ON I-OPEN SETS AND I-CONTINUOUS FUNCTIONS IN IDEAL BITOPOLOGICAL SPACES ## ON $\mathcal{I} ext{-}\text{OPEN SETS}$ AND $\mathcal{I} ext{-}\text{CONTINUOUS}$ FUNCTIONS IN IDEAL BITOPOLOGICAL SPACES M. CALDAS, S. JAFARI, N. RAJESH AND F. SMARANDACHE ABSTRACT. The aim of this paper is to introduce and characterize the concepts of \mathcal{I} -open sets and their related notions in ideal bitopological spaces. #### 1. Introduction and Preliminaries The concept of ideals in topological spaces has been introduced and studied by Kuratowski [19] and Vaidyanathasamy [24]. Hamlett and Janković (see [12], [13], [17] and [18]) used topological ideals to generalize many notions and properties in general topology. The research in this direction continued by many researchers such as M. E. Abd El-Monsef, A. Al-Omari, F. G. Arenas, M. Caldas, J. Dontchev, M. Ganster, D. N. Georgiou, T. R. Hamlett, E. Hatir, S. D. Iliadis, S. Jafari, D. Jankovic, E. F. Lashien, M. Maheswari, H. Maki, A. C. Megaritis, F. I. Michael, A. A. Nasef, T. Noiri, B. K. Papadopoulos, M. Parimala, G. A. Prinos, M. L. Puertas, M. Rajamani, N. Rajesh, D. Rose, A. Selvakumar, Jun-Iti Umehara and many others (see [1], [2], [5], [7], [8], [9], [10], [11], [14], [15], [18], [23], [21], [22]). An ideal \mathcal{I} on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^*: \mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [24] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I}\}$ for every $U \in \tau(x)$, where $\tau(x) = \{U \in \tau | x \in U\}$. If \mathcal{I} is an ideal on X, then $(X, \tau_1, \tau_2, \mathcal{I})$ is called an ideal bitopological space. Let A be a subset of a bitopological space (X, τ_1, τ_2) . We denote the closure of A and the interior of A with respect to τ_i by τ_i -Cl(A) and τ_i -Int(A), respectively. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i,j)-preopen [16] if $A \subset \tau_i$ -Int $(\tau_i$ -Cl(A)), where i,j=1,2 and $i \neq j$. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be (i, j)-pre- \mathcal{I} -open [4] if $S \subset \tau_i$ -Int $(\tau_i$ -Cl*(S)). A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-preopen [16] (resp. (i, j)-semi- \mathcal{I} -open [3]) if $A \subset \tau_i$ -Int $(\tau_i$ -Cl(A)) (resp. $S \subset \tau_i$ -Cl* $(\tau_i$ -Int(S))), where i, j = 1, 2 ²⁰⁰⁰ Mathematics Subject Classification. 54D10. Key words and phrases. Ideal bitopological spaces, (i, j)- \mathcal{I} -open sets, (i, j)- \mathcal{I} -closed sets. and $i \neq j$. The complement of an (i,j)-semi- \mathcal{I} -open set is called an (i,j)-semi- \mathcal{I} -closed set. A function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-pre- \mathcal{I} -continuous [4] if the inverse image of every σ_i -open set in (Y,σ_1,σ_2) is (i,j)-pre- \mathcal{I} -open in $(X,\tau_1,\tau_2,\mathcal{I})$, where $i\neq j$, i,j=1,2. 2. $$(i, j)$$ - \mathcal{I} -OPEN SETS **Definition 2.1.** A subset A of an ideal bitopological space $(X, \tau_i, \tau_2, \mathcal{I})$ is said to be (i, j)- \mathcal{I} -open if $A \subset \tau_i$ -Int (A_j^*) . The family of all (i, j)- \mathcal{I} -open subsets of $(X, \tau_i, \tau_2, \mathcal{I})$ is denoted by (i, j)- $\mathcal{I}O(X)$. **Remark 2.2.** It is clear that (1,2)- \mathcal{I} -openness and τ_1 -openness are independent notions. **Example 2.3.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then τ_1 -Int($\{a, b\}_2^*$) = τ_1 -Int($\{b\}$) = $\emptyset \supseteq \{a, b\}$. Therefore $\{a, b\}$ is a τ_1 -open set but not (1, 2)- \mathcal{I} -open. **Example 2.4.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then τ_1 -Int($\{a\}_2^*$) = τ_1 -Int(X) = $X \supset \{a\}$. Therefore, $\{a\}$ is (1, 2)- \mathcal{I} -open set but not τ_1 -open. Remark 2.5. Similarly (1,2)- \mathcal{I} -openness and τ_2 -openness are independent notions. **Example 2.6.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then τ_1 -Int($\{b, c\}_2^*$) = τ_1 -Int($\{a, b\}$) = $\{a\} \supseteq \{b, c\}$. Therefore, $\{b, c\}$ is a τ_2 -open set but not (1, 2)- \mathcal{I} -open. **Example 2.7.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}\}$, $\tau_2 = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}\}$. Then τ_1 -Int $(\{a\}_2^*) = \tau_1$ -Int $(\{a\}) = \{a\} \supset \{a\}$. Therefore, $\{a\}$ is an (1, 2)- \mathcal{I} -open set but not τ_2 -open. **Proposition 2.8.** Every (i, j)- \mathcal{I} -open set is (i, j)-pre- \mathcal{I} -open. *Proof.* Let A be an (i, j)- \mathcal{I} -open set. Then $A \subset \tau_i$ -Int $(A_j^*) \subset \tau_i$ -Int $(A \cup A_j^*) = \tau_i$ -Int $(\tau_j$ -Cl*(A)). Therefore, $A \in (i, j)$ - $P\mathcal{I}O(X)$. **Example 2.9.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the set $\{c\}$ is (1, 2)-preopen but not (1, 2)- \mathcal{I} -open. **Remark 2.10.** The intersection of two (i, j)- \mathcal{I} -open sets need not be (i, j)- \mathcal{I} -open as showm in the following example. **Example 2.11.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a, b\}$, $\{a, c\} \in (1, 2)$ - $\mathcal{I}O(X)$ but $\{a, b\} \cap \{a, c\} = \{a\} \notin (1, 2)$ - $\mathcal{I}O(X)$. **Theorem 2.12.** For an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ and $A \subset X$, we have: - (1) If $\mathcal{I} = \{\emptyset\}$, then $A_j^*(\mathcal{I}) = \tau_j$ -Cl(A) and hence each of (i, j)- \mathcal{I} -open set and (i, j)-preopen set are coincide. - (2) If $\mathcal{I} = \mathcal{P}(X)$, then $A_j^*(\mathcal{I}) = \emptyset$ and hence A is (i, j)- \mathcal{I} -open if and only if $A = \emptyset$. **Theorem 2.13.** For any (i, j)- \mathcal{I} -open set A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, we have $A_i^* = (\tau_i \text{-Int}(A_i^*))_i^*$. *Proof.* Since A is (i, j)- \mathcal{I} -open, $A \subset \tau_i$ -Int (A_j^*) . Then $A_j^* \subset (\tau_i$ -Int $(A_j^*))_j^*$. Also we have τ_i -Int $(A_j^*) \subset A_j^*$, $(\tau_i$ -Int $(A_j^*))^* \subset (A_j^*)^* \subset A_j^*$. Hence we have, $A_j^* = (\tau_i$ -Int $(A_j^*))_j^*$. **Definition 2.14.** A subset F of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is called (i, j)- \mathcal{I} -closed if its complement is (i, j)- \mathcal{I} -open. **Theorem 2.15.** For $A \subset (X, \tau_1, \tau_2, \mathcal{I})$ we have $((\tau_i\text{-Int}(A))_j^*)^c \neq \tau_i\text{-Int}((A^c)_j^*)$ in general. **Example 2.16.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $((\tau_1\text{-Int}(\{a, b\}))_2^*)^c = (\{a, b\}_2^*)^c = X^c = \emptyset$ (*) and $\tau_1\text{-Int}((\{a, b\}^c)_2^*) = \tau_1\text{-Int}(\{c\}_2^*) = \tau_1\text{-Int}(X) = X$ (**). Hence from (*) and (**), we get $((\tau_1\text{-Int}(\{a, b\}))_2^*)^c \neq \tau_1\text{-Int}((\{a, b\}^c)_2^*)$. **Theorem 2.17.** If $A \subset (X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)- \mathcal{I} -closed, then $A \supset (\tau_i - \operatorname{Int}(A))_j^*$. Proof. Let A be (i, j)- \mathcal{I} -closed. Then $B = A^c$ is (i, j)- \mathcal{I} -open. Thus, $B \subset \tau_i$ -Int (B_j^*) , $B \subset \tau_i$ -Int $(\tau_j$ -Cl(B)), $B^c \supset \tau_j$ -Cl $(\tau_i$ -Int (B^c)), $A \supset \tau_j$ -Cl $(\tau_i$ -Int(A)). That is, τ_j -Cl $(\tau_i$ -Int(A)) $\subset A$, which implies that $(\tau_i$ -Int $(A))_j^* \subset \tau_j$ -Cl $(\tau_i$ -Int(A)) $\subset A$. Therefore, $A \supset (\tau_i$ -Int $(A))_j^*$. \square **Theorem 2.18.** Let $A \subset (X, \tau_1, \tau_2, \mathcal{I})$ and $(X \setminus (\tau_i - \operatorname{Int}(A))_j^*) = \tau_i - \operatorname{Int}((X \setminus A)_j^*)$. Then A is (i, j)- \mathcal{I} -closed if and only if $A \supset (\tau_i - \operatorname{Int}(A))_j^*$. Proof. It is obvious. **Theorem 2.19.** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A, B \subset X$. Then: - (i) If $\{U_{\alpha} : \alpha \in \Delta\} \subset (i, j)$ - $\mathcal{I}O(X)$, then $\bigcup \{U_{\alpha} : \alpha \in \Delta\} \in (i, j)$ - $\mathcal{I}O(X)$. - (ii) If $A \in (i, j)$ - $\mathcal{I}O(X)$, $B \in \tau_i$ and $A_j^* \cap B \subset (A \cap B)_j^*$, then $A \cap B \in (i, j)$ - $\mathcal{I}O(X)$. - (iii) If $A \in (i, j)$ - $\mathcal{I}O(X)$, $B \in \tau_i$ and $B \cap A_j^* = B \cap (B \cap A)_j^*$, then $A \cap B \subset \tau_i$ -Int $(B \cap (B \cap A)_j^*)$. Proof. (i) Since $\{U_{\alpha} : \alpha \in \Delta\} \subset (i, j) - \mathcal{I}O(X)$, then $U_{\alpha} \subset \tau_i - \operatorname{Int}((U_{\alpha})_j^*)$, for every $\alpha \in \Delta$. Thus, $\bigcup (U_{\alpha}) \subset \bigcup (\tau_i - \operatorname{Int}((U_{\alpha})_j^*)) \subset \tau_i - \operatorname{Int}(\bigcup (U_{\alpha})_j^*) \subset \tau_i - \operatorname{Int}(\bigcup U_{\alpha})_j^*$, for every $\alpha \in \Delta$. Hence $\bigcup \{U_{\alpha} : \alpha \in \Delta\} \in (i, j) - \mathcal{I}O(X)$. (ii) Given $A \in (i, j)$ - $\mathcal{I}O(X)$ and $B \in \tau_i$, that is $A \subset \tau_i$ -Int (A_j^*) . Then $A \cap B \subset \tau_i$ -Int $(A_j^*) \cap B = \tau_i$ -Int $(A_j^* \cap B)$. Since $B \in \tau_i$ and $A_j^* \cap B \subset (A \cap B)_j^*$, we have $A \cap B \subset \tau_i$ -Int $((A \cap B)_j^*)$. Hence, $A \cap B \in (i, j)$ - $\mathcal{I}O(X)$. (iii) Given $A \in (i, j)$ - $\mathcal{I}O(X)$ and $B \in \tau_i$, That is $A \subset \tau_i$ -Int (A_j^*) . We have to prove $A \cap B \subset \tau_i$ -Int $(B \cap (B \cap A)_j^*)$. Thus, $A \cap B \subset \tau_i$ -Int $(A_j^*) \cap B = \tau_i$ -Int $(A_j^* \cap B) = \tau_i$ -Int $(B \cap A_j^*)$. Since $B \cap A_j^* = B \cap (B \cap A)_j^*$. Hence $A \cap B \subset \tau_i$ -Int $(B \cap (B \cap A)_j^*)$. Corollary 2.20. The union of (i, j)- \mathcal{I} -closed set and τ_j -closed set is (i, j)- \mathcal{I} -closed. *Proof.* It is obvious. \Box **Theorem 2.21.** If $A \subset (X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)- \mathcal{I} -open and (i, j)-semiclosed, then $A = \tau_i$ -Int (A_i^*) . *Proof.* Given A is (i, j)- \mathcal{I} -open. Then $A \subset \tau_i$ -Int (A_j^*) . Since (i, j)-semiclosed, τ_i -Int $(A_j^*) \subset \tau_i$ -Int $(\tau_j$ -Cl $(A)) \subset A$. Thus τ_i -Int $(A_j^*) \subset A$. Hence we have, $A = \tau_i$ -Int (A_j^*) . **Theorem 2.22.** Let $A \in (i, j)$ - $\mathcal{I}O(X)$ and $B \in (i, j)$ - $\mathcal{I}O(Y)$, then $A \times B \in (i, j)$ - $\mathcal{I}O(X \times Y)$, if $A_i^* \times B_i^* = (A \times B)_i^*$. Proof. $A \times B \subset \tau_i\text{-Int}(A_j^*) \times \tau_i\text{-Int}(B_j^*) = \tau_i\text{-Int}(A_j^* \times B_j^*)$, from hypothesis. Then $A \times B = \tau_i\text{-Int}((A \times B)_j^*)$; hence, $A \times B \in (i, j)$ - $\mathcal{I}O(X \times Y)$. **Theorem 2.23.** If $(X, \tau_1, \tau_2, \mathcal{I})$ is an ideal bitopological space, $A \in \tau_i$ and $B \in (i, j)$ - $\mathcal{I}O(X)$, then there exists a τ_i -open subset G of X such that $A \cap G = \emptyset$, implies $A \cap B = \emptyset$. *Proof.* Since $B \in (i, j)$ - $\mathcal{I}O(X)$, then $B \subset \tau_i$ -Int (B_j^*) . By taking $G = \tau_i$ -Int (B_j^*) to be a τ_i -open set such that $B \subset G$. But $A \cap G = \emptyset$, then $G \subset X \setminus A$ implies that τ_i -Cl $(G) \subset X \setminus A$. Hence $B \subset (X \setminus A)$. Therefore, $A \cap B = \emptyset$. **Definition 2.24.** A subset A of $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be: - (i) τ_i^* -closed if $A_i^* \subset A$. - (ii) τ_i -*-perfect $A_i^* = A$. **Theorem 2.25.** For a subset $A \subset (X, \tau_1, \tau_2, \mathcal{I})$, we have - (i) If A is τ_j^* -closed and $A \in (i, j)$ - $\mathcal{I}O(X)$, then τ_i -Int $(A) = \tau_i$ -Int (A_i^*) . - (ii) If A is τ_j -*-perfect, then $A = \tau_i$ -Int (A_j^*) for every $A \in (i, j)$ - $\mathcal{I}O(X)$. *Proof.* (i) Let A be τ_j -*-closed and $A \in (i, j)$ - $\mathcal{I}O(X)$. Then $A_j^* \subset A$ and $A \subset \tau_i$ -Int (A_j^*) . Hence $A \subset \tau_i$ -Int $(A_j^*) \Rightarrow \tau_i$ -Int $(A) \subset \tau_i$ -Int $(\tau_i$ -Int $(A_j^*) \Rightarrow \tau_i$ -Int $(A) \subset \tau_i$ -Int (A_j^*) . Also, $A_j^* \subset A$. Then τ_i -Int $(A_j^*) \subset T$ τ_i -Int(A). Hence τ_i -Int(A) = τ_i -Int(A_i*). (ii) Let A be τ_j -*-perfect and $A \in (i, j)$ - $\mathcal{I}O(X)$. We have, $A_j^* = A$, τ_i -Int $(A_j^*) = \tau_i$ -Int(A), τ_i -Int $(A_j^*) \subset A$. Also we have $A \subset \tau_i$ -Int (A_j^*) . Hence we have, $A = \tau_i$ -Int (A_i^*) . **Definition 2.26.** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then - (i) x is called an (i, j)- \mathcal{I} -interior point of S if there exists $V \in (i, j)$ - $\mathcal{I}O(X, \tau_1, \tau_2)$ such that $x \in V \subset S$. - ii) the set of all (i, j)- \mathcal{I} -interior points of S is called (i, j)- \mathcal{I} -interior of S and is denoted by (i, j)- \mathcal{I} Int(S). **Theorem 2.27.** Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold: - (i) (i, j)- \mathcal{I} Int $(A) = \bigcup \{T : T \subset A \text{ and } A \in (i, j)$ - $\mathcal{I}O(X)\}.$ - (ii) (i, j)- \mathcal{I} Int(A) is the largest (i, j)- \mathcal{I} -open subset of X contained in A. - (iii) A is (i, j)- \mathcal{I} -open if and only if A = (i, j)- \mathcal{I} Int(A). - (iv) (i, j)- \mathcal{I} Int((i, j)- \mathcal{I} Int(A)) = (i, j)- \mathcal{I} Int(A). - (v) If $A \subset B$, then (i, j)- \mathcal{I} Int $(A) \subset (i, j)$ - \mathcal{I} Int(B). - (vi) (i, j)- \mathcal{I} Int $(A) \cup (i, j)$ - \mathcal{I} Int $(B) \subset (i, j)$ - \mathcal{I} Int $(A \cup B)$. - (vii) (i, j)- \mathcal{I} Int $(A \cap B) \subset (i, j)$ - \mathcal{I} Int $(A) \cap (i, j)$ - \mathcal{I} Int(B). - Proof. (i). Let $x \in \cup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\mathcal{I}O(X)\}$. Then, there exists $T \in (i,j)\text{-}\mathcal{I}O(X,x)$ such that $x \in T \subset A$ and hence $x \in (i,j)\text{-}\mathcal{I}\operatorname{Int}(A)$. This shows that $\cup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\mathcal{I}O(X)\} \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(A)$. For the reverse inclusion, let $x \in (i,j)\text{-}\mathcal{I}\operatorname{Int}(A)$. Then there exists $T \in (i,j)\text{-}\mathcal{I}O(X,x)$ such that $x \in T \subset A$. we obtain $x \in \cup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\mathcal{I}O(X)\}$. This shows that $(i,j)\text{-}\mathcal{I}\operatorname{Int}(A) \subset \cup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\mathcal{I}O(X)\}$. Therefore, we obtain $(i,j)\text{-}\mathcal{I}\operatorname{Int}(A) = \cup \{T : T \subset A \text{ and } A \in (i,j)\text{-}\mathcal{I}O(X)\}$. The proof of (ii)-(v) are obvious. - (vi). Clearly, (i, j)- \mathcal{I} Int $(A) \subset (i, j)$ - \mathcal{I} Int $(A \cup B)$ and (i, j)- \mathcal{I} Int $(B) \subset (i, j)$ - \mathcal{I} Int $(A \cup B)$. Then by (v) we obtain (i, j)- \mathcal{I} Int $(A) \cup (i, j)$ - \mathcal{I} Int $(B) \subset (i, j)$ - \mathcal{I} Int $(A \cup B)$. - (vii). Since $A \cap B \subset A$ and $A \cap B \subset B$, by (v), we have (i, j)- $\mathcal{I} \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{I} \operatorname{Int}(A)$ and (i, j)- $\mathcal{I} \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{I} \operatorname{Int}(B)$. By (v) (i, j)- $\mathcal{I} \operatorname{Int}(A \cap B) \subset (i, j)$ - $\mathcal{I} \operatorname{Int}(B)$. **Definition 2.28.** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then - (i) x is called an (i, j)- \mathcal{I} -cluster point of S if $V \cap S \neq \emptyset$ for every $V \in (i, j)$ - $\mathcal{I}O(X, x)$. - (ii) the set of all (i, j)- \mathcal{I} -cluster points of S is called (i, j)- \mathcal{I} -closure of S and is denoted by (i, j)- \mathcal{I} Cl(S). **Theorem 2.29.** Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold: - (i) (i,j)- \mathcal{I} Cl $(A) = \cap \{F : A \subset F \text{ and } F \in (i,j)$ - \mathcal{I} C $(X)\}.$ - (ii) (i, j)- \mathcal{I} Cl(A) is the smallest (i, j)- \mathcal{I} -closed subset of X containing A. - (iii) A is (i, j)- \mathcal{I} -closed if and only if A = (i, j)- \mathcal{I} Cl(A). - (iv) (i, j)- \mathcal{I} Cl((i, j)- \mathcal{I} Cl(A) = (i, j)- \mathcal{I} Cl(A). - (v) If $A \subset B$, then (i, j)- \mathcal{I} Cl $(A) \subset (i, j)$ - \mathcal{I} Cl(B). - (vi) (i, j)- \mathcal{I} Cl $(A \cup B) = (i, j)$ - \mathcal{I} Cl $(A) \cup (i, j)$ - \mathcal{I} Cl(B). - (vii) (i, j)- \mathcal{I} Cl $(A \cap B) \subset (i, j)$ - \mathcal{I} Cl $(A) \cap (i, j)$ - \mathcal{I} Cl(B). Proof. (i). Suppose that $x \notin (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. Then there exists $F \in (i,j)\text{-}\mathcal{I}\operatorname{O}(X)$ such that $V \cap S \neq \emptyset$. Since $X \setminus V$ is $(i,j)\text{-}\mathcal{I}\operatorname{-closed}$ set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap \{F : A \subset F \text{ and } F \in (i,j)\text{-}\mathcal{I}\operatorname{C}(X)\}$. Then there exists $F \in (i,j)\text{-}\mathcal{I}\operatorname{C}(X)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus V$ is $(i,j)\text{-}\mathcal{I}\operatorname{-closed}$ set containing x, we obtain $(X \setminus F) \cap A = \emptyset$. This shows that $x \notin (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. Therefore, we obtain $(i,j)\text{-}\mathcal{I}\operatorname{Cl}(A) = \cap \{F : A \subset F \text{ and } F \in (i,j)\text{-}\mathcal{I}\operatorname{C}(X)$. The other proofs are obvious. **Theorem 2.30.** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. A point $x \in (i, j)$ - \mathcal{I} Cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - $\mathcal{I}O(X, x)$. Proof. Suppose that $x \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. We shall show that $U \cap A \neq \emptyset$ for every $U \in (i,j)\text{-}\mathcal{I}O(X,x)$. Suppose that there exists $U \in (i,j)\text{-}\mathcal{I}O(X,x)$ such that $U \cap A = \emptyset$. Then $A \subset X \setminus U$ and $X \setminus U$ is $(i,j)\text{-}\mathcal{I}\operatorname{closed}$. Since $A \subset X \setminus U$, $(i,j)\text{-}\mathcal{I}\operatorname{Cl}(A) \subset (i,j)\text{-}\mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $x \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$, we have $x \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(X \setminus U)$. Since $X \setminus U$ is $(i,j)\text{-}\mathcal{I}\operatorname{closed}$, we have $x \in X \setminus U$; hence $x \notin U$, which is a contradiction that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i,j)\text{-}\mathcal{I}O(X,x)$. We shall show that $x \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. Suppose that $x \notin (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. Then there exists $u \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(X,x)$ such that $u \cap A = \emptyset$. This is a contradiction to $u \cap A \neq \emptyset$; hence $u \in (i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$. **Theorem 2.31.** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. Then the following properties hold: - (i) (i, j)- \mathcal{I} Int $(X \setminus A) = X \setminus (i, j)$ - \mathcal{I} Cl(A); - (i) (i, j)- \mathcal{I} Cl $(X \setminus A) = X \setminus (i, j)$ - \mathcal{I} Int(A). Proof. (i). Let $x \in (i, j)$ - \mathcal{I} Cl(A). There exists $V \in (i, j)$ - \mathcal{I} O(X, x) such that $V \cap A \neq \emptyset$; hence we obtain $x \in (i, j)$ - \mathcal{I} Int $(X \setminus A)$. This shows that $X \setminus (i, j)$ - \mathcal{I} Cl $(A) \subset (i, j)$ - \mathcal{I} Int $(X \setminus A)$. Let $x \in (i, j)$ - \mathcal{I} Int $(X \setminus A)$. Since (i, j)- \mathcal{I} Int $(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j)$ - \mathcal{I} Cl(A); hence $x \in X \setminus (i, j)$ - \mathcal{I} Cl(A). Therefore, we obtain (i, j)- \mathcal{I} Int $(X \setminus A) = X \setminus (i, j)$ - \mathcal{I} Cl(A). (ii). Follows from (i). **Definition 2.32.** A subset B_x of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be an (i, j)- \mathcal{I} -neighbourhood of a point $x \in X$ if there exists an (i, j)- \mathcal{I} -open set U such that $x \in U \subset B_x$. **Theorem 2.33.** A subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)- \mathcal{I} -open if and only if it is an (i, j)- \mathcal{I} -neighbourhood of each of its points. Proof. Let G be an (i, j)- \mathcal{I} -open set of X. Then by definition, it is clear that G is an (i, j)- \mathcal{I} -neighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is (i, j)- \mathcal{I} -open. Conversely, suppose G is an (i, j)- \mathcal{I} -neighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in (i, j)$ - $\mathcal{I}O(X)$ such that $S_x \subset G$. Then $G = \bigcup \{S_x : x \in G\}$. Since each S_x is (i, j)- \mathcal{I} -open and arbtrary union of (i, j)- \mathcal{I} -open sets is (i, j)- \mathcal{I} -open, G is (i, j)- \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$. ### 3. (i, j)- \mathcal{I} -continuous functions **Definition 3.1.** A function $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- \mathcal{I} -continuous if for every $V \in \sigma_i$, $f^{-1}(V) \in (i, j)$ - $\mathcal{I}O(X)$. **Remark 3.2.** Every (i, j)- \mathcal{I} -continuous function is (i, j)-precontinuous but the converse is not true, in general. **Example 3.3.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$, $\sigma_1 = \mathcal{P}(X)$, $\sigma_2 = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \sigma_1, \sigma_2)$ is (1, 2)-precontinuous but not (1, 2)- \mathcal{I} -continuous, because $\{c\} \in \sigma_1$, but $f^{-1}(\{c\}) = \{c\} \notin (1, 2)$ - \mathcal{I} O(X). Remark 3.4. It is clear that (1,2)- \mathcal{I} -continuity and τ_1 -continuity (resp. τ_2 -continuity) are independent notions. **Example 3.5.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{b\}, X\}$, $\tau_2 = \{\emptyset, \{a, b\}, X\}$, $\sigma_1 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, $\sigma_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \sigma_1, \sigma_2)$ is τ_1 -continuous but not (1, 2)- \mathcal{I} -continuous, because $\{b\} \in \sigma_1$, but $f^{-1}(\{b\}) = \{b\} \notin (1, 2)$ - $\mathcal{I}O(X)$. **Example 3.6.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$, $\sigma_1 = \{\emptyset, \{b\}, \{b, c\}, X\}$, $\sigma_2 = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \sigma_1, \sigma_2)$ is (1, 2)- \mathcal{I} -continuous but not τ_1 -continuous, because $f^{-1}(\{a\}) = \{a\} \in (1, 2)$ - $\mathcal{I}O(X)$, but $\{a\} \notin \sigma_1$. **Example 3.7.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$, $\sigma_1 = \{\emptyset, \{b, c\}, X\}$, $\sigma_2 = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \sigma_1, \sigma_2)$ is τ_2 -continuous but not (1, 2)- \mathcal{I} -continuous, because $\{b\} \in \sigma_2$ but $f^{-1}(\{b\}) = \{b\} \notin (1, 2)$ - $\mathcal{I}O(X)$. **Example 3.8.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, \{b, c\}, X\}$, $\sigma_1 = \{\emptyset, \{a, c\}, X\}$, $\sigma_2 = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (X, \sigma_1, \sigma_2)$ is (1, 2)- \mathcal{I} -continuous but not τ_2 -continuous, because $\{a\} \notin \sigma_2$ but $f^{-1}(\{a\}) = \{a\} \in (1, 2)$ - $\mathcal{I}O(X)$. **Theorem 3.9.** For a function $f:(X,\tau_1,\tau_2,\mathcal{I})\to (Y,\sigma_1,\sigma_2)$, the following statements are equivalent: - (i) f is pairwise \mathcal{I} -continuous; - (ii) For each point x in X and each σ_j -open set F in Y such that $f(x) \in F$, there is a (i,j)- \mathcal{I} -open set A in X such that $x \in A$, $f(A) \subset F$; - (iii) The inverse image of each σ_j -closed set in Y is (i, j)- \mathcal{I} -closed in X: - (iv) For each subset A of X, $f((i, j)-\mathcal{I}\operatorname{Cl}(A)) \subset \sigma_i-\operatorname{Cl}(f(A))$; - (v) For each subset B of Y, (i,j)- \mathcal{I} Cl $(f^{-1}(B)) \subset f^{-1}(\sigma_j$ -Cl(B)); - (vi) For each subset C of Y, $f^{-1}(\sigma_j\text{-Int}(C)) \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(f^{-1}(C))$. *Proof.* (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_j -open set of Y containing f(x). By (i), $f^{-1}(F)$ is (i, j)- \mathcal{I} -open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$. - (ii) \Rightarrow (i): Let F be σ_j -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i,j)- \mathcal{I} -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i,j)- \mathcal{I} -open in X. - (i) \Leftrightarrow (iii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$. - (iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_j\text{-Cl}(f(A)))$. Now, $(i,j)\text{-}\mathcal{I}\operatorname{Cl}(f(A))$ is $\sigma_j\text{-closed}$ in Y and hence $f^{-1}(\sigma_j\text{-Cl}(A)) \subset f^{-1}(\sigma_j\text{-Cl}(f(A)))$, for $(i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)$ is the smallest $(i,j)\text{-}\mathcal{I}\operatorname{-closed}$ set containing A. Then $f((i,j)\text{-}\mathcal{I}\operatorname{Cl}(A)) \subset \sigma_j\text{-Cl}(f(A))$. (iv) \Rightarrow (iii): Let F be any $(i,j)\text{-pre-}\mathcal{I}\operatorname{-closed}$ subset of Y. Then $f((i,j)\text{-}\mathcal{I}\operatorname{Cl}(f^{-1}(F))) \subset (i,j)\text{-}\sigma_i\text{-Cl}(f(f^{-1}(F))) = (i,j)\text{-}\sigma_i\text{-Cl}(F) = F$. Therefore, $(i,j)\text{-}\mathcal{I}\operatorname{Cl}(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is $(i,j)\text{-}\mathcal{I}\operatorname{-closed}$ in X. - (iv) \Rightarrow (v): Let B be any subset of Y. Now, $f((i, j) \mathcal{I} \operatorname{Cl}(f^{-1}(B))) \subset \sigma_i \operatorname{Cl}(f(f^{-1}(B))) \subset \sigma_i \operatorname{Cl}(B)$. Consequently, $(i, j) \mathcal{I} \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i \operatorname{Cl}(B))$. - (v) \Rightarrow (iv): Let B = f(A) where A is a subset of X. Then, (i, j)- \mathcal{I} $\mathrm{Cl}(A)$ $\subset (i, j)$ - \mathcal{I} $\mathrm{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-}\mathrm{Cl}(B)) = f^{-1}(\sigma_i\text{-}\mathrm{Cl}(f(A)))$. This shows that f((i, j)- \mathcal{I} $\mathrm{Cl}(A)) \subset \sigma_i\text{-}\mathrm{Cl}(f(A))$. - (i) \Rightarrow (vi): Let B be a σ_j -open set in Y. Clearly, $f^{-1}(\sigma_i\text{-Int}(B))$ is (i, j)- \mathcal{I} -open and we have $f^{-1}(\sigma_i\text{-Int}(B)) \subset (i, j)$ - \mathcal{I} Int $(f^{-1}\sigma_i\text{-Int}(B)) \subset (i, j)$ - \mathcal{I} Int $(f^{-1}B)$. - (vi) \Rightarrow (i): Let B be a σ_j -open set in Y. Then σ_i -Int(B) = B and $f^{-1}(B) \setminus f^{-1}(\sigma_i$ -Int $(B)) \subset (i,j)$ - \mathcal{I} Int $(f^{-1}(B))$. Hence we have $f^{-1}(B)$ = (i,j)- \mathcal{I} Int $(f^{-1}(B))$. This shows that $f^{-1}(B)$ is (i,j)- \mathcal{I} -open in X. **Theorem 3.10.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ be (i, j)- \mathcal{I} -continuous and σ_i -open function, then the inverse image of each (i, j)- \mathcal{I} -open set in Y is (i, j)-preopen in X. Proof. Let A be (i, j)- \mathcal{I} -open. Then $A \subset \tau_i$ -Int (A_j^*) . We have to prove $f^{-1}(A)$ is (i, j)-preopen which implies $f^{-1}(A) \subset \tau_i$ -Int $(\tau_j$ -Cl $(f^{-1}(A)))$. For this, $f(A) = f(\tau_i$ -Int $(A_j^*)) = \tau_i$ -Int $(f(\tau_i$ -Int $(A_j^*))) \subset \tau_i$ -Int $(f(A_j^*))$, $A \subset f^{-1}(\tau_i$ -Int $(f(A_j^*))) \subset \tau_i$ -Int $(f^{-1}(\tau_i$ -Int $(f(A_j^*)))_j^* \subset \tau_i$ -Int $(A_j^*)_j^* \subset \tau_i$ -Int $(A_j^*) \subset \tau_i$ -Int $(A_j^*) \subset \tau_i$ -Int $(T_j$ -Cl -Cl **Theorem 3.11.** Let $f:(X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ be (i, j)- \mathcal{I} -continuous and $f^{-1}(V_j^*) \subset (f^{-1}(V))_j^*$, for each $V \subset Y$. Then the inverse image of each (i, j)- \mathcal{I} -open set is (i, j)- \mathcal{I} -open. **Remark 3.12.** The composition of two (i, j)- \mathcal{I} -continuous functions need not be (i, j)- \mathcal{I} -continuous, in general. **Example 3.13.** Let $X = \{a, b, c\}$, $\tau_i = \{\emptyset, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$, $\sigma_1 = \{\emptyset, \{b\}, \{b, c\}, X\}$, $\sigma_2 = \{\emptyset, \{b, c\}, X\}$, $\gamma_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\gamma_2 = \{\emptyset, \{b, c\}, X\}$, $\mathcal{I} = \{\emptyset, \{b\}\}$, $\mathcal{J} = \{\emptyset, \{c\}\}$ and let the function $f: (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is defined by f(a) = b, f(b) = a and f(c) = c and $g: (Y, \sigma_1, \sigma_2, \mathcal{J}) \to (Z, \gamma_1, \gamma_2)$ is defined by g(a) = c, g(b) = a and g(c) = a. It is clear that both f and g are (1, 2)- \mathcal{I} -continuous. However, the composition function $g \circ f$ is not (1, 2)- \mathcal{I} -continuous, because $\{a\} \in \gamma_1$, but $(g \circ f)^{-1}(\{a\}) = \{c\} \notin (1, 2)$ - \mathcal{I} O(X). **Theorem 3.14.** Let $f: (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2, \mathcal{J}) \to (Z, \mu_1, \mu_2)$. Then $g \circ f$ is (i, j)- \mathcal{I} -continuous, if f is (i, j)- \mathcal{I} -continuous and g is σ_j -continuous. *Proof.* Let $V \in \mu_j$. Since g is μ_j -continuous, then $g^{-1}(V) \in \sigma_j$. On the other hand, since f is (i,j)- \mathcal{I} -continuous, we have $f^{-1}(g^{-1}(V)) \in (i,j)$ - $\mathcal{I}O(X)$. Since $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$, we obtain that $g \circ f$ is (i,j)- \mathcal{I} -continuous. 4. (i, j)- \mathcal{I} -OPEN AND (i, j)- \mathcal{I} -CLOSED FUNCTIONS **Definition 4.1.** A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ is said to be: - (i) pairwise \mathcal{I} -open if f(U) is a (i,j)- \mathcal{I} -open set of Y for every τ_i -open set U of X. - (ii) pairwise \mathcal{I} -closed if f(U) is a (i, j)- \mathcal{I} -closed set of Y for every τ_i -closed set U of X. **Proposition 4.2.** Every (i, j)- \mathcal{I} -open function is (i, j)-preopen function but the converse is not true in general. **Example 4.3.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$, $\sigma_1 = \{\emptyset, \{a\}, X\}$, $\sigma_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the function $f: (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2, \mathcal{I})$ is defined by f(a) = b, f(b) = a and f(c) = c is (1, 2)-preopen but not (1, 2)- \mathcal{I} -open, because $\{a\} \notin \tau_1$, but $f(\{a\}) = \{b\} \notin (1, 2)$ - $\mathcal{I}O(Y)$. **Remark 4.4.** Each of (i, j)- \mathcal{I} -open function and τ_i -open function are independent. **Example 4.5.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{b\}, \{b, c\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$, $\sigma_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$, $\sigma_2 = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$ on Y. Then the identity function $f : (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2, \mathcal{I})$ is (1, 2)- \mathcal{I} -open function but not τ_1 -open, because $\{a\} \notin \tau_1$, but $f(\{a\}) = \{a\} \in (1, 2)$ - $\mathcal{I}O(Y)$. **Example 4.6.** Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$, $\tau_2 = \{\emptyset, \{b, c\}, X\}$, $\sigma_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$, $\sigma_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$ on Y. Then the identity function $f: (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2, \mathcal{I})$ is defined by f(a) = b = f(b) and f(c) = c is τ_1 -open but not (1, 2)- \mathcal{I} -open function, because $\{a\} \in \tau_1$, but $f(\{a\}) = \{b\} \notin (1, 2)$ - $\mathcal{I}O(Y)$. **Theorem 4.7.** For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$, the following statements are equivalent: - (i) f is pairwise \mathcal{I} -open; - (ii) $f(\tau_i\text{-Int}(U)) \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(f(U))$ for each subset U of X; - (iii) τ_i -Int $(f^{-1}(V)) \subset f^{-1}((i,j)-\mathcal{I}\operatorname{Int}(V))$ for each subset V of Y. Proof. (i) \Rightarrow (ii): Let U be any subset of X. Then τ_i -Int(U) is a τ_i open set of X. Then $f(\tau_i$ -Int(U)) is a (i,j)- \mathcal{I} -open set of Y. Since $f(\tau_i$ -Int(U)) $\subset f(U)$, $f(\tau_i$ -Int(U)) = (i,j)- \mathcal{I} Int($f(\tau_i$ -Int(U))) $\subset (i,j)$ - \mathcal{I} Int(f(U)). $(ii) \Rightarrow (iii)$: Let V be any subset of Y. Then $f^{-1}(V)$ is a subset of X. Hence $f(\tau_i\text{-Int}(f^{-1}(V))) \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(f(f^{-1}(V))) \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(V))$. Then $\tau_i\text{-Int}(f^{-1}(V)) \subset f^{-1}(f(\tau_i\text{-Int}(f^{-1}(V)))) \subset f^{-1}((i,j)\text{-}\mathcal{I}\operatorname{Int}(V))$. $(iii) \Rightarrow (i)$: Let U be any τ_i -open set of X. Then $\tau_i\text{-Int}(U) = U$ and f(U) is a subset of Y. Now, $V = \tau_i\text{-Int}(V) \subset \tau_i\text{-Int}(f^{-1}(f(V))) \subset f^{-1}((i,j)\text{-}\mathcal{I}\operatorname{Int}(f(V)))$. Then $f(V) \subset f(f^{-1}((i,j)\text{-}\mathcal{I}\operatorname{Int}(f(V)))) \subset (i,j)\text{-}\mathcal{I}\operatorname{Int}(f(V))$ and $(i,j)\text{-}\mathcal{I}\operatorname{Int}(f(V)) \subset f(V)$. Hence f(V) is a (i,j)- \mathcal{I} -open set of Y; hence f is pairwise \mathcal{I} -open. \square **Theorem 4.8.** Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise \mathcal{I} -closed function if and only if for each subset V of X, (i, j)- \mathcal{I} $Cl(f(V)) \subset f(\tau_i Cl(V))$. Proof. Let f be a pairwise \mathcal{I} -closed function and V any subset of X. Then $f(V) \subset f(\tau_i\text{-Cl}(V))$ and $f(\tau_i\text{-Cl}(V))$ is a (i,j)- \mathcal{I} -closed set of Y. We have (i,j)- \mathcal{I} Cl $(f(V)) \subset (i,j)$ - \mathcal{I} Cl $(f(\tau_i\text{-Cl}(V))) = f(\tau_i\text{-Cl}(V))$. Conversely, let V be a τ_i -open set of X. Then $f(V) \subset (i,j)$ - \mathcal{I} Cl $(f(V)) \subset f(\tau_i\text{-Cl}(V)) = f(V)$; hence f(V) is a (i,j)- \mathcal{I} -closed subset of Y. Therefore, f is a pairwise \mathcal{I} -closed function. \square **Theorem 4.9.** Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2, \mathcal{I})$ be a function. Then f is a pairwise \mathcal{I} -closed function if and only if for each subset V of Y, $f^{-1}((i, j) - \mathcal{I}\operatorname{Cl}(V)) \subset \tau_i - \operatorname{Cl}(f^{-1}(V))$. Proof. Let V be any subset of Y. Then by Theorem 4.8, (i, j)- \mathcal{I} Cl(V) ⊂ $f(\tau_i$ -Cl($f^{-1}(V)$)). Since f is bijection, $f^{-1}((i, j)$ - \mathcal{I} Cl(V)) = $f^{-1}((i, j)$ - \mathcal{I} Cl($f(f^{-1}(V))$)) ⊂ $f^{-1}(f(\tau_i$ -Cl($f^{-1}(V)$))) = τ_i -Cl($f^{-1}(V)$). Conversely, let U be any subset of X. Since f is bijection, (i, j)- \mathcal{I} Cl(f(U)) = $f(f^{-1}((i, j)$ - \mathcal{I} Cl(f(U))) ⊂ $f(\tau_i$ -Cl($f^{-1}(f(U))$)) = $f(\tau_i$ -Cl(U)). Therefore, by Theorem 4.8, f is a pairwise \mathcal{I} -closed function. **Theorem 4.10.** Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ be a pairwise \mathcal{I} open function. If V is a subset of Y and U is a τ_i -closed subset of X containing $f^{-1}(V)$, then there exists a (i,j)- \mathcal{I} -closed set F of Y containing V such that $f^{-1}(F)\subset U$. Proof. Let V be any subset of Y and U a τ_i -closed subset of X containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{-1}(X \setminus V)) \subset X \setminus V$ and $X \setminus U$ is a τ_i -open set of X. Since f is pairwise \mathcal{I} -open, $f(X \setminus U)$ is a (i, j)- \mathcal{I} -open set of Y. Hence F is an (i, j)- \mathcal{I} -closed set of Y and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$. **Theorem 4.11.** Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2,\mathcal{I})$ be a pairwise \mathcal{I} -closed function. If V is a subset of Y and U is a open subset of X containing $f^{-1}(V)$, then there exists (i,j)- \mathcal{I} -open set F of Y containing V such that $f^{-1}(F)\subset U$. *Proof.* The proof is similar to the Theorem 4.10. \Box #### References - [1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1992), 21-30. - [2] F. G. Arenas, J. Dontchev, M. L. Puertas, *Idealization of some weak separation axioms*, Acta Math. Hungar. 89 (2000), no. 1-2, 47-53. - [3] S. Bose, Semiopen sets, semi continuity and semiopen mappings in bitopological spaces, Bull. Cal. Math. Soc., 73(1981), 237-246. - [4] M. Caldas, S. Jafari and N. Rajesh, Preopen sets in ideal Bitopological spaces, Bol. Soc. Parana. Mat. (3) 29 (2011), no. 2, 61-68. - [5] M. Caldas, S. Jafari and N. Rajesh, Some fundamental properties of β -open sets in ideal bitopological spaces, Eur. J. Pure Appl. Math. 6 (2013), no. 2, 247-255. - [6] A. I. El-Maghrabi, M. Caldas, S. Jafari, R. M. Latif, A. Nasef, N. Rajesh and S. Shanthi, Properties of ideal bitopological α-open sets, Dedicated to Prof. Valeriu Popa on the occasion of his 80th birthday, Journal of scientific studies and research series, Mathematics and Informatics, Romania (to appear) - [7] J. Dontchev, M. Ganster, On compactness with respect to countable extensions of ideals and the generalized Banach category theorem, Third Iberoamerican Conference on Topology and its Applications (Valencia, 1999). Acta Math. Hungar. 88 (2000), no. 1-2, 53-58. - [8] J. Dontchev, M. Ganster and T. Noiri, *Unified operation approach of generalized closed sets via topological ideals*, Math. Japonica 49 (3) (1999), 395-401. - [9] J. Dontchev, M. Ganster and D. Rose, *Ideal Resolvability*, Topology Appl. 93 (1999), 1-16. - [10] D. N. Georgiou and B. K. Papadopoulos, *Ideals and its [their] applications*, J. Inst. Math. Comput. Sci. Math. Ser. 9 (1996), no. 1, 105-117. - [11] D. N. Georgiou, S. D. Iliadis, A. C. Megaritis, G. A. Prinos, *Ideal-convergence classes*, Topology Appl. 222 (2017), 217-226. - [12] T. R. Hamlett and D. Janković, *Ideals in topological spaces and the set operator*, Boll. U.M.I., 7(1990), 863-874. - [13] T. R. Hamlett and D. Janković, *Ideals in General Topology, General Topology and Applications*, (Middletown, CT, 1988), 115-125; SE: Lecture Notes in Pure & Appl. Math., 123(1990), Dekker, New York. - [14] E. Hatir, A. Al-omari, S. Jafari, δ-local function and its properties in ideal topological spaces, Fasc. Math. No. 53 (2014), 53-64. - [15] S. Jafari, A. Selvakumar, M. Parimala, Operation approach of g*-closed sets in ideal topological spaces, An. Univ. Oradea Fasc. Mat. 22 (2015), no. 1, 119-123. - [16] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Sci., 3(1990), 25-29. - [17] D. Jankovićc and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310. - [18] D. Jankovićc and T. R. Hamlett, Compatible extensions of ideals, Boll. U.M.I., 7(6-B)(1992), 453-465. - [19] K. Kuratowski, Topology, Academic semiss, New York, (1966). - [20] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41. - [21] F. I. Michael, On semiopen sets with respect to an ideal, European. J. Pure and Applied Math. 6(1)(2013), 53-58. - [22] T. Noiri, M. Rajamani, M. Maheswari, A decomposition of pairwise continuity via ideals, Bol. Soc. Parana. Mat. (3) 34 (2016), no. 1, 141-149. - [23] H. Maki, Jun-Iti Umehara, *Topological ideals and operations*, Questions Answers Gen. Topology 29 (2011), no. 1, 57-71. - [24] R. Vaidyanathaswamy, The localisation theory in set topology, *Proc. Indian Acad. Sci.*, **20**(1945), 51-61. DEPARTAMENTO DE MATEMATICA APLICADA, UNIVERSIDADE FEDERAL FLUMINENSE,, RUA MARIO SANTOS BRAGA, S/N, 24020-140, NITEROI, RJ BRASIL *E-mail address*: gmamccs@vm.uff.br College of Vestsjaelland South, Herrestraede, 11, 4200 Slagelse, Denmark E-mail address: jafaripersia@gmail.com DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA. E-mail address: nrajesh_topology@yahoo.co.in MATHEMATICS & SCIENCE DEPARTMENT, UNIVERSITY OF NEW MAXICO,, 705 GURLEY AVE, GALLUP, NM 87301, USA. $E ext{-}mail\ address: fsmarandache@gmail.com}$