x)A \/ £f(uB>D

xeX | Uy [X]ﬁ(fD)l xeX Hp [X]S(f[))z

>\/ ||\ £w) V[(ff)z(x)/\ \/ £:f<uB>D
! ) HplxI=(f)),

v, [x1=(fp),

2 \/ [ awa \/ gwpv o/ £ij)]

xeX | v, [XI=(f), plX1=(f,),

> \/ (91 () A \/ £(v, M pt,)

xeX (UAﬂﬂB)[x]S(fD)ll_l(fD)z

> (T e(fp) (L))
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Likewise, we can establish through a similar line of reasoning that

(TS V (ZTT)LS)2) 2 ()LL), T (S),)-

(3;) Fore € E

(z;*y)e(wfg),.) = A\ [V(ﬁ),.] @lvl \  gw)
Jer xeX |\ jer valI=LIGy),

= /\(f;C)J(X) Vv \/ £Z/(UA)
xeX | jeI' UA[x]5|7|(fB)J.

- /\( f9),(0) v £(v,)
jer | xeX UA[X]S|7|(fB)j

> \|A\E,@ v £Z<vA>}
jel [ xex v, [x1=(fp);

= A@EEH)),
jer

(T (\/jel“(fg)j) - \/ [\/(fe)j] (D] A \/ £w)

xeX L\ jer vA[XJSITI(fB)j

=\ |IAHwar /£
xeX »jer UAIX]SITI(fB)j

<\VIVe,wa g
xeX »jel" UA[X]5|7|(J‘};)]»

= \/(f;C)J(X) A\ £Z(UA)
jer | xeX UA[X]S|7|(fB)j

<\/ |V, £(,)
jer | xeX v, [xX1=(fp);

= \/ (T,
jer
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In a similar vein, we can demonstrate through a parallel line of reasoning that

(TF*)e (\/(fg),-] < \/ @A)

jer jer

Therefore, i’i;”’rg is an svnst on X. O
5. Single-valued neutrosophic soft uniformly continuous mappings

In this section, we obtain crucial results in introducing and characterizing single-valued
neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological
spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and
single-valued neutrosophic soft continuous is studied.

Definition 11. Let (X,£)°) and (G,£;™) be two svns-uniform spaces and ¢ : X — G and 9 :
E — R be two mappings. Then, an svns-map ¥, : (X X X, E) = (G X G,R) is called single-valued
neutrosophic soft uniformly continuous (svns-uniformly continuous) if

(W x ), ) = £37 (), £1(W X9, () < £7 (),

e)
£ x ¥, () < £35 (1),
foreach u, € (QX/QR), e€E.

Proposition 1. Let (X,£7) and (G, ™) be svns-uniform spaces. If yr, : (X,£7) — (G, F ™) is
svns-uniformly continuous, then ¥, : (X, (£1°) = (G, F)™) is svns-uniformly continuous.

Proof. To prove this theorem, we need to prove that
EDW@ X W) = (F), @), ED(W X)) @) < (Fi,, @),

ED.(W X)) ©) < (Fi)y @),

foreach v, € (Qx/a R), e € E.
Assume that

EN(@ X, W) E (F Do @)y ED(W X ), W) £ (Fi V),
ED.(W x¥), @) £ (F Dy W).

From the concept of (7™, (u,), there exists u, € (GXG,R), e € E, 0 € { with 1, N E, < v,
such that

ED (WX, W) 2 F) (W), ED(W X)) W) £ Fr (),
ED(W X ), W) £ F ().

Since ¥, : (X, (£7°) — (G, F)™) is svns-uniformly continuous,
(W x ), () 2 F) (1), £ X)) < Fir (1),
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E(W X)) S Tl ().
From the concept of £7((y x w);] (v,)), we get

EN.(@x ), ©,) 2 (W X9, 1) = F) (),

E5). (W x ), W) < €W x W), (1)) < Fr (4,),

). (W x 9, ) < £ x9); (1) < F5 ().
This is a conflict with the hypothesis. O

Proposition 2. Let y : X — G, and ¥ : E — R be two mappings, and let f, € X,E), U, My K. €
(G X/a, R). Then, the following results hold in general:

(D W W [0, (D) = (@ X 9); @IS, ]

Q) (W x ) W] = (@ x ) W)L,

(3) (W x ), (v, M) = @ x ), (v) N x ), (1w,),

4) W x )W) oW xy) ' (v,) < (¥ xy), (v, ov,).

Proof. (1) For w € Y(E), we get that

U @, 0, (F L D) = 0, @, [ ), D) = @, [ (), D)
\IW),0) A v, 0, ()]

yeg
\/ WD, @) A v, (@), y(x)]

zeX

= \/I(f,.,,)@ A @ x ) v,z )]

zeX

= WP, W, 1, ,, D).

(2) For w € Y(E), we have

(W x )" @I, @) = /I, )@ A x ™), @ )G )

ex
= vx[m_l(w))(z) AV (WD), Y(x)]

= vxufz,_l(w))(z) AU, (), Y ()]

= vx[(f””“”)@ AW %), ), 2)]
= \/I(f,.,., )@ A (@ X ¥),' )z )]
= «; <), W ) I(f,,, 1.

(3) Direct.
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(4) For w € Y(E), we have

VW xw), @, )00,2) A @ X9, )G %))

zeX

\/ [, @), () A v, (@), Y(x2))]

zeX

<\ [, @), ) A v, 0. 90e)]

zeX

= (v, o v, )W(x), ¥(x2) = ¥ X ¥), (v, o v, )(x1, X2).

(@ <), @,) o (¥ x 9, W, )(x1, x2)

O

Theorem 9. Let (X,£7) and (G, F™) be svns-uniform spaces, ¥, : (X ;XE) — (Q@R) be
svns-uniformly continuous. Then, the following results hold in general.

(D), (L (@, £ 7)) < Lo (871 (@), 0, (2), 1)), for each f. € (G R), reé weR

(2) Cone 1@, 0 (£, 1)) 25 (Cppme (@, £ 7)), for each f. € (G, R), re & weR

(3) ¥, (Cyre(e, 8, 1) X Cpe (Hw), ¥, (8,,), 7)), for each g, € (X,E), r €&, e € E.

Proof. (1) Foreachv,, € (G @ R)and f,, g, € (ﬁ), from Proposition 2, v,[f.] < g, implies that

(@ X ) WD, (] = o (@, [, ) DD < 4 W, LD < 9 (8,).
Since
£;‘1(w)(ﬂ3) 2 T;y(UA)a £g—1(w)(u3) S TZT(UA)a £;—|(w)(lug) S ‘}?‘(UA)’

for every u, € (¥ x ¥);'(v,), we obtain

V¢ SN CPVAN)

=y Jig, € @GR : v,lg,) < £ FI W) 2 FIw,) S 1= 1 FSw,) < 1= 1))
=| ;') e @B : v,lg,)

< f.F'v)z2nrnFf,(v,)<1-rnFiv,)<1-r1]}

<| W' (5 e @B 1 w1y, (8]

<Y (£, ()2 € () <1-rg () <1-r}

91 (w)

< Ly (971 (@), ;' (f), 1)
In a similar vein, we can demonstrate (2) and (3) through a parallel line of reasoning. O

Theorem 10. Let (X, £,) and (G, F7°) be svns-uniform spaces, and y, (X,E) = (G, R) an injective
svns-uniformly continuous. Then, ¥, : (X, T;"™) — (G, i’i;y”g) is SVnSs-continuous.

Proof. Since Y, injective and by applying Theorem 4, we get that:
Foreachuv,,¢€ (G X G, R) and f, € (G, R), w € AN B. Then,

(W@ X)W ), x) = W), (), (x))
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_ L if Y(x) = y(x),
JoW D)) A foW(x2)),  if Y(xy) # Y(xp),

_ L if Y(x) =y(x),
U ) e) AN (f) (), i g(x) # Y(x),
v, (fp)
= (Uﬂ—l(A) (.X[, x2)~
=1 (w)

Therefore, ¥V ¢ € E

@TWL) =800 = £ xpT @) = FL @) = @ ()

@) = @) = £ x ) 0 < Fg ) = @0 )

@O () =0 = 5w x 07 @) < Fo, 0l = @, 0.

O

Theorem 11. Let (X,£.) and (G, F,") be two svns-uniform spaces and \, : (X,E) = (G,R) be an
svns-uniformly continuous mapping. Then, y, : (X, z;*”“) — (G, TZ;*WW) is svns-continuous.

Proof. Initially, it is clear that ' (v, [W(x)]) = (¥ X ¥);' (v, [x]) from that:
[ @, [W(ODIE@) = @, WODW() = v, @), ¥(x) = (¥ X ), v,))z, x)
= [(@ x ), W )IAE).

Thus, v,[y(x)] < f, implies that ¢ ' (v,[y(0)]) = (¥ X ¥);' W ))x] = ¥;'(f,). By applying
Theorem 8, we obtain

TS = N oy \/ ff](vg]s A[f;w(x»v \/ fg(m]

y v, Y=/ v, [0Sy

AN ANENY \/ £ ((&x@ﬁ(vﬁ)}

91 (w)
(W3 W, D=5 ()

<@L, W S,

@) =\ oA \/ ﬁ”(m)}sz;wu)m \/ ﬁ’f(vn]

y v, V1= fp v, [ (01=fp

> \/ |, () A \/ £ (WX w);(vA»}

ﬂ’l((u)
i (x5 W, DK=Y ()
-1
> @), W ).
Likewise, we can  establish through a similar line of reasoning that

Tl = @), W ). o
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Theorem 12. Let {(X_,,(Q”C)Ej) : j € T} be a family of svns- uniform spaces and, for all j € T,
g, X — )ijiand 9, : E > E, are mappings. Define £ : E — (%5 g7+ F — [OXE) gpg
£5: E — (XD opn X by:

-

£w,) = \/ | /\E ), @), v, = M@, <6, (1))
Lj=1 ' ' ! |

-

£w) =\ [V ED @) v, = Mo, xw,)) (@)

| j=1

£w) =\ [V E D @), v, = Mo, xw,)) ()]
Lj=1 ! ]

where \/is taken over all finite subsets Q = {w;, w», ..., w,} CI'. Then,

(1) £7 is the coarsest svns-uniformity on X for which all {(yry), : j € I'} are svns-uniformly continuous.
(2) A map , = (X*,£7) — (X, £7) is svns-uniformly continuous if forall j € T, (Yy), o ¥y :
(X*, £7) = (X, (£]7”§ )Ej) is svas-uniformly continuous.

Proof. (1) Initially, we indication that £7 is an svns-uniformity on X for which all {({9), : j € '} are
svns-uniformly continuous.
(£,) For every w, € Q, there exists (v,), € (X, XX, ,E, ) such that, for e € E, we obtain that
J J J J

(€ Doy @), = 1 (€D, @)(a),) =0, (€5, @)((a),,) = 0.

Put (l,[/w X l//w_);l ((#B)wj) =v,. Then, £Z(UA) =1, £Z(UA) =0and £§(UA) =0.
(£) Itis obviousjfrorn the definition of £77¢.
(£,) For all limited subsets Q = {w;, wa, ...,w,}, T = {t, 1y, ..., t,,} of I" such that

MW, X, )00 (W) S, T W, X9, (1), < 4
we have

W, X, ), (), ) T @, X ,); (W,)o) < a1y M,

J

Moreover, for all w € Q N T we have
W, x %);wl((ug)w) N, X ww);:((vA)w) =, X ww);wl((,ug)w M @W,)w)-
Put (, ¥ lﬁm_i);; (W),,) = p, N, where
Yom, (x), if m eQ-(QnNT),

Yewer (X) = Vg, (x), it m eQ-(QnT),
J
Yo, - ()N y(yg)mj (x), if m;eQnT,
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Mo, (x), if meQ-(QNT),
Tewem, (X) =\ T, (), if meQ-(QnT7),

Mom, () Mg, (x), if m; eQNT,

Stpm, (x), if m eQ—(QnNT),
Sewem, (x) = Stugm, (%), if m, eQ-(QNT),

Soam, (x)U Stpm, (x), if meQnT,

Therefore, we obtain

@, )z [\ E), (W) 2

jeQuT

A [/\(£3: )’7rj(e)((ﬂs),j)}
j=r

/\ (£Z,- )1?wj. © ((UA )“’j )
j=1

-

£, N <\ E), (W) < [\ E ), @), )|V ED, ),
_ [ j=1 |

jeQuT | j=1
£, M) <\ E), (W) < [\ E )y, o@DV [\ ED, )]
jeQuTr L /=1 i L j=1 ]

Taking the supremum on the families '_'?:1(%1. Xy, );U,l, (v,)w,) < v, and I‘I’J?’zl(wtj Xy, );1 ((,uB),j) <
U, we obtain : J
£, Nu,) 2 £ ) ANE (), £, M) <£v,) V£ (W),
5, Mp,) < £5w,) VE(Q,), Veek.
&) If £(@,) # 0, £7(v,) # 1 and £(v,) # 1, then there exists Q = {w, wy,...,w,} of T with
rlle(lﬁwj X %]. );wl/. () < v, such that

p p
)2 \E )y (@))% 0 £@) < \/E),, (1)) # 1,

=t J=1

p
£w) < /(&) (01, # 1

j=1
Since, (£Zj )ﬂwj((,)((yB)mj) # 0, (£Zj )ﬂm,_(e)((,ug)wj) 1, (£Zj )I,Mj(e)((,uB)wj) # 0V w, € Q, then (T)c £
(v,), . Thus, '
(e = W, X, ;" (M) <MW, x 8,7 (W) < v,
(£,) Assume that £7(v}) 2 £7(v,), £7(v}) £ £7(v,) and £(v}) £ £5(v,). From the concept of £77¢,
there exists Q = {wy, wa, ..., w,} of I with ”?:1(%. X ww.);l_ ((4,)w,) < v, such that

p p
20D E NE D, o)) E@) 2\ E ), o (@,),).

J=1 J=1
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p
£ £ \/E ), o))

=1

Since £Z,’:_‘ is an svns-uniformity on X for each w,
(£Zj )ﬁwj<e)((u,s,)wj) > (£Zj ),,wj@((ﬂg)wj), (£Zj )ﬁwj<e)((u,s,)wj) < (£Zj )%J,(e)((ﬂg)wj),
(£§j )ﬂm]m((/‘;)mj) < (£i/ )ﬂwj(g)((#g)wj)-

It follows that

P P
@) NE),, G E@) £\ E),,  G),).

j=1 j=1

p
£ £ \/E),, LG,
j=1

On the other hand,
ML, X, ), (o) = My (@, X4, ), ((,)0)) S .

Hence,

p P p

eez A& @), )<\ € (), £\ £ w,).

Y . (e)
=1 / j=1 j=1

It is a contradiction. Hence, (£,) holds.
(£,) Suppose that for each v, € (X X X,E)

) £ \VIE@)) @), 0w), <v,), £w) 2 NE@)) @), 0 w,), <v,),
£w,) 2 NE@)) 1)) 0 @),) <v,).

By the concept of £, there exists Q = {w;, wy, ...,w,} of I with ”§_1(ij X wwj );L:A ((,uB)wj) <v,

such that
P

ANE Do) £\ E@) 1 @), 0w, <v,).
j=1
p
VE D o) 2 NE@ID @), 0 @,), <),
j=1

p
VED, o) 2 \E@I) @), 0 @), <v,).
j=1
Since £L’;g is svns- uniformity on X, for each w, € Q
7 Doy (W) £ \JUE )y, (W I W0 W < p1)
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(€ ) W) % J\UE )y, (W | W0 W, <),
(5 o) 2 J\E )y, (W I W0 W < p,).

Thus, there exists W, € (X, XX, ,E, ), W, oW, < v, such that
J J J

p
AE D oW £ \E(@)) @), o @), <v,),
j=1

p
VE D oW 2 NE@ID) @), 0 @), 2v,),
=1

p
VED, oW 2 NE@I) @), 0 @), <v,).

J=1

On the other hand,
MW, XU, (W e @, xy,),! (W) <@, xu,),! (W0 W,)
<1, W,, x v, () <,
Therefore, we have

V(@)1 @), 0 @), <u) = €W, x¥,,),! (W)= &), (W,

NE@I) 1 @), 0 @), <u,) < (W, x¥,,),! (W) < &), (W),

NE@D) @), 0 ), <v,) £, xw, ), (W) <€), (Wo).

It is a contradiction. Hence, £, holds.
Next by the concept of £77¢ it is easily proved that, for each j e T’

£1, X)), W) = ), ) R, X W), () < D), ),

£2CW, X W), ) < (D (ap): Yty € (X, X XLE).

Thus, ()9, : X — X, is svns-uniformly continuous.
Lastly, let us say that £ is an svns-uniformity on X and (,)y, : (X,£77) — (X_,.,£§”g) is

svns-uniformly continuous, that is, for every j € I'and (u,); € (X Qj, E),

£7 (v, xy j);_l_l((/ug) N = EDy o)), £7(W, <y ,),,_jl((,ug) DS EDy o ((Wy))),
£5(, xy j);jl((ﬂB) NS EDyo ((Wy)).
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For every finite subset Q = {w;, wy, ..., w,} of I' with I‘lf' (W, X ;bw_);l ((,uB)wj) <uv,, we have
J J ij

[ p
£w) = \/ | \ED, o), ) T, %0, () < UA}

Lj=1

p
< \VIAET @ xu, )] Guo) 110, 0,05 (@) S v,

Lj=1
[P
<\ N\E O @, xw, ), @o ) 1T W, x v, (1)) 2 v,

LJj=1
< £(v,).

In a similar vein, we can demonstrate through a parallel line of reasoning that £7(v,) > £g*”(vA) and
£, 2 £4@,).
(2) It can be easily proved. O

6. Conclusions

Many scientists have studied the soft set theory and easily applied it to many problems in social
life. In the present work, we defined the single-valued neutrosophic soft uniform spaces and
single-valued neutrosophic soft uniform bases.  The relationships between them were also
investigated. Next, the relationship among single-valued neutrosophic soft uniformities, single-valued
neutrosophic soft topologies, and single-valued neutrosophic soft interior operators were introduced
and studied. Finally, we proved crucial results in introducing and characterizing single-valued
neutrosophic soft uniformly continuous, on single-valued neutrosophic soft uniformly topological
spaces. Moreover, the relationship between single-valued neutrosophic soft uniformly continuous and
single-valued neutrosophic soft continuous was studied. This paper can form the theoretical basis for
further applications of single-valued neutrosophic soft topology, potentially leading to the
development of other scientific areas.
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