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application of our similarity measures in solv

Finally, we take an illustrative example from [14] to apply the proposed decision making method. We use the 

distance as well as the similarity measures between each alternative and ideal alternativ

order and also to find the best alternative. We compare the obtained results with the existing result in [14] and 

also reveal the best distance and similarity measure to find the best alternative and also point out the best 

alternative. 
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1. Introduction 

“As far as the laws of Mathematics refer to reality, they are not certain; and as far they are 

certain, they do not refer to reality.” 

phenomenon in our daily life;

of uncertainties. From centuries, numerous theories have been developed in both Science 

and Philosophy to understand and

and stochastic techniques are such theories, which were developed in early eighteenth 

century and probability was the sole technique to handle a certain type of uncertainty called 

Randomness. But there are several other kinds of uncertainties, such as vagueness, 

imprecision, cloudiness, haziness, ambiguity, variety etc. It is generally agreed that the 

most important invention in the evolution of the concept of u

in 1965, when he coined the theory of Fuzzy sets [17], which was a remarkable step to deal 

with such types of uncertainties, though some ideas presented by him, were borrowed from 

the envisions of American philosopher Max Black 
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An Interval Neutrosophic set (INS) is an instance of a Neutrosophic set and also an emerging tool 

for uncertain data processing in real scientific and engineering applications. In this paper, several distance and 

similarity measures between two Interval Neutrosophic sets have been discussed. Distances and similarities 

are very useful techniques to determine interacting segments in a data set. Here we have also shown an 

application of our similarity measures in solving a multicriteria decision making method based on INS’s. 

Finally, we take an illustrative example from [14] to apply the proposed decision making method. We use the 

distance as well as the similarity measures between each alternative and ideal alternativ

order and also to find the best alternative. We compare the obtained results with the existing result in [14] and 

also reveal the best distance and similarity measure to find the best alternative and also point out the best 

Interval Neutrosophic Set, Distance, Similarity Measure, Multicriteria Decision Making.

“As far as the laws of Mathematics refer to reality, they are not certain; and as far they are 

certain, they do not refer to reality.” – Albert Einstein. Uncertainty is a common 

life; because in our real or daily life we have to take account a lot 

of uncertainties. From centuries, numerous theories have been developed in both Science 

and Philosophy to understand and represent the features of uncertainty. Probability theory 

and stochastic techniques are such theories, which were developed in early eighteenth 

century and probability was the sole technique to handle a certain type of uncertainty called 

here are several other kinds of uncertainties, such as vagueness, 

imprecision, cloudiness, haziness, ambiguity, variety etc. It is generally agreed that the 

most important invention in the evolution of the concept of uncertainty was made by 

when he coined the theory of Fuzzy sets [17], which was a remarkable step to deal 

with such types of uncertainties, though some ideas presented by him, were borrowed from 

the envisions of American philosopher Max Black (1937). In his theory, Zadeh introduc
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An Interval Neutrosophic set (INS) is an instance of a Neutrosophic set and also an emerging tool 

for uncertain data processing in real scientific and engineering applications. In this paper, several distance and 

similarity measures between two Interval Neutrosophic sets have been discussed. Distances and similarities 

are very useful techniques to determine interacting segments in a data set. Here we have also shown an 

ing a multicriteria decision making method based on INS’s. 

Finally, we take an illustrative example from [14] to apply the proposed decision making method. We use the 

distance as well as the similarity measures between each alternative and ideal alternative to form a ranking 

order and also to find the best alternative. We compare the obtained results with the existing result in [14] and 

also reveal the best distance and similarity measure to find the best alternative and also point out the best 

Interval Neutrosophic Set, Distance, Similarity Measure, Multicriteria Decision Making. 

“As far as the laws of Mathematics refer to reality, they are not certain; and as far they are 

Albert Einstein. Uncertainty is a common 

because in our real or daily life we have to take account a lot 

of uncertainties. From centuries, numerous theories have been developed in both Science 

represent the features of uncertainty. Probability theory 

and stochastic techniques are such theories, which were developed in early eighteenth 

century and probability was the sole technique to handle a certain type of uncertainty called 

here are several other kinds of uncertainties, such as vagueness, 

imprecision, cloudiness, haziness, ambiguity, variety etc. It is generally agreed that the 

ncertainty was made by Zadeh 

when he coined the theory of Fuzzy sets [17], which was a remarkable step to deal 

with such types of uncertainties, though some ideas presented by him, were borrowed from 

. In his theory, Zadeh introduced 
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the fuzzy sets, which have imprecise boundaries. When A is a fuzzy set and x is an object 

of A, then the statement ‘ x is a member of A’ is not only either true or false as in crisp sets, 

but also it is true only to some degree to which x is actually a member of A. The 

membership degrees are within the closed interval [0,1].  Later, this theory leads to a highly 

commendable theory of Fuzzy logic, which was applied to engineering such as washing 

machine or shifting gears of cars with great efficiency. After Zadeh’s invention of Fuzzy 

sets, many other concepts began to develop. In 1986, K. Atanassov [1], introduced the idea 

of Intuitionistic fuzzy sets (IFS), which is a generalization of Fuzzy sets. The IFS is a set 

with each member having a degree of belongingness and a degree of non-belongingness as 

well. There is a restriction that sum of the membership grade and non-membership grade of 

an element is less or equal to 1. IFS is quite useful to deal with applications like expert 

systems, information fusion etc., where ‘degree of non belongingness’ of an object is 

equally important as the ‘degree of belongingness’. Besides IFS, there are other 

generalizations of Fuzzy sets and intuitionistic fuzzy sets like L-Fuzzy sets, interval valued 

fuzzy sets, intuitionistic L-Fuzzy sets, interval valued intuitionistic fuzzy sets [11,2] etc. 

                 

In 1995, Smarandache [9, 10], introduced a more generalized tool to handle Uncertainty, 

called as Neutrosophic logic and sets. It is a logic, in which each proposition has a degree 

of truth (T), a degree of indeterminacy (I), and a degree of falsity (F). Also an element x in 

a Neutrosophic set (NS) X has a truth membership, an indeterminacy membership and a 

falsity membership, which are independent and which lies between [0, 1], and sum of them 

is less or equal to 3. Thus Neutrosophic set is a generalization of fuzzy set [17], interval 

valued fuzzy set [11], intuitionistic fuzzy set [1], interval valued intuitionistic fuzzy set [2], 

paraconsistent set [9], dialetheist set [9], paradoxist set [9] and tautological set [9]. Though 

the NS generalized the above mentioned sets, but the generalization was only from 

philosophical point of view. For application in engineering and other areas of science, NS 

needed to be more specific. Further Wang et. al., in 2005, developed an instance of NS, 

called as single valued Neutrosophic sets (SVNS) [13]. Later they have also introduced the 

notion of Interval valued neutrosophic sets (INS) [12]. The INS is more capable to handle 

the uncertain, imprecise, incomplete and inconsistent information that exist in real world. 

In INS, the degree of truth, indeterminacy and falsity membership of an object are 

expressed in closed subintervals of [0, 1].          

 

In many problems, it is often needed to compare two sets, which may be fuzzy, 

intuitionistic fuzzy, vague etc. We are often interested to reveal the similarity or the least 

degree of similarity of two images or patterns. Distance and similarity measures are the 

efficient tools to do this. Many authors have done extensive research regarding distance 

and similarity of fuzzy and intuitionistic fuzzy sets and their interval valued versions [7, 8, 

15, 16]. Similarity measures are also a very good tool for solving many decision making 

problems. The notion of distance and similarity was first introduced in [5,6]. Later Broumi 

et. al. [3] has defined several other similarity measures on Single valued neutrosophic sets. 

The notion of similarity of INS is introduced in [4, 14].This paper also deals with distance 

and similarity of Interval neutrosophic sets.  However, in this article, our motive is to 

establish the best suitable distance and similarity measures by comparing the numerical 

value of various distances and similarities between two INSs. We are to also point out the 

best alternative, similar to the ideal alternative in the decision making problem stated and 

solved by Jun Ye [14], by comparing numerical values of distances and similarities of each 

alternative with the ideal alternative and also comparing with the existing results [14]. 
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The organization of the rest of this paper is as follows: In section 2, definitions of Fuzzy 

set, Intuitionistic Fuzzy set, Neutrosophic Set (NS) and Interval valued Neutrosophic set 

(INS) are given and some operations on NS and INS have been defined and also Set 

theoretic properties on INS are also given. Several distances and Similarities on INSs are 

defined in section 3 and 4. A decision making method is established in Interval 

Neutrosophic setting by means of distance and similarity measures between each 

alternative and ideal alternative in section 5. In section 6, an illustrative example is adapted 

from [14], to illustrate the proposed method. Finally a comparative study has been made 

with the existing results in section 7 and at last section 8 concludes the article.   

 

 

2. Preliminaries  
 

In this section, we give some useful definitions, examples and results which will be used in 

the rest of this paper. 

 

Definition 2.1 (Type I Fuzzy set) If X is a collection of objects denoted by x, then a fuzzy 

set (or type I fuzzy set) A in X is a set of ordered pairs:  {( ( )) | } where ,
A

x x x XA µ ∈=
 

A
µ ( x ) is called the membership function or grade of membership (also degree of 

compatibility or degree of truth) of  x in A that maps X  to the membership space, i.e.

: [0,1]
A

X Mµ → = . A becomes a crisp set when M contains only two points 0 and 1and 
A

µ  

is the characteristic function 
A

χ  of  A. 

 

Example 2.2 As an illustration, consider the following example. Let, the set ‘P’ is the set 

of people. To each person in ‘P’ we have to assign a degree of membership in the fuzzy 

subset YOUTH, which is defined as follows: 

 

( ) ( )

( )( ) ( )

( )

Youth    1,   20,

40  / 20,   20   40,

0,     40

{

} 

x if age x

age x if age x

if age x

≤

>

≤=

− <

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the set YOUTH is a fuzzy set of type I or an ordinary fuzzy set. 
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Definition 2.3 (Intuitionistic fuzzy set) Intuitionistic fuzzy sets generalize fuzzy sets, since 

with membership function μ, a non-membership function ν  is also introduced for each 

object in it. 

 

Let us have a fixed universe X. Let A ⊆ X. Let us construct the set: 

 

* {( , ( ), ( )) | & 0 ( ) ( ) 1}
A A A A

A x x x x X x xµ ν µ ν= ∈ ≤ + ≤
 

 

where : [0,1]
A

Xµ → , A
ν : [0,1]X →  and x X∀ ∈ .We call the set A* intuitionistic fuzzy 

set (IFS).  

 

Example 2.4 Let us illustrate the concept of IFS by an example as follows: Let X be the set 

of all Secondary schools in a district. We assume that, for every school x ∈ X, the number 

of students qualified in the final exam is known and say it is P(x). Let,  

 

( )
( )

( )X

P x
x

total number of students
µ =  

 

Take ( ) 1 ( )
X X

x xν µ= − , which indicates the part of students couldn’t qualify the exam. By 

Fuzzy set theory, we cannot obtain that how many students have not given the exam. But, if 

we take ( )
X

xν  as the number of students failed to qualify the exam, then we can easily 

obtain the part of the students, have not given the exam at all and the value will be 

1 ( ) ( )
X X

x xµ ν− − . Thus we construct the IFS, {( , ( ), ( )) : }
X X

x x x x Xµ ν ∈ and obviously 

0 ( ) ( ) 1
X X

x xµ ν≤ + ≤
 

 

Definition 2.5 (Neutrosophic set) Neutrosophic sets (NS) further generalizes the IFS. As in 

NS, the indeterminacy is explicitly defined and also the truth membership, falsity 

membership and indeterminacy membership are beyond any restriction. Let X  be a 

collection of objects denoted by x. A Neutrosophic set A in X is characterized by a truth 

membership function TA, an Indeterminacy membership function IA and a falsity 

membership function FA, where, 

 

TA(x), IA(x) and FA(x) : [0,1]X →  and 0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3. 

 

The NS A in X can be denoted as { , ( ), ( ), ( ) : }
A A A

A x T x I x F x x X= ∈
 

 

Example 2.6 If x1 be an element of a set A and if we take the probability of  x1 in A is 60%, 

probability of x1 not in A is 20% and probability of x1 in A is undetermined is 10%, then 

the NS can be denoted as x1(0.6,0.1,0.2). Also to generalize the example, Take X be the set 

of ‘rainy days’. Consider A be the set “today it will rain heavily.” Let according to an 

observer x1, probability of heavy raining is 80%, that of not raining is 10%, and also the 

indeterminacy is 10%. According to another observer x2 , those probabilities are 40%, 50% 

and 10% respectively. Then NS A in X can be denoted as follows: 

 

1 20.8,0.1,0.1 / 0.4,0.1,0.5 /A x x= +
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Definition 2.7(Interval Neutrosophic set) Let X be a space of objects, whose elements are 

denoted by x. An INS A in X is characterized by a truth-membership function. TA(x), an 

indeterminacy-membership function IA(x) and a falsity-membership function FA(x). For 

each point x in X, we have: 

 

( ) [inf ( ),sup ( )] [0,1],

( ) [inf ( ),sup ( )] [0,1],

( ) [inf ( ),sup ( )] [0,1]

A A A

A A A

A A A

T x T x T x

I x I x I x

F x F x F x

= ⊆

= ⊆

= ⊆

 

and 

0 sup ( ) sup ( ) sup ( ) 3,
A A A

T x I x F x x X≤ + + ≤ ∀ ∈
.
 

 
When X is continuous, an INS A can be written as : 

 

( ), ( ), ( ) ,
X

A T x I x F x x x X= ∈  

 

When X is discrete, an INS A can be written as : 

 

1

( ), ( ), ( ) ,
n

i i i i i

i

A T x I x F x x x X
=

= ∈  

 
Example 2.8 For example, Assume that  x1 is quality,  x2 is trustworthiness and  x3 is price 

of a book. The values of x1, x2and x3 are in [0, 1]. They are obtained from some 

questionnaires, having options as ‘degree of good’, ‘degree of indeterminacy’ and ‘degree 

of bad’. Take A and B are interval neutrosophic sets of X defined as: 

 

1 2

3

[0.1,0.3],[0,0.2],[0.5,0.7] / [0.4,0.5],[0.1,0.2],[0.6,0.7] /

[0.7,0.8],[0,0.3],[0.1,0.2] /

A x x

x

= + +

 
 

1 2

3

[0.2,0.4],[0.1,0.3],[0.6,0.8] [0.7,0.9],[0.4,0.6],[0.2,0.4]

[0.3,0.5],[0.2,0.4],[0.1,0.3]

B x x

x

= + +

  

 

Some operations on Neutrosophic sets 
 

Definition 2.9  

 

(i) Complement: Let A be a Neutrosophic set. Then complement of A is denoted by c
A

or A and is defined by  

 

( ) ( ), ( ) 1 ( ), ( ) ( ),
A A AA A A

T x F x I x I x F x T x x X= = − = ∀ ∈
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(ii)  Containment: A NS A is contained in the other NS B, denoted as A B⊆ , if and 

only if: 

T (x)  T (x) ; I (x)  I (x) ; F (x)  F (x) ; x X
A B A B A B

≤ ≥ ≥ ∈
 

 

(iii) Union: The union of two NS A and B is a NS C, written as C A B= ∪ , whose truth-

membership, indeterminacy-membership and falsity membership functions are 

related to those of A and B by: 

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

C A B

C A B

C A B

T x T x T x

I x I x I x

F x F x F x x X

= ∨

= ∧

= ∧ ∀ ∈
 

 

(iv) Intersection: The intersection of two NS A and B is a NS C, denoted as C=A∩B, 

whose truth-membership, indeterminacy-membership and falsity membership 

functions are related to those of A and B by: 

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

C A B

C A B

C A B

T x T x T x

I x I x I x

F x F x F x x X

= ∧

= ∨

= ∨ ∀ ∈
 

 

 

Some operations on Interval Neutrosophic set 
 

The notion of IVNS was defined by Wang et. al. [13]. Here we give some definitions and 

examples of IVNS 

 

Definition 2.10 (Complement): Let A be an Interval Neutrosophic set. Then complement 

of A is denoted by 
c

A or A  and is defined by: 

 
( ) ( ),

inf ( ) 1 sup ( ),

sup ( ) 1 inf ( ),

( ) ( )

AA

AA

AA

AA

T x F x

I x I x

I x I x

F x T x

=

= −

= −

=

 

 
Example 2.11 Let A be the interval valued Neutrosophic set defined in example 2.8. Then 

 

1

2

3

[0.5,0.7],[0.8,1.0],[0.1,0.3]

[0.6,0.7],[0.8,0.9],[0.4,0.5

[0.1,0.2],[0.7,1.0],[0.7,0.8]

A x

x

x

= +

+  

 

Definition 2.12 (Containment) A INS A is contained in the other INS B, denoted as

A B⊆ , if and only if: 
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inf T (x)  inf T (x) , sup T (x)  sup T (x);

inf I (x)  inf I (x) , sup I (x)  sup I (x);

inf F (x)  inf F (x) , supF (x)  supF (x);  x X

A B A B

A B A B

A B A B

≤ ≤

≥ ≥

≥ ≥ ∀ ∈
 

 

Two interval neutrosophic sets A and B are equal, written as A = B, if and only if A B⊆  

and B A⊆  
 

Example 2.13 Let A and B be two INS defined in example 3.1.4, then it can be easily 

observed that those INSs do not satisfy all the required properties for containment of A in 

B. So here A B⊄ . 

 

Definition 2.14 (Union): The union of two INS A and B is a INS C, written as C A B= ∪
, whose truth-membership, indeterminacy-membership and falsity membership functions 

are related to those of A and B by: 

 

 

 

 

 

 

 

 

 

 

Example 2.15: Consider two INS A and B defined in example 2.8. Then their union  

C =A∪B is 

 

 

 

 

Definition 2.16 (Intersection) The intersection of two INS A and B is a INS C, denoted as 

C=A∩B, whose truth-membership, indeterminacy-membership and falsity membership 

functions are related to those of A and B by: 

 

inf T (x) = min(inf T (x), inf T (x)),

sup T (x) = min(sup T (x), sup T (x)),

inf I (x) = max(inf I (x), inf I (x)),

sup I (x) = max(sup I (x), sup I (x)),

inf F (x) = max(inf F (x), inf F (x)),

sup F (x) 

C A B

C A B

C A B

C A B

C A B

C = max(supF (x), sup F (x)), x XA B ∀ ∈

 
Example 2.17 Take A and B be two INS defined in example 2.8. Then their intersection 

C=A∩B is as follows: 

1 2

3

[0.2,0.4],[0,0.2],[0.5,0.7] [0.7,0.9],[0.1,0.2],[0.2,0.4]

[0.7,0.8],[0,0.3],[0.1,0.2]

C x x

x

= + +

inf T (x) = max(inf T (x), inf T (x)),

sup T (x) = max(sup T (x), sup T (x)),

inf I (x) = min(inf I (x), inf I (x)),

sup I (x) = min(sup I (x), sup I (x)),

inf F (x) = min(inf F (x), inf F (x)),

sup F (x) 

C A B

C A B

C A B

C A B

C A B

C = min(supF (x), sup F (x)), x XA B ∀ ∈
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1

2

3

[0.1,0.3],[0.1,0.3],[0.6,0.8]

[0.4,0.5],[0.4,0.6],[0.6,0.7]

[0.3,0.5],[0.2,0.4],[0.1,0.3]

C x

x

x

= +

+

 
 

 

Set theoretical properties 
 

Here we will give some properties of set-theoretic operators defined on interval 

neutrosophic sets. 

  

Let, A, B and C be three INSs. Then the properties satisfied by A, B and C are as follows: 

 

Property 1 (Commutativity) 
 

A B B A

A B B A

∪ = ∪

∩ = ∩  

Property 2 (Associativity) 
 

             

( ) ( )

( ) ( )

A B C A B C

A B C A B C

∪ ∪ = ∪ ∪

∩ ∩ = ∩ ∩  

Property 3 (Distributivity) 
 

             

( ) ( ) ( )

( ) ( ) ( )

A B C A B A C

A B C A B A C

∪ ∩ = ∪ ∩ ∪

∩ ∪ = ∩ ∪ ∩
 

 

Property 4 (Idempotency) 

 

            
, .A A A A A A∪ = ∩ =  

 

Property 5 , ,A A X X∩Φ = Φ ∪ = Where Φ and X  are respectively Null set and 

absolute INS defined below: 

 

inf sup 0,

inf sup inf sup 1,

inf sup 1,

inf sup inf sup 0

X X

X X X X

T T

I I F F

T T

I I F F

Φ Φ

Φ Φ Φ Φ

= =

= = = =

= =

= = = =

 

 

Property 6 

 

, ,A A A X A∪ Φ = ∩ = Where Φ and X  are defined above. 
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Property 7 (Absorption) 

 

( ) , ( )A A B A A A B A∪ ∩ = ∩ ∪ =  

 

Property8 (Involution)  

 

A A=  
 

Here, we notice that by the definitions of complement, union and intersection of interval 

neutrosophic set as defined previously, INS satisfies the most properties of crisp set, fuzzy 

set and intuitionistic fuzzy set. Also, it does not satisfy the principle of excluded middle, 

same as fuzzy set and intuitionistic fuzzy set. 

 

 

3. Distance Measure 
 

In this section, we investigate several distance measures for two INS’s A and B. Also, we 

take the weights of the element xi (i= 1, 2,….,n) into account. In the following, we consider 

some weighted distance measures between INSs. For this we take w={w1,w2,….,wn} as the 

weight vector of the element xi (i =1,2,….,n) and also [0,1], 1, 2,.....,
i

w i n∈ ∀ = .We adopt 

some distance and similarity measures from [15] and extend those in INS setting as 

follows: 

 

a. Hamming Distance :         

1

1

1
( , ) [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) |]

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −



 

b. Normalized Hamming Distance :  

2

1

1
( , ) [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) |]

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −


 

 

c. Euclidean distance : 

1
2

2 2

3

1

2 2

2 2

1
( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) | ]}

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −


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d. Normalized Euclidean distance : 

1
2

2 2

4

1

2 2

2 2

1
( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) | ]}

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −



 

e. Hausdroff distance : 

5

1

m a x [| in f ( ) in f ( ) |, | su p ( ) su p ( ) |,( , )

| in f ( ) in f ( ) |, | su p ( ) su p ( ) |,

| in f ( ) in f ( ) |, | su p ( ) su p ( ) |]

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

T x T x T x T xd A B

I x I x I x I x

F x F x F x F x

=

− −=

− −

− −


 

 

f. Normalized Hausdroff distance : 

6

1

1
( , ) m a x [ | in f ( ) in f ( ) |, | s u p ( ) s u p ( ) |,

| in f ( ) in f ( ) |, | s u p ( ) s u p ( ) |,

| in f ( ) in f ( ) |, | s u p ( ) s u p ( ) |]

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −


 

g. Weighted Hamming Distance : 

7

1

1
( , ) [| in f ( ) in f ( ) | | sup ( ) sup ( ) |

6

| in f ( ) in f ( ) | | sup ( ) sup ( ) |

| in f ( ) in f ( ) | | sup ( ) sup ( ) |]

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −



 
 

h. Weighted normalized Hamming distance : 

8

1

1
( , ) [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) |]

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −



 
 

i. Weighted Euclidean distance : 

1
2

2 2

9

1

2 2

2 2

1
( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) | ]}

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −


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j. Weighted normalized Euclidean distance 

1
2

2 2

10

1

2 2

2 2

1
( , ) { [| in f ( ) in f ( ) | | sup ( ) sup ( ) |

6

| in f ( ) in f ( ) | | sup ( ) sup ( ) |

| in f ( ) inf ( ) | | sup ( ) sup ( ) | ]}

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − + − +

− + − +

− + −



 
 

k. Weighted Hausdroff distance : 

11

1

( , ) m ax[| inf ( ) inf ( ) |, | sup ( ) sup ( ) |,

| inf ( ) inf ( ) |, | sup ( ) sup ( ) |,

| inf ( ) inf ( ) |, | sup ( ) sup ( ) |]

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −



 
 

l. Weighted normalized Hausdroff distance: 

12

1

1
( , ) m ax[| inf ( ) inf ( ) |, | sup ( ) sup ( ) |,

| in f ( ) inf ( ) |, | sup ( ) sup ( ) |,

| in f ( ) in f ( ) |, | sup ( ) sup ( ) |]

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −



 
 

m.   Euclidean Hausdroff distance : 

1
2

2 2

1 3

1

2 2

2 2

( , ) { m ax [| in f ( ) in f ( ) | , | su p ( ) su p ( ) | ,

| in f ( ) in f ( ) | , | su p ( ) su p ( ) | ,

| in f ( ) in f ( ) | , | su p ( ) su p ( ) | ]}

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −



 

 

n. Weighted Euclidean Hausdroff distance : 

1
2

2 2

14

1

2 2

2 2

( , ) { m ax[| inf ( ) inf ( ) | , | sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | , | sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | , | sup ( ) sup ( ) | ]}

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −



 
 

o. Normalized Euclidean Hausdroff Distance : 

1
2

2 2

15

1

2 2

2 2

1
( , ) { m ax[| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ,

| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ,

| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ]}

n

A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −


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p. Normalized Weighted Euclidean Hausdroff Distance : 

1
2

2 2

16

1

2 2

2 2

1
( , ) { m ax[| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ,

| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ,

| in f ( ) in f ( ) | , | sup ( ) sup ( ) | ]}

n

i A i B i A i B i

i

A i B i A i B i

A i B i A i B i

d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x

=

= − −

− −

− −



 

 

Some other distances between two INS’s are given as follows 

We consider ‘p’ as a positive integer in the following. 

 

1

17

1

1
. ( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) |  ]} , 0p

n
p p

A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

q d A B T x T x T x T x

I x I x I x I x

F x F x F x F x p

=

= − + − +

− + − +

− + − ∀ >



 
 

1

18

1

1
. ( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup (  ) | ]} , 0p

n
p p

i A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

r d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x p

=

= − + − +

− + − +

− + − ∀ >



 
 

1

19

1

1
. ( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) | ]} 0 ,p

n
p p

A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

s d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x p

=

= − + − +

− + − +

− + − ∀ >



 

 

1

20

1

1
. ( , ) { [| inf ( ) inf ( ) | | sup ( ) sup ( ) |

6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |

| inf ( ) inf ( ) | | sup ( ) sup ( ) | ]} , 0 p

n
p p

i A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

t d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x p

=

= − + − +

− + − +

− + − ∀ >



 
 

1

21

1

. ( , ) { max[| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ]} , 0p

n
p p

A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

u d A B T x T x T x T x

I x I x I x I x

F x F x F x F x p

=

= − −

− −

− − ∀ >


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1

22

1

. ( , ) { max[| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ]} , 0p

n
p p

i A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

v d A B w T x T x T x T x

I x I x I x I x

F x F x F x F x p

=

= − −

− −

− − ∀ >



 

 

1

23

1

1
. ( , ) { max[| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ]} , 0p

n
p p

A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

w d A B T x T x T x T x
n

I x I x I x I x

F x F x F x F x p

=

= − −

− −

− − ∀ >



 
 

1

24

1

1
. ( , ) { max[| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ,

| inf ( ) inf ( ) | ,| sup ( ) sup ( ) | ]} , 0p

n
p p

i A i B i A i B i

i

p p

A i B i A i B i

p p

A i B i A i B i

x d A B w T x T x T x T x
n

I x I x I x I x

F x F x F x F x p

=

= − −

− −

− − ∀ >



 

 

 

Properties of Distance Measure 
 

The above defined distance ( , )
k

d A B (k=1, 2, 3, …)between INSs A and B satisfies the 

following properties (D1–D3) : 

 

D1: ( , ) 0
k

d A B ≥ ; 

D2: ( , ) 0kd A B = if and only if A=B 

D3: ( , ) ( , )
k k

d A B d B A= ; 

 

 It can be easily shown that the distances as defined above satisfy the said properties. 

 

 

4.  Algorithm 
 

Now we present an algorithm to solve a decision making problem in Interval Neutrosophic 

Sets by means of distance and similarity measures in INSs. 

Let { : 1,2,..., }
i

A i m=  be a set of alternatives and { : 1,2,..., }
j

C j n=  be a set of criteria. 

Assume that the weight of the criterion Cj is wj∈ [0,1] and 
1

1
n

j

j

w
=

= . In this case the INS 

Ai can be denoted as follows: 
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{ ,( ( ), ( ), ( )) : }
i i ii j A j A j A j jA C T C I C F C C C= ∈ , 

where  

( ) [inf ( ), sup ( )] [0,1],

( ) [inf ( ), sup ( )] [0,1],

( ) [inf ( ), sup ( )] [0,1],

i i i

i i i

i i i

A j A j A j

A j A j A j

A j A j A j

T C T C T C

I C I C I C

F C F C F C

= ∈

= ∈

= ∈

 

 

and 0 sup ( ) sup ( ) sup ( ) 3
i i iA j A j A jT C I C F C≤ + + ≤ , i=1,2,…,m and j=1,2,…,n. 

Now let us consider an INS denoted as: 

 

([ , ],[ , ],[ , ])ij ij ij ij ij ij ija b c d e fα =
 

 

where 

[ , ] [inf ( ), sup ( )],

[ , ] [inf ( ), sup ( )],

[ , ] [inf ( ), sup ( )]

i i

i i

i i

ij ij A j A j

ij ij A j A j

ij ij A j A j

a b T C T C

c d I C I C

e f F C F C

=

=

=

 

 

Now, an INS is derived from the evaluation of an alternative i
A with respect to a criterion 

Cj, by means of score law and data processing. Therefore, we can introduce an interval 

neutrosophic decision matrix D = ( )ij m nα × . 

 

The evaluation criteria are generally taken of two kinds, benefit criteria and cost criteria. 

Let B be a collection of benefit criteria and P be a collection of cost criteria. Then we 

define an ideal INS for a benefit criterion in the ideal alternative A* as: 

 
* * * * * * *([ , ],[ , ],[ , ]) ([1,1],[0,0],[0,0])j j j j j j ja b c d e fα = = for j ∈ B  

 

and for a cost criterion, we define the ideal alternative A
**

 as: 

 
** ** ** ** ** ** **([ , ],[ , ],[ , ]) ([0,0],[1,1],[1,1])j j j j j j ja b c d e fα = = for j ∈ P. 

 

Although, the ideal alternative doesn’t exist in real world, it is only used to identify the best 

alternative in decision set. 

 

Now if we denote the ideal alternative as the INS E, then by the distance measures 

( , )
k i

d E A , (i =1,2,….,m), (k=1,2,…,24) and the similarity measures ( , )
k i

s E A , 

(i=1,2,….,m), (k=1,2,…,21) (as defined in previous section), between each alternative i
A

and the ideal alternative E (For benefit criteria E =A
*
 and for cost criteria E =A

**
), the 

ranking order of all alternatives can be determined and the best one can be easily identified 

as well. 

 

 

 



Journal of New Theory 20 (2018) 27-47                                                                                                         41 
 

5. Problem 
 

To illustrate the above algorithm we take a multi-criteria decision making problem of 

alternatives to apply the proposed decision making method. 

 

We adapt the required problem from the article by Jun Ye [14], stated as follows: 

 

There is an investment company, which wants to invest a sum of money in the best option. 

There is a panel with four possible alternatives to invest the money:  

 

(1) A1 is a car company; (2) A2 is a food company; (3) A3 is a computer company; (4) A4 is 

an arms company.  

 

The investment company must take a decision according to the following three criteria:  

 

(1) C1 is the risk analysis; (2) C2 is the growth analysis; (3) C3 is the environmental impact 

analysis, where C1 and C2  are benefit criteria and C3 is a cost criterion. The weight vector 

of the criteria is given by :w = (0.35, 0.25, 0.40). The four possible alternatives are to be 

evaluated under the above three criteria by corresponding to the INSs, as shown in the 

following interval neutrosophic decision matrix D: 

 

[0.4,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.6],[0.1,0.3],[0.2,0.4] [0.7,0.9],[0.2,0.3],[0.4,0.5]

[0.6,0.7],[0.1,0.2],[0.2,0.3] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.3,0.6],[0.3,0.5],[0.8,0.9]

[0.3,0.6],[0.2,0.3],[0.3
D =

, 0.4] [0.5,0.6],[0.2,0.3],[0.3,0.4] [0.4,0.5],[0.2,0.4],[0.7,0.9]

[0.7,0.8],[0.0,0.1],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.1,0.3] [0.6,0.7],[0.3,0.4],[0.8,0.9]

 
 
 
 
 
  

 

Now we measure the distances and also the similarities between each alternative Ai  and the 

ideal alternatives E, as defined earlier. 

 

To calculate the Hamming distance between E and A1  we take : 

 

1 1

1 1

1 1

1 1

1

[| inf ( ) inf ( ) | | sup ( ) sup ( ) |
1

| inf ( ) inf ( ) | | sup ( ) sup ( ) |( , )
6

| inf ( ) inf ( ) | | sup ( ) sup ( ) |]

E i A i E i A i
n

E i A i E i A i

i

E i A i E i A i

T x T x T x T x

I x I x I x I xd E A

F x F x F x F x
=

− + − +

− + − +=

− + −


 

 

 

 =1/6[|1-0.4|+|1-0.5|+|0-0.2|+|0-0.3|+|0-0.3|+|0-0.4|+|1-0.4|+|1-0.6|+|0-0.1|+|0-0.3|+|0-

0.2|+|0-0.4|+|0-0.7|+|0-0.9|+|1-0.2|+|1-0.3|+|1-0.4|+|1-0.5|] =1.4167 

 

Similarly, 
1 2
( , ) 0.9d E A = , 

1 3( , ) 1.25d E A =  and 
1 4( , ) 0.86d E A = .  

 

In this way, the obtained results are presented in tabular form as follows: 
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For Distance measurement 

 

 

 

 

 

 

 

Distance 

  

Obtained  Results 

Rank of 

Alternatives 

(descending order) 

Best 

alternative 

obtained 

d1(E,Ai) 
A1 = 1.4167   A2 = 0.9 

A3 = 1.25       A4 = 0.86 
A 1 > A3> A2>A4 A4 

d2(E,Ai) 
A1 = 0.4722   A2 = 0.3 

A3 = 0.4167   A4 = 0.2867 
A 1 > A3> A2>A4 A4 

d3(E,Ai) 
A1 = 0.8990   A2 = 0.5916 

A3 = 0.7450   A4 = 0.6245 
A 1 > A3> A4>A2 A2 

 d4(E,Ai) 
A1 = 0.5190   A2 = 0.3416 

A3 = 0.4301   A4 = 0.3606 
A 1 > A3> A4>A2 A2 

 d5(E,Ai) 
A1 = 2.1         A2 = 1.5  

A3 = 2.0         A4 = 1.4 
A 1 > A3> A2>A4 A4 

d6(E,Ai) 
A1 = 0.7000   A2 = 0.5000 

A3 = 0.6667   A4 = 0.4667 
A 1 > A3> A2>A4 A4 

d7(E,Ai) 
A1 = 0.4975   A2 = 0.3100 

A3 = 0.4233   A4 = 0.3042 
A 1 > A3 > A2>A4 A4 

 

d8(E,Ai) 

A1 = 0.1658 A2 = 0.1033 

A3 = 0.1411 A4 = 0.1014 
A 1 > A3 > A2>A4 A4 

d9(E,Ai) 
A1 = 0.5428  A2 = 0.3545 

A3 = 0.4401  A4 = 0.3800 
A 1 > A3 > A4>A2 A2 

d10(E,Ai) 
A1 = 0.3134 A2 = 0.2047 

A3 = 0.2541 A4 = 0.2194 
A 1 > A3 > A4>A2 A2 

d11(E,Ai) 
A1 = 0.7200  A2 = 0.5200 

A3 = 0.6900  A4 = 0.4850 
A 1 > A3 > A2>A4 A4 

d12(E,Ai) 
A1 = 0.2400  A2 = 0.1733 

A3 = 0.2300  A4 = 0.1617 
A 1 > A3 > A2>A4 A4 

d13(E,Ai) 
A1 = 1.2369  A2 = 0.9000 

A3 = 1.1747  A4 = 0.8602 
A 1 > A3 > A2>A4 A4 

d14(E,Ai) 
A1 = 0.7348  A2 = 0.5404 

A3 = 0.7000  A4 = 0.5172 
A 1 > A3> A2>A4 A4 

 

d15(E,Ai) 

A1 = 0.7141  A2 = 0.5196 

A3 = 0.6782  A4 = 0.4966 
A 1 > A3> A2>A4 A4 

 

d16(E,Ai) 

A1 = 0.4242  A2 = 0.3120 

A3 = 0.4041  A4 = 0.2986 
A 1 > A3> A2>A4 A4 

d17(E,Ai) 

For p = 6 

A1 = 0.033700  A2 = 0.005336 

A3 = 0.013387  A4 = 0.009309 

A 1 > A3 > A4>A2 A2 

For p = 10 

A1 = 0.00888288  A2 = 0.00059184 

A3 = 0.00240292  A4 = 0.00114518 

A 1 > A3 > A4>A2 A2 
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Distance 
    Obtained 

     Results 

Rank of Alternatives 

(descending order) 

Best     

alternative 

obtained 

d18(E,Ai) 

For p = 6 

A1 = 0.01317057 A2 = 0.00210276 

A3 = 0.00524945 A4 = 0.00624732 

A 1 > A4 > A3>A2 A2 

For p = 10 

A1 = 0.00353154 A2 = 0.00023634 

A3 = 0.00093445 A4 = 0.00045777 

A 1 > A3 > A4>A2 A2 

 

 

 d19(E, Ai) 

 

 

  

For p = 6 

A1 = 0.06740000 A2 = 0.01067160 

A3 = 0.02677516 A4 = 0.01861966 

A 1 > A3 > A4>A2  A2 

For p = 10 

A1 = 0.02960961 A2 = 0.00197280 

A3 = 0.00800974 A4 = 0.00381729 

A 1 > A3 > A4>A2  A2 

d20(E, Ai) 

For p =6 

A1 = 0.02634115 A2 = 0.00420552 

A3 = 0.01049890 A4 = 0.01249464 

A 1 > A4 > A3>A2 A2 

For p = 10 

A1 = 0.01177182 A2 = 0.00078782 

A3 = 0.00311483A4 = 0.00152592 

A 1 > A3 > A4>A2 A2 

d21(E, Ai) 

For p = 6 

A1 = 0.1041255   A2 = 0.0209735 

A3 = 0.0659030    A4 = 0.0204123 

A 1 > A3 > A2>A4  A4 

For p = 10 

A1=0.03607716  A2 = 0.00284572 

A3 =0.01365982  A4 = 0.00283582 

 

A 1 > A3 > A >A4 
 A4 

d22(E, Ai) 

For p = 6 

A1 = 0.0400950 A2 = 0.0082528 

A3 = 0.0249901 A4 = 0.0080200 

A 1 > A3 > A2>A4  A4 

For p =10 

A1 = 0.4975 A2 = 0.3100 

A3 = 0.4233  A4 = 0.3042 

A 1 > A2 > A3>A4 A4 

 

d23(E, Ai) 

For p = 6 

A1 = 0.208251 A2 = 0.041947 

A3 = 0.131806 A4 = 0.040824 

A 1 > A3 > A2>A4 A4 

For p = 10 

A1 = 0.208251 A2 = 0.041947 

A3 = 0.131806  A4 = 0.040824 

A 1 > A3 > A2>A4 A4 

d24(E, Ai) 

For p = 6 

A1 = 0.0801900 A2 = 0.0165057 

A3 = 0.0499803 A4 = 0.0160401 

A 1 > A3 > A2>A4 A4 

For p = 10 

A1 = 0.0475990 A2 = 0.0037873 

A3 = 0.0126310 A4 = 0.0037757 

A 1 > A3 > A2>A4 A4 



Journal of New Theory 20 (2018) 27-47                                                                                                         44 
 

 

For similarity measurement 

 

Similarity 
    Obtained 

     Results 

Rank of 

Alternatives 

(descending order) 

Best     

alternative 

obtained 

s1(E,Ai) 
A1 = 0.6678   A2 = 0.7634 

A3 = 0.7026  A4 = 0.7668 
A 4 > A2 > A3>A1  A4 

s2(E,Ai) 
A1 = 0.8342   A2 = 0.8967 

A3 = 0.8589  A4 = 0.8986 
A 4 > A2 > A3>A1  A4 

s3(E,Ai) 
A1 = 0.6481  A2 = 0.7383 

A3 = 0.6944   A4 = 0.7246 
A 2 > A4> A3>A1  A2 

 s4(E,Ai) 
A1 = 0.6866  A2 = 0.7953 

A3 = 0.7459  A4 = 0.7806 
A 2> A4> A3>A1 A2 

s5(E,Ai) 
A1 = 0.5814   A2 = 0.6579 

A3 = 0.5917    A4 = 0.6734 
A 4> A2> A3>A1 A4 

s6(E,Ai) 
A1 = 0.7600   A2 = 0.8267 

A3 = 0.7700   A4 = 0.8383 
A 4> A2> A3>A1 A4 

s7(E,Ai) 
A1 = 0.52778   A2 = 0.70000 

A3 = 0.60555  A4 = 0.71111 
A 4> A2> A3>A1 A4 

s8(E,Ai) 

For p = 6 

A1 = 0.99321146 A2 = 0.99974531 

A3 = 0.99926028 A4 = 0.99928211 

A 2 > A4 > A3>A1 A2 

For p =10 

A1 = 0.99905556 A2 = 0.99999644 

A3 = 0.99998544 A4 = 0.99997679 

A2> A3> A4>A1 A2 

s9(E,Ai) 

For p = 6 

A1 = 0.99191449 A2 = 0.99970251 

A3 = 0.99918473 A4 = 0.99914266 

A 2 > A3 > A4>A1 A2 

For p = 10 

A1 = 0.99886727 A2 = 0.99999574 

A3 = 0.99998329 A4 = 0.99997215 

A 2 > A3 > A4>A1 A2 

s10(E,Ai) 

For p = 6 

A1 = 0.92097654 A2 = 0.98738343 

A3 = 0.96956463 A4 = 0.97780405 

A 2 > A4 > A3>A1 A2 

For p = 10 

A1 = 0.97881070 A2 = 0.99858191 

A3 = 0.99439330 A4 = 0.99725333 

A 2 > A4 > A3>A1 A2 

s11(E,Ai) 
A1 = 0.66245024 A2 = 0.74828426 

A3 = 0.67495694 A4 = 0.76380514 
A 4 > A2 > A3>A1 A4 

s12(E,Ai) 
A1 = 0.61290322 A2 = 0.70459388 

A3 = 0.62601626 A4 = 0.98138033 
A 4 > A2 > A3>A1 A4 

s13(E,Ai) 

For p = 6 

A1 = 0.9326000 A2 = 0.9893284 

A3 = 0.9732248 A4 = 0.9813803 

A 2 > A4  > A3>A1 A2 

For p = 10 

A1 = 0.97039038 A2 = 0.99802719 

A3 = 0.99199025 A4 = 0.99618270 

A 2 > A4  > A3>A1 A2 
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7. Comparative study with existing work 
 

Hence we compare the results given in [14] and the results obtained in previous section 

(section 6). In the article [14], the authors have used the similarity measures s1(A,B)and 

s3(A,B) (as stated in the section 4, where A is the ideal alternative E
 
and B is the alternative 

to be measured), to obtain the best alternatives. Using s1(A,B) the  best alternative obtained 

is A4 and using s3(A,B) the best alternative is A2. Also the similarity measure of A4 with 

ideal alternative is 0.9600 and the same of A2 is 0.9323. However, we have measured using 

various numbers of similarities and distances as well, between the alternatives and the ideal 

alternative, to obtain the best alternative. According to the results, A4 is the best alternative 

(in both distances and similarity measures) when the distance or the similarity is in linear 

form i.e. Hamming distance, Hausdroff distance and their related distance and similarity 

measures, etc.  (except d21(A,B) and its related distance measures, where though they are 

not linear, the best alternative obtained is A4). Otherwise the best alternative is A2 (except 

s16(A,B), where being linear similarity measure, the best alternative given is A2).                

Now, one can decide the best alternative considering the alternative obtained as best 

alternative according to numerical value in most number of cases in both distance and 

similarity measures  and also this decision can be made considering more distance and 

similarities besides those defined in this paper. So, we suggest that, according to the 

number of cases, A4  can be taken as the best alternative. 

 

 

Similarity 
    Obtained 

     Results 

Rank of 

Alternatives 

(descending order) 

Best     

alternative 

obtained 

s14(E,Ai) 

For p = 6 

A1 = 0.97365884 A2 = 0.99579447 

A3 = 0.98950109 A4 = 0.98750536 

A 2 > A3 > A4>A1 A2 

For p = 10 

A1 = 0.98822817 A2 = 0.99921217 

A3 = 0.99688516 A4 = 0.99847407 

A 2 > A4 > A3>A1 A2 

s15(E,Ai) 
A1 = 0.29661016 A2 = 0.35238095 

A3 = 0.37168141 A4 = 0.50000000 
A 4 > A3 > A2>A1 A4 

s16(E,Ai) 
A1 = 0.300    A2 = 0.550 

A3 = 0.450    A4 = 0.483 
A 2> A4> A3>A1 A2 

s17(E,Ai) 
A1 = 0.43708609  A2 = 0.65384615 

A3 = 0.54193548  A4 = 0.66666666 
A 4 > A2 > A3>A1 A4 

s18(E,Ai) 
A1 = 0.20283243 A2 = 0.37547646 

A3 = 0.26990699 A4 = 0.38997923 
A 4> A2> A3>A1 A4 

s19(E,Ai) 
A1 = 0.18945738 A2 = 0.30270010 

A3 = 0.22405482 A4 = 0.33782415 
A 4 > A2 > A3>A1 A4 

s20(E,Ai) 
A1 = 0.4125 A2 = 0.6375 

A3 = 0.5250 A4 = 0.6500 
A 4 > A2 > A3>A1 A4 

s21(E,Ai) 
A1 = 0.140625 A2 = 0.222500 

A3 = 0.183750 A4 = 0.226250 
A 4 > A2 > A3>A1 A4 
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8. Conclusion 
 

In this article, at first we have defined various distances ( , )kd A B , (k =1,2,…,24) and 

similarity measures ( , )ks A B , (k =1,2,…,21) ,  between two Interval Neutrosophic sets. Then 

we have shown an application of these distances and similarities in solving a multicriteria 

decision-making problem. A method, for the solution of this type of problems, has been 

established by means of distance and similarity measures between each alternative and the 

respective ideal alternative. Then, as an illustrative example, a problem from [14] has been 

reconsidered and applying our distance and similarity measures, the ranking order of all 

alternatives has been calculated and stated in tabular form and the best alternative has also 

been identified as well. Finally we have made a comparison between the existing result in 

[14] and the results obtained in this article and finally conclude that the result obtained in 

this paper is more precise and more specific. The proposed similarity measures are also 

useful in real life applications of science and engineering such as medical diagnosis, pattern 

recognitions etc. Furthermore, the proposed techniques, based on distance and similarity 

measures, can be more useful for decision makers as it extend the existing decision making 

methods. 
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