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ON Z-OPEN SETS AND Z-CONTINUOUS FUNCTIONS
IN IDEAL BITOPOLOGICAL SPACES

M. CALDAS, S. JAFARI, N. RAJESH AND F. SMARANDACHE

ABSTRACT. The aim of this paper is to introduce and character-
ize the concepts of Z-open sets and their related notions in ideal
bitopological spaces.

1. INTRODUCTION AND PRELIMINARIES

The concept of ideals in topological spaces has been introduced and
studied by Kuratowski [19] and Vaidyanathasamy [24]. Hamlett and
Jankovié (see [12], [13], [17] and [18]) used topological ideals to gen-
eralize many notions and properties in general topology. The research
in this direction continued by many researchers such as M. E. Abd
El-Monsef, A. Al-Omari, F. G. Arenas, M. Caldas, J. Dontchev, M.
Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S. D. Iliadis, S.
Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, , H. Maki, A. C.
Megaritis, F. I. Michael, A. A. Nasef, T. Noiri, B. K. Papadopoulos,
M. Parimala, G. A. Prinos, M. L. Puertas, M. Rajamani, N. Rajesh,
D. Rose, A. Selvakumar, Jun-Iti Umehara and many others (see [1],
2], [5], [7], [8], [9], [10], [11], [14], [15], [18], [23], [21], [22]). An ideal Z
on a topological space (X, 7) is a nonempty collection of subsets of X
which satisfies (i) A € Z and B C A implies B € Z and (ii) A € Z and
B € 7 implies A U B € Z. Given a topological space (X, 7) with an
ideal Z on X and if P(X) is the set of all subsets of X, a set operator
()*: P(X) — P(X), called the local function [24] of A with respect to
7 and Z, is defined as follows: for A C X, A*(1,Z) ={z € X[UNA¢ T
for every U € 7(z)}, where 7(z) = {U € 7|z € U}. If Z is an ideal on
X, then (X, 7y, 7,7) is called an ideal bitopological space. Let A be
a subset of a bitopological space (X, 7, 7). We denote the closure of
A and the interior of A with respect to 7; by 7,-CI(A) and 7;-Int(A),
respectively. A subset A of a bitopological space (X, 71, 72) is said to be
(i, j)-preopen [16] if A C 7;-Int(7;-Cl(A)), where i,j = 1,2 and i # j.
A subset S of an ideal topological space (X, 7,7) is said to be (i, j)-pre-
Z-open [4] if S C 7;-Int(7;-CI*(S)). A subset A of a bitopological space
(X, 71, 72) is said to be (i, j)-preopen [16] (resp. (i, j)-semi-Z-open [3])
if A C 7-Int(7;-Cl(A)) (resp. S C 7;-Cl*(7;-Int(S))), where 7,5 = 1,2
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closed sets.
1



2 M. CALDAS, S. JAFARI, N. RAJESH AND F. SMARANDACHE

and ¢ # j. The complement of an (7, j)-semi-Z-open set is called an
(1, 7)-semi-Z-closed set. A function f : (X, 7,7,Z) — (Y,01,02) is
said to be (i, j)-pre-Z-continuous [4] if the inverse image of every o;-
open set in (Y, 01,09) is (i, j)-pre-Z-open in (X, 11,72, Z), where i # j,
i, j=1, 2.

2. (i,j)-Z-OPEN SETS

Definition 2.1. A subset A of an ideal bitopological space (X, T;, 72, 7T)
is said to be (i, j)-I-open if A C 7;-Int(A7).

The family of all (i,7)-Z-open subsets of (X, 7,72, L) is denoted by
(¢,7)-ZO(X).

Remark 2.2. [t is clear that (1,2)-Z-openness and T -openness are
independent notions.

Example 2.3. Let X = {a,b,c}, 1 = {0, {a}, {a, b}, X}, 7o = {0, {a}, {a,c}, X}
and T = {0,{a}}. Then m-Int({a,b}s) = 7-Int({0}) = 0 2 {a,b}.
Therefore {a,b} is a Ti-open set but not (1,2)-Z-open.

Example 2.4. Let X = {a,b,c}, 1 = {0,{a,b}, X}, o = {0, {a}, {a,b}, X}
and T = {0,{b}}. Then m-Int({a}}) = 7-Int(X) = X D {a}. There-
fore, {a} is (1,2)-Z-open set but not 11 -open.

Remark 2.5. Similarly (1,2)-Z-openness and Ty-openness are inde-
pendent notions.

Example 2.6. Let X = {a,b,c}, 1 = {0,{a},{c}, {a,c}, X}, n =
{0,{b},{c}, {b,c}, X} and T = {0,{c}}. Then m-Int({b,c}3) = 7~
Int({a,b}) = {a} 2 {b,c}. Therefore, {b,c} is a To-open set but not
(1,2)-Z-open.

Example 2.7. Let X = {a,b,c}, n = {0,{a},{c},{a,c}}, m» =
{0,{b},{b,c}, X} andZ = {0,{c}}. Thenr-Int({a};) =7 -Int({a}) =
{a} D {a}. Therefore, {a} is an (1,2)-Z-open set but not To-open.

Proposition 2.8. Every (i, j)-Z-open set is (i, j)-pre-Z-open.

Proof. Let A be an (i, j)-Z-open set. Then A C 7;-Int(A7) C 7-Int(AU
A%) = 7-Int(7;-CI"(A)). Therefore, A € (i, j)-PZO(X). O

Example 2.9. Let X = {a,b,c}, i = {0,{a},{c}, {a,c}, X}, = =
{0,{b,c}, X} and T = {0,{c}}. Then the set {c} is (1,2)-preopen but
not (1,2)-Z-open.

Remark 2.10. The intersection of two (i,j)-Z-open sets need not be
(,7)-Z-open as showm in the following example.

Example 2.11. Let X = {a,b,c}, 1 = {0,{a},{c},{a,c}, X}, n =
{0,{b},{b,c}, X} and T = {0,{a}}. Then {a,b}, {a,c} € (1,2)-
ZO(X) but {a,b} N{a,c} ={a} ¢ (1,2)-ZO(X).
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Theorem 2.12. For an ideal bitopological space (X, 1, 72,Z) and A C
X, we have:

(1) If T = {0}, then A3(Z) = 7;-Cl(A) and hence each of (i, j)-Z-
open set and (4, j)-preopen set are coincide.

(2) If T = P(X), then A5(Z) = 0 and hence A is (i, j)-Z-open if
and only if A = 0.

Theorem 2.13. For any (i,j)-Z-open set A of an ideal bitopological
space (X, 1,7, T), we have A} = (1;-Int(A7))j.

Proof. Since A'is (i, j)-Z-open, A C 7;-Int(A7). Then A7 C (i-Int(47))3.
Also we have 7,-Int(A7) C A7, (7-Int(A7))" C (A;)* C Aj. Hence we
have, A7 = (7,-Int(A3))7. O

Definition 2.14. A subset F' of an ideal bitopological space (X, 11, T2, T)
is called (i, 7)-Z-closed if its complement is (i, j)-Z-open.

Theorem 2.15. For A C (X, 71,7, T) we have ((;-Int(A))5)¢ # 7i-
Int((A°)F) in general.

Example 2.16. Let X = {a,b,c}, 11 = {0,{a},{a,b},X}, 7 =
{0,{a,c}, X} andZ = {0,{b}}. Then ((r1-Int({a,b}));)° = ({a, b}Q) =
X¢ =0 (%) and 7-Int(({a, b}°)%) = 7i-Int({c}}) = 71-Int(X) = X ().
Hence from (x) and (xx), we get ((t1-Int({a, b}))5)® # 1 -Int(({a, b}°)3).

Theorem 2.17. If A C (X, 71,7,Z) is (i,7)-Z-closed, then A D (7;-
Int(A));.

Proof. Let A be (i,j)-Z-closed. Then B = A€ is (i,j)-Z-open. Thus,
B C 7-Int(B}), B C 7-Int(7;-Cl(B)), B® D 7;-Cl(7;-Int(B°)), A D 75-
Cl(7;-Int(A)). That is, 7;-Cl(7;-Int(A)) C A, which implies that (7;-
Int(A)); C 7;-Cl(7-Int(A)) C A. Therefore, A D (7;-Int(A))j. O

Theorem 2.18. Let A C (X,71,7,Z) and (X\(7;-Int(A))}) = 7i-
Int((X\A);f). Then A is (i, 7)-Z-closed if and only if A D (Ti-Int(A))3.

Proof. 1t is obvious. O

Theorem 2.19. Let (X, 71, 72,Z) be an ideal bitopological space and
A, B C X. Then:
(i) If {Uy : @ € A} C (4,5)-ZO(X), then |J{U, : « € A} € (4,])-
ZO(X).
(ii) If A € (4,§)-ZO(X), B € 7, and AN B C (AN B);, then
ANB e (i,j)-ZO(X).
(iii) If A € (4,§)-ZO(X), B € 7; and BN A} = BN (BN A)j, then
ANB C7-Int(BN (BN A)).

Proof. (i) Since {U, : @ € A} C (i,7)-ZO(X), then U, C 7-Int((U,
for every a € A. Thus, J(Ua) C U(7-Int((Ua);)) C 7i-Int(U(Ua);

)7
J
7i-Int(J Uy)j, for every a € A. Hence | J{U, : a € A} € (4,5)-ZO(X

C
)-
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(43) Given A € (4,7)-ZO(X) and B € 7, that is A C 7;-Int(A}). Then
AN B C 7-Int(A7) N B = 7-Int (A N B). Since B € 7; and A} N B C
(AN B)j, we have AN B C 7-Int((A N B)j). Hence, AN B € (i, j)-
ZO(X).

(4ii) Given A € (4,7)-ZO(X) and B € 7;, That is A C 7-Int(47).
We have to prove AN B C 7-Int(B N (BN A)j). Thus, AN B C 7-
Int(A7) N B = 7-Int(A; N B) = 7-Int(B N Aj). Since BN A} =
BN (BN A);. Hence AN B C 7-Int(B N (BN A)7). O

Corollary 2.20. The union of (i,j)-Z-closed set and Tj-closed set is
(1,7)-Z-closed.

Proof. Tt is obvious. O

Theorem 2.21. If A C (X, 71,72,Z) is (i,7)-Z-open and (i, j)-semiclosed,
then A = 7;-Int(A3).

Proof. Given A is (i,j)-Z-open. Then A C 7-Int(A3). Since (i, 7)-
semiclosed, 7-Int(A4%) C 7-Int(7;-CI(A)) C A. Thus 7-Int(A3) C A.
Hence we have, A = 7;-Int(A}). O

Theorem 2.22. Let A € (i,7)-ZO(X) and B € (i,7)-ZO(Y), then
Ax B e (i,j)-IO(X xY), if A5 x Bf = (A x B);.

Proof. A x B C 7-Int(A}) x 7-Int(Bj) = 7-Int(A} x B;), from hy-
pothesis. Then A x B = 7-Int((A x B)3); hence, A x B € (i,j)-
TO(X x Y). O

Theorem 2.23. If (X, 71, 7,Z) is an ideal bitopological space, A €
and B € (i,7)-ZO(X), then there ezists a T;-open subset G of X such
that ANG =0, implies AN B = .

Proof. Since B € (i,7)-ZO(X), then B C 7-Int(B}). By taking G' =
7i-Int(B}) to be a 7-open set such that B C G. But ANG = ),
then G C X\A implies that 7,-Cl(G) € X\A. Hence B C (X\A).
Therefore, AN B = 0. O

Definition 2.24. A subset A of (X, 71,7, Z) is said to be:
(i) 77*-closed if AT C A.
(ii) 1;-x-perfect Af = A.

Theorem 2.25. For a subset A C (X, 71,72,Z), we have

(i) If A is 7/-closed and A € (4,7)-ZO(X), then 7;-Int(A) = 7;-
Int(A7).

(ii) If A is 7j-+-perfect, then A = 7;-Int(A}) for every A € (i, j)-
ZO(X).

Proof. (i) Let A be 7j-*-closed and A € (i,7)-ZO(X). Then A5 C A

and A C 7-Int(A}). Hence A C 7-Int(4}) = 7-Int(A4) C 7-Int(7;-

Int(A%)) = 7i-Int(A) C 73-Int(A}). Also, A5 C A. Then 7;-Int(A}) C
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7i-Int(A). Hence 7-Int(A) = 7;-Int(A]).

(79) Let A be j-+-perfect and A € (7,7)-ZO(X). We have, A5 = A,
Ti-Int(A}) = 7-Int(A), 7-Int(A47) C A. Also we have A C 7;-Int(AJ).
Hence we have, A = 7;-Int(A}). O

Definition 2.26. Let (X, 7y, 7,Z) be an ideal bitopological space, S a
subset of X and x be a point of X. Then
(i) x is called an (i,7)-Z-interior point of S if there exists V €
(1,7)-ZO(X, 1, 72) such that x € V C S.
ii) the set of all (i, j)-Z-interior points of S is called (i, j)-L-interior
of S and is denoted by (i, j)-Z Int(S).

Theorem 2.27. Let A and B be subsets of (X, 7,72,Z). Then the
following properties hold:
(i) (4,7)-ZTInt(A) =U{T: T C A and A € (i,))-ZO(X)}.
(ii) (4,7)-ZInt(A) is the largest (i, j)-Z-open subset of X contained
in A.
(111) A is (i,7)-L-open if and only if A = (i,7)-Z Int(A).
) (4,7)-ZInt((7,7)-ZInt(A)) = (i,7)-Z Int(A).
) If A C B, then (i, 5)-TInt(A) C (i, )-Z Int(B).
(Vl) (1,7)-ZInt(A) U (i,5)-ZInt(B) C (i,5)-ZInt(AU B).
vii) (i,7)-ZInt(AN B) C (4,5)-ZInt(A) N (i, 7)-Z Int(B).

Proof. (i). Let x € U{T : T C A and A € (i,7)-ZO(X)}. Then, there
exists T' € (i,5)-ZO(X,x) such that z € T C A and hence z € (i, j)-
Z1Int(A). This shows that U{T" : T" C A and A € (i,j)-ZO(X)} C
(i,7)-ZInt(A). For the reverse inclusion, let x € (i, 7)-Z Int(A). Then
there exists T" € (4,7)-ZO(X,x) such that € T C A. we obtain
x € UWT : :T C Aand A € (i,7)-ZO(X)}. This shows that (i,7)-
ZInt(A) CcU{T: T C Aand A € (i,7)-ZO(X)}. Therefore, we obtain
(1,§)-TInt(A) = U{T : T C Aand A € (4,5)-ZO(X)}.
The proof of (ii)-(v) are obvious.
(vi). Clearly, (4,7)-ZInt(A) C (i,7)-ZInt(A U B) and (i, 7)-Z Int(B)
C (4,4)-ZInt(AU B). Then by (v) we obtain (7, 5)-Z Int(A) U (4, j)-
TInt(B) C (4,5)-TInt(AU B).
(vii). Since AN B C Aand AN B C B, by (v), we have (i, j)-
ZInt(ANB) C (4,5)-TInt(A) and (i, 7)-ZInt(AN B) C (4, 7)-Z Int(B )
By (v) (4,7)-ZInt(AN B) C (4,5)-Z Int(A) N (i,j)—IInt(B)
Definition 2.28. Let (X, 7, 7,Z) be an ideal bitopological space, S a
subset of X and x be a point of X. Then

(i) = is called an (i,j)-Z-cluster point of S if VNS # O for every

Ve (i,j)-IO(X, z).
(ii) the set of all (i, j)-Z-cluster points of S is called (i, 7)-Z-closure
of S and is denoted by (i, j)-Z C1(S).

Theorem 2.29. Let A and B be subsets of (X, 7,72,Z). Then the
following properties hold:
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(i) (4,7)-ZCYA) = {F:ACF and F € (i,j)-ZC(X)}.
(ii) (4,74)-Z CI(A) is the smallest (i, j)-Z-closed subset of X contain-
ng A.
(iii) A is (i,7)-Z-closed if and only if A = (i,7)-Z CI(A).
(iv) (i,7)-Z Cl((4,75)-Z Cl(A) = (i,7)-Z Cl(A).
v) If A C B, then (i,7)-Z Cl(A) C (i,7)-Z CI(B).
(vi) (i,7)-ZCl(AUB) = (i,7)-Z Cl(A) U (i,7)-Z CI(B).
(vil) (4,4)-ZCI(ANB) C (i,5)-ZCI(A) N (i,7)-Z CL(B).

Proof. (i). Suppose that x ¢ (i,7)-Z Cl(A). Then there exists F €
(i,7)-ZO(X) such that V. NS # (. Since X\V is (4, 7)-Z-closed set
containing A and x ¢ X\V, we obtain « ¢ N{F : A C F and F €
(1,7)-IC(X)}. Then there exists F' € (i,/)-ZC(X) such that A C F
and x ¢ F. Since X\V is (7, )-Z-closed set containing z, we obtain
(X\F)N A = (0. This shows that 2 ¢ (i,7)-Z Cl(A). Therefore, we
obtain (i,7)-ZCl(A) =N{F: AC F and F € (i,7)-ZC(X).

The other proofs are obvious. O

Theorem 2.30. Let (X, 71,72,Z) be an ideal bitopological space and
A C X. A point x € (i,7)-Z CI(A) if and only if UN A # D for every
Ue(i,))-IO(X,x).

Proof. Suppose that = € (i,7)-Z CI(A). We shall show that U N A # ()
for every U € (i,7)-ZO(X,x). Suppose that there exists U € (i,7)-
ZO(X,x) such that UN A = (. Then A C X\U and X\U is (i,7)-
Z-closed. Since A € X\U, (i,7)-ZCl(A) C (i,7)-ZCI(X\U). Since

€ (4,7)-Z Cl(A), we have z € (i,7)-Z Cl(X\U). Since X\U is (i, j)-
Z-closed, we have x € X\U; hence = ¢ U, which is a contradicition
that x € U. Therefore, UNA # (). Conversely, suppose that UNA # ()
for every U € (i,7)-ZO(X,z). We shall show that = € (i, 5)-Z Cl(A).
Suppose that @ ¢ (i,7)-Z CI(A). Then there exists U € (i, j)-ZO(X, x)
such that U N A = (). This is a contradicition to U N A # {); hence
x € (i,7)-Z CI(A). O

Theorem 2.31. Let (X, 71,79,Z) be an ideal bitopological space and
A C X. Then the following propeties hold:

(i) (i,7)-TInt(X\A) = X\ (4, §)-T CI(A);
(i) (i, )T CUX\A) = X\ (i, §)-T Int(A).

Proof. (i). Let x € (i,5)-ZCl(A). There exists V € (i,7)-ZO(X, x)
such that VNA # §); hence we obtain x € (i, j)-Z Int(X\ A). This shows
that X\ (4,7)-Z Cl(A) C (4,7)-ZInt(X\A). Let x € (i,7)-Z Int(X\A).
Since (i, 7)-Z Int(X\A)NA = (), we obtain = ¢ (4, j)-Z C1(A); hence z €
X\(4,7)-Z CI(A). Therefore, we obtain (i, 7)-ZInt(X\A) = X\(4,5)-
ZCI(A).

(ii). Follows from (i). O
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Definition 2.32. A subset B, of an ideal bitopological space (X, 11,72, T)
is said to be an (i, j)-Z-neighbourhood of a point x € X if there exists
an (i,7)-Z-open set U such that x € U C B,.

Theorem 2.33. A subset of an ideal bitopological space (X, Ty, 72,7)
is (i, 7)-Z-open if and only if it is an (i, 7)-Z-neighbourhood of each of
1ts points.

Proof. Let G be an (i, j)-Z-open set of X. Then by definition, it is clear
that G is an (4, j)-Z-neighbourhood of each of its points, since for every
r€ G, €GCGand (G is (i, j)-Z-open. Conversely, suppose G is an
(1, 7)-Z-neighbourhood of each of its points. Then for each x € G, there
exists S, € (i,7)-ZO(X) such that S, C G. Then G = |J{S, : x € G}.
Since each S, is (i, j)-Z-open and arbtrary union of (i, j)-Z-open sets
is (i, j)-Z-open, G is (i, j)-Z-open in (X, 11, 79, T). d

3. (4,7)-Z-CONTINUOUS FUNCTIONS

Definition 3.1. A function f: (X, 7,7,Z) — (Y, 01,09) is said to be
(i, j)-Z-continuous if for every V € o;, f~1(V) € (i,7)-ZO(X).

Remark 3.2. Every (i, j)-Z-continuous function is (i, j)-precontinuous
but the converse is not true,in general.

Example 3.3. Let X = {a,b,c}, 1 = {0,{a},{c},{a,c}, X}, » =
{0,{b,c}, X}, o1 = P(X), 02 = {0.{a},{a,c}, X} and T = {0, {c}}.
Then the identity function f : (X,7,7,Z) — (X,01,09) is (1,2)-
precontinuous but not (1, 2)-Z-continuous, because {c} € oy, but f~1({c}) =

{c} ¢ (1,2)-ZO(X).

Remark 3.4. [t is clear that (1,2)-Z-continuity and T -continuity (resp.
To-continuity) are independent notions.

Example 3.5. Let X = {a,b,c}, 1 = {0,{b}, X}, » = {0,{a, b}, X},
01 = {Q)a {b}7 {C}v {b7 C}, X}, 02 = {®7 {a}7 {a7 b}7 X} and L = {®7 {b}}
Then the identity function f : (X, 7, 7e,Z) — (X, 01, 02) is T -continuous
but not (1,2)-Z-continuous, because {b} € oy, but f~1({b}) = {b} ¢
(1,2)-ZO0(X).

Example 3.6. Let X = {a,b,c}, 1 = {0, {a,b}, X}, 7 = {0,{a}, {a, b}, X},
o1 = {0,{b},{b,c}, X}, 02 = {0,{b,c}, X} and Z = {0, {b}}. Then the
identity function f : (X, m,72,Z) — (X,01,09) is (1,2)-Z-continuous

but not 1 -continuous, because f~'({a}) = {a} € (1,2)-ZO(X), but

{a} ¢ 01

Example 3.7. Let X = {a,b,c}, 1 = {0,{a},{a,c}, X}, o = {0,{b}, {c}, {b,c}, X},
o ={0,{b,c}, X}, o9 = {0,{b},{b,c}, X} and T = {0, {c}}. Then the

identity function f : (X, 7,7,Z) — (X,01,09) is To-continuous but

not (1,2)-Z-continuous, because {b} € oy but f~1({b}) = {b} ¢ (1,2)-

ZO(X).



8 M. CALDAS, S. JAFARI, N. RAJESH AND F. SMARANDACHE

Example 3.8. Let X = {a,b,c}, n = {0,{a},{c} {a,c}, X}, = =
{0,{b},{b,c}, X}, o1 = {0,{a,c}, X}, o0 = {0,{b,c}, X} and T =
{0,{c}}. Then the identity function f : (X,7,72,Z) — (X,01,09)
is (1,2)-Z-continuous but not To-continuous, because {a} & oo but

“'({a}) ={a} € (1,2)-ZO(X).

Theorem 3.9. For a function f : (X, 7,7,Z) — (Y,01,02), the fol-
lounng statements are equivalent:
(i) f is pairwise Z-continuous;
(ii) For each point x in X and each o;-open set F' in'Y such that
f(z) € F, there is a (i,7)-Z-open set A in X such that x € A,
7(4) C F;
(ili) The inverse image of each oj-closed set in'Y is (i,7)-L-closed
m X,
(iv) For each subset A of X, f((i,7)-ZCl(A)) C 0;-Cl(f(A));
(v) For each subset B of Y, (i,7)-ZCI(f~1(B)) C f~(0;-Cl(B));
(vi) For each subset C of Y, f~(o;-Int(C)) C (4,7)-Z Int(f~(C)).

Proof. (i)=(ii): Let + € X and F be a oj-open set of ¥ containing

f(z). By (i), f~Y(F) is (i,j)-Z-open in X. Let A = f~'(F). Then

x € Aand f(A) C F.

(ii)=(i): Let F be o;-open in Y and let z € f~'(F). Then f(z) € F

By (ii), there is an (4, j)-Z- open set U, in X such that z € U, and

f(U,) C F. Then z € U, C f~Y(F). Hence f~'(F) is (i, j)-Z-open in

X.

(i)« (iii): This follows due to the fact that for any subset B of Y,

F\B) = X\f(B).

(iil)=(i ) Let A be a subset of X. Since A C f~!(f(A)) we have A C
Yo;-CI(f(A))). Now, (4,7)-Z CI(f(A)) is oj-closed in Y and hence

(aj Cl(A)) € fYo;-Cl(f(A))), for (i,7)-ZCl(A) is the smallest

(4, j)-Z-closed set containing A. Then f((i,7)-Z Cl(A)) C 0,;-CL(f(A)).

(iv)=-(iii): Let F be any (i, j)-pre-Z-closed subset of Y. Then f((,7)-

TCUT(F)) < (i, j)-0r-CLUF(f~ (F))) = (ir§)-0-CI(F) = F. There-

fore, (z,7)-ZCI(f~(F)) C f~Y(F). Consequently, f~(F) is (4,7)-Z-

closed in X.

(iv)=-(v): Let B be any subset of Y. Now, f((i,7)-ZCI(f~(B)))

C o-Cl(f(f~Y(B))) C 0+-Cl(B). Consequently, (i,5)-ZCl(f~1(B)) C

[ (o:-CI(B)).

(v)=(iv): Let B = f(A) where A is a subset of X. Then, (7, j)-Z C1(A)

C (i, ))-I CIF1(B)) C f(0:-CU(B)) = 1 (0:-CI(f(A))). This shows

that f((z,7)-Z Cl(A)) C a;-CI(f(A)).

(i)=>(vi): Let Bbeaoj-opensetinY. Clearly, f~!(o;-Int(B) is (4, j)-Z

open and we have f~!(o;-Int(B)) C (4, 7)-Z Int(fto,-Int(B)) C (4, )

TInt(f~'B).

(vi)J=(i): Let B be a oj-open set in Y. Then o;-Int(B) = B and
“YB)\f(oi-Int(B)) C (4,7)-ZInt(f~(B)). Hence we have f~'(B)

f-
f 1
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= (i,4)-ZInt(f~Y(B)). This shows that f~'(B) is (i,j)-Z-open in
X. O

Theorem 3.10. Let f : (X, 7,72, Z) = (Y, 01, 02) be (i, j)-Z-continuous
and o;-open function, then the inverse image of each (i,7)-Z-open set
inY is (i,7)-preopen in X.

Proof. Let A be (i, j)-Z-open. Then A C 7-Int(A}). We have to prove
f71(A) is (i, j)-preopen which implies f~(A) C 7-Int(7;-Cl(f1(4))).
For this, f(A) = f(r-Int(A})) = 7i-Int(f (mi-Int(A3))) C 7-Int(f (A7),
A C fH(mInt(f(AS))) C m-Int(f ' (7-Int(f(AF)))); C 7-Int(A%)5 C
7i-Int(Af) C 7-Int(A U A%) = 7-Int(7;-C1*(A)). Hence f~'(A) C -
Int(7;-Cl*(f~*(A))). Therefore, f~*(A) is (i, j)-preopen in X. O

Theorem 3.11. Let f : (X, 71,72, Z) = (Y, 01, 02) be (i, j)-Z-continuous
and f~H(V) C (f1(V))}, for each V C Y. Then the inverse image of
each (i,j)-L-open set is (i, 7)-Z-open.

Remark 3.12. The composition of two (i,7)-Z-continuous functions
need not be (i, j)-Z-continuous, in general.

Example 3.13. Let X = {a,b,c}, 7; = {0,{a,b}, X}, » = {0, {a},{a, b}, X},
01 = {®7 {b}7 {b’ C}vX}; 02 = {®7 {bv C}7X}7 "= {®7 {CL}, {C}7 {CL,C},X},

vo = {0,{b,c}, X}, T = {0,{b}}, T = {0,{c}} and let the function

f o (X,m,m,Z) = (Y,01,092) is defined by f(a) = b, f(b) = a and

fle) =cand g: (Y,01,00,T) — (Z,1,72) is defined by g(a) = c,

g(b) = a and g(c) = a. It is clear that both f and g are (1,2)-Z-
continuous. However, the composition function g o f is not (1,2)-Z-
continuous, because {a} € vy, but (go f)~'({a}) = {c} ¢ (1,2)-ZO(X).

Theorem 3.14. Let f : (X, 71,72,Z) = (Y,01,02) and g : (Y, 01,09, T) —
(Z, p1, o). Then go f is (i, 7)-Z-continuous, if [ is (i, 7)-Z-continuous
and g 18 0j-continuous.

Proof. Let V' € ;. Since g is pj-continuous, then ¢7*(V) € ;. On the
other hand, since f is (i, j)-Z-continuous, we have f~!(g7'(V)) € (i, j)-
ZO(X). Since (go f)"1(V) = f~Yg7(V)), we obtain that g o f is
(1, 7)-Z-continuous. O

4. (i,7)-Z-OPEN AND (i, j)-Z-CLOSED FUNCTIONS

Definition 4.1. A function f : (X, 7,m) — (Y,01,092,Z) is said to
be:
(i) pairwise Z-open if f(U) is a (i,7)-Z-open set of Y for every
7;-open set U of X.
(i) pairwise Z-closed if f(U) is a (i,7)-Z-closed set of Y for every
T;-closed set U of X.

Proposition 4.2. Every (i,7)-Z-open function is (i, j)-preopen func-
tion but the converse is not true in general.
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Example 4.3. Let X = {a,b,c}, 1 = {0, {a}, {b,c}, X}, 72 = {0, {0}, {a, b}, {b,c}, X},
o =1{0,{a}, X}, o0 = {0,{b}, {c},{b,c}, X} and T = {0,{a}}. Then

the function f : (X, 1,m) — (X,01,092,Z) is defined by f(a) = b,

f(b) = a and f(c) = c is (1,2)-preopen but not (1,2)-Z-open, because

{a} &, but f({a}) = {0} ¢ (1,2)-ZO(Y).

Remark 4.4. Each of (i,j)-Z-open function and 1;-open function are

independent.

Example 4.5. Let X = {a,b,c}, 1 = {0, {b},{b,c}, X}, o = {0,{b,c}, X },00 =
{0,{a},{a,b}, X}, 00 = {0,{a},{a,c}, X} and T = {0,{b}} on Y.
Then the identity function f : (X, 7,7) — (X, 01,09,Z) is (1,2)-Z-
open function but not T -open, because {a} ¢ 71, but f({a}) = {a} €
(1,2)-ZO(Y).
Example 4.6. Let X = {a,b,c}, 1 = {0,{a},{b,c}, X}, o = {0,{b,c}, X},
or = {0,{a},{c}, {a,c}, X}, oo = {0,{b},{c},{b,c}, X} and T =
{0,{c}} onY. Then the identity function f : (X, 1, 72) — (X, 01,092,Z)
is defined by f(a) = b= f(b) and f(c) = c is T-open but not (1,2)-Z-
open function, because {a} € 11, but f({a}) = {b} ¢ (1,2)-ZO(Y).
Theorem 4.7. For a function f : (X, 7,7) — (Y,01,02,Z), the fol-
lowing statements are equivalent:

(i) f is pairwise Z-open;

(ii) f(m-Int(U)) C (4,4)-ZInt(f(U)) for each subset U of X;

(iil) 7-Int(f~1(V)) € f71((4,7)-ZInt(V')) for each subset V of Y.

Proof. (i) = (ii): Let U be any subset of X. Then 7;-Int(U) is a 7;-
open set of X. Then f(7-Int(U)) is a (i, 7)-Z-open set of Y. Since
f(r-Int(U)) < f(U), f(r-Int(U)) = (i, §)-Z Int(f (7:-Int(U))) < (i, )-
ZInt(f(U)).

(1) = (i11): Let V be any subset of Y. Then f~(V) is a subset of X.
Hence f(r-Int(f~'(V))) C (i, 5)-ZInt(f(f~(V))) C (i,§)-ZInt(V)).
Then 7-Int(f~1(V)) C f~1(f(r-Int(f~1(V)))) C f71((4, 7)-Z Int(V)).

(17i) = (i): Let U be any 71;-open set of X. Then 7;-Int(U) = U and
f(U) is a subset of Y. Now, V = 7-Int(V) C 7-Int(f~1(f(V)))

F7HEG)-TIne(£(V)). Then f(V) < f(fH(5,5)-ZInt(f(V))))

(i, 7)-ZInt(f(V)) and (4, 7)-Z Int(f(V)) C f(V). Hence f(V)isa (i,
Z-open set of Y; hence f is pairwise Z-open.

Theorem 4.8. Let f: (X, 1, m) — (Y,01,09,Z) be a function. Then
[ is a pairwise Z-closed function if and only if for each subset V of X,
(5, /)Z CUF(V)) € (7 CIUV)).

Proof. Let f be a pairwise Z-closed function and V any subset of
X. Then f(V) C f(r-Cl(V)) and f(7;-CL(V)) is a (i, j)-Z-closed set
of Y. We have (i,7)-ZCI(f(V)) C (4,4)-ZCI(f(-CL(V))) = f(m-
Cl(V)). Conversely, let V' be a 7-open set of X. Then f(V) C (4,7)-
ZCIf(V)) C f(r=Cl(V)) = f(V); hence f(V) is a (i,7)-TJ-closed
subset of Y. Therefore, f is a pairwise Z-closed function. O

NN
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Theorem 4.9. Let f: (X, 7,7) — (Y,01,09,Z) be a function. Then
fis a pairwise Z-closed function if and only if for each subset V of Y,
UG )L CUV)) € 7-Cl(fH(V)).

Proof. Let V be any subset of Y. Then by Theorem 4.8, (i, 7)-Z C1(V') C
F(m-C1(f~1(V))). Since f is bijection, f~1((i,7)-ZCLV)) = f~1((7,7)-
ICUf(fH (V) C fFHSf(@-CLUf~H(V))) = 7-Cl(f~H(V)). Con-
versely, let U be any subset of X. Since f is bijection, (i, 7)-Z C1(f(U))
UG I)-ZCUSU))) C f(m-CUf (D)) = f(7-CUD)). Thefg

fore, by Theorem 4.8, f is a pairwise Z-closed function.

Theorem 4.10. Let f : (X, 7,72) — (Y,01,02,Z) be a pairwise Z-
open function. If V is a subset of Y and U is a 7;-closed subset of
X containing f~1(V), then there exists a (i,7)-Z-closed set F of Y
containing V' such that f~*(F) C U.

Proof. Let V be any subset of Y and U a 7;-closed subset of X contain-
ing f~1(V),andlet F' = Y\ (f(X\V)). Then f(X\V) C f(f~1(X\V)) C
X\V and X\U is a 7-open set of X. Since f is pairwise Z-open,
f(X\U) is a (i, j)-Z-open set of Y. Hence F is an (i, j)-Z-closed set of
Y and f71(F) = f~YY\(f(X\U)) C U. OJ

Theorem 4.11. Let f : (X, 71, 7) — (Y,01,02,Z) be a pairwise Z-
closed function. If V is a subset of Y and U is a open subset of X
containing f~1(V'), then there exists (i, j)-Z-open set F of Y containing
V such that f~Y(F) C U.

Proof. The proof is similar to the Theorem 4.10. O
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