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Abstract: Rings and fields are significant algebraic structures in algebra and both of them are based
on the group structure. In this paper, we attempt to extend the notion of a neutrosophic triplet group
to a neutrosophic triplet ring and a neutrosophic triplet field. We introduce a neutrosophic triplet
ring and study some of its basic properties. Further, we define the zero divisor, neutrosophic triplet
subring, neutrosophic triplet ideal, nilpotent integral neutrosophic triplet domain, and neutrosophic
triplet ring homomorphism. Finally, we introduce a neutrosophic triplet field.
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1. Introduction

The concept of a ring first arose from attempts to prove Fermat’s last theorem [1], starting with
Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the
notion of a ring was generalized and firmly established during the 1920s by Emmy Noether and
Wolfgang Krull [2]. Modern ring theory, a very active mathematical discipline, studies rings in their
own right. To explore rings, mathematicians have devised various notions to break rings into smaller,
more understandable pieces, such as ideals, quotient rings, and simple rings. In addition to these
abstract properties, ring theorists also make various distinctions between the theories of commutative
rings and noncommutative rings, the former belonging to algebraic number theory and algebraic
geometry. A particularly rich theory has been developed for a certain special class of commutative
rings, known as fields, which lies within the realm of field theory. Likewise, the corresponding theory
for noncommutative rings, that of noncommutative division rings, constitutes an active research
interest for noncommutative ring theorists. Since the discovery of a mysterious connection between
noncommutative ring theory and geometry during the 1980s by Alain Connes [3–5], noncommutative
geometry has become a particularly active discipline in ring theory.

The foundation of the subject (i.e., the mapping from subfields to subgroups and vice versa) is set
up in the context of an absolutely general pair of fields. In addition to the clarification that normally
accompanies such a generalization, there are useful applications to infinite algebraic extensions and
to the Galois Theory of differential equations [6]. There is also a logical simplicity to the procedure:
everything hinges on a pair of estimates of field degrees and subgroup indices. One might describe it
as a further step in the Dedekind–Artin linearization [7].

An early contributor to the theory of noncommutative rings was the Scottish mathematician
Wedderburn who, in 1905, proved “Wedderburn’s Theorem”, namely that every finite division ring is
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commutative and so is a field [8]. It was only around the 1930s that the theories of commutative and
noncommutative rings came together and that their ideas began to influence each other.

Neutrosophy is a new branch of philosophy which studies the nature, origin, and scope of
neutralities as well as their interaction with ideational spectra. The concept of neutrosophic logic and a
neutrosophic set was first introduced by Florentin Smarandache [9] in 1995, where each proposition in
neutrosophic logic is approximated to have the percentage of truth in a subset T, the percentage of
indeterminacy in a subset I, and the percentage of falsity in a subset F such that this neutrosophic logic
is called an extension of fuzzy logic, especially to intuitionistic fuzzy logic [10]. The generalization of
classical sets [9], fuzzy sets [11], and intuitionistic fuzzy sets [10], etc., is in fact the neutrosophic set.
This mathematical tool is used to handle problems consisting of uncertainty, imprecision, indeterminacy,
inconsistency, incompleteness, and falsity. By utilizing the idea of neutrosophic theory, Vasantha
Kandasamy and Florentin Smarandache studied neutrosophic algebraic structures [12–14] by inserting
a literal indeterminate element “I”, where I2 = I, in the algebraic structure and then combining “I”
with each element of the structure with respect to the corresponding binary operation, denoted
*. They call it the neutrosophic indeterminate element, and the generated algebraic structure is
then termed as a neutrosophic algebraic structure. Some other neutrosophic algebraic structures
can be seen as neutrosophic fields [15], neutrosophic vector spaces [16], neutrosophic groups [17],
neutrosophic bigroups [17], neutrosophic N-groups [15], neutrosophic semigroups [12], neutrosophic
bisemigroups [12], neutrosophic N-semigroups [12], neutrosophic loops [12], neutrosophic biloops [12],
neutrosophic N-loop [12], neutrosophic groupoids [12] and neutrosophic bigroupoids [12] and so on.

In this paper, we introduce the neutrosophic triplet ring. Further, we define the neutrosophic
triplet zero divisor, neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent neutrosophic
triplet, integral neutrosophic triplet domain, and neutrosophic triplet ring homomorphism. Finally, we
introduce a neutrosophic triplet field. The rest of the paper is organized as follows. After the literature
review in Section 1 and basic concepts in Section 2, we introduce the neutrosophic triplet ring in
Section 3. Section 4 is about the introduction of the integral neutrosophic triplet domain with some of
its interesting properties, and is also where we develop the neutrosophic triplet ring homomorphism.
In Section 5, we study neutrosophic triplet fields. Conclusions are given in Section 6.

2. Basic Concepts

In this section, all definitions and examples have been taken from [18] to provide some basic
concepts about neutrosophic triplets and neutrosophic triplet groups.

Definition 1. Let N be a set together with a binary operation ∗. Then N is called a neutrosophic triplet set if for
any a ∈ N, there exists a neutral of “a” called neut(a), different from the classical algebraic unitary element, and
an opposite of “ a” called anti(a), with neut(a) and anti(a) belonging to N, such that

a ∗ neut(a) = neut(a) ∗ a = a

and
a ∗ anti(a) = anti(a) ∗ a = neut(a)

The element a, neut(a), and anti(a) are collectively called a neutrosophic triplet and we denote
it by (a, neut(a), anti(a)). By neut(a), we mean the neutral of a, and a is just the first coordinate of a
neutrosophic triplet and not a neutrosophic triplet [18].

For the same element “a” in N, there may be more than one neutral neut(a) and more than one
opposite anti(a).
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Definition 2. The element b in (N, ∗) is the second component, denoted by neut(.), of a neutrosophic triplet, if
there exist other elements a and c in N such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b. The formed neutrosophic
triplet is (a, b, c) [12].

Definition 3. The element c in (N, ∗) is the third component, denoted by anti(.) of a neutrosophic triplet, if
there exist other elements a and b in N such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b. The formed neutrosophic
triplet is (a, b, c) [12].

Definition 4. Let (N, ∗) be a neutrosophic triplet set. Then N is called a neutrosophic triplet group if the
following conditions are satisfied [18].

1. If (N, ∗) is well defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
2. If (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

The neutrosophic triplet group, in general, is not a group in the classical algebraic sense. We consider the
neutrosophic neutrals as replacing the classical unitary element, and the neutrosophic opposites as replacing the
classical inverse elements.

Example 1. Consider Z6 under multiplication modulo 6, where Z6 = {0, 1, 2, 3, 4, 5}. Then the element 2 gives
rise to a neutrosophic triplet because neut(2) = 4 , 1, as 2× 4 = 4× 2 = 8 ≡ 2(mod6). Also, anti(2) = 2
because 2× 2 = 4. Thus (2, 4, 2) is a neutrosophic triplet. Similarly 4 gives rise to a neutrosophic triplet because
neut(4) = anti(4) = 4. So (4, 4, 4) is a neutrosophic triplet. Also, 3 gives rise to the neutrosophic triplet
(3, 3, 3). However, 3 has two neutrals: neut(3) = {3, 5}, but 3 does not give rise to a neutrosophic triplet for
neut(3) = 5, since anti(3) does not exist in Z6 with respect to neut(3) = 5. And lastly, 0 gives rise to a zero
neutrosophic triplet as neut(0) = anti(0) = 0. The zero neutrosophic triplet is denoted by (0, 0, 0).

The classical unitary element of Z6, with respect to multiplication modulo 6, is 1. The neutrosophic triplets
on Z6 are: (0, 0, 0), (0, 0, 2), (0, 0, 3), (0, 0, 4), (2, 4, 2), (3, 3 3), and (4, 4, 4).

Z6 is not a neutrosophic triplet set, since there is no neutrosophic triplet associated to the elements 1 and 5
from Z6, because: there is no neut(1) , 1, and respectively no neut(5) , 1.

But M6 = {0, 2, 3, 4} ⊂ Z6 is a commutative neutrosophic group [18].

Example 2. Consider (Z10, #), where # is defined as a#b = 3ab(mod10).

Let M10 = {0, 2, 4, 5, 6, 8} ⊂ Z10. Then ( M10, #) is a neutrosophic triplet group under the binary operation # as
shown in Table 1 [18].

Table 1. Cayley table of (Z10, #).

# 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 3 6 9 2 5 8 1 4 7
2 0 6 2 8 4 0 6 2 8 4
3 0 9 8 7 6 5 4 3 2 1
4 0 2 4 6 8 0 2 4 6 8
5 0 5 0 5 0 5 0 5 0 5
6 0 8 6 4 2 0 8 6 4 2
7 0 1 2 3 4 5 6 7 8 9
8 0 4 8 2 6 0 4 8 2 6
9 0 7 4 1 8 5 2 9 6 3

It is also associative, i.e.,
(a#b)#c = a#(b#c).
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Now we take the LHS to prove the RHS.

(a#b)#c = (3ab)#c
= 3(3ab)c
= 9abc
= 3a(3bc)
= 3a(b#c)
= a#(b#c)

The classical unitary element on Z10 with respect to the law # is e = 7, since:

a # e = e # a = 3ae = 3a(7) = 21a = a (mod 10) for any a ∈ Z10

Therefore, we choose all triplets whose neutral elements are different from 7, and we get the
following neutrosophic triplets:

(0, 0, 0), (0, 0, 2), (0, 0, 4), (0, 0, 5), (0, 0, 6), (0, 0, 8), (2, 2, 2), (4, 2, 6), (5, 5, 5), (6, 2, 4), and (8, 2, 8).

All above neutrals neut(.) = 0, 2, and 5 are different from the classical unitary element 7.
Z10 is not a neutrosophic triplet group, nor even a neutrosophic triplet set.
But its subset M10 = {0, 2, 4, 5, 6, 8} is a commutative neutrosophic triplet group, since the law

# is well-defined, commutative, associative, and each element belonging to M has a corresponding
neutrosophic triplet.

3. Neutrosophic Triplet Rings

In this section, we introduce neutrosophic triplet rings and study some of their basic properties
and notions.

Definition 5. Let (NTR, ∗, #) be a set together with two binary operations ∗ and #. Then NTR is called a
neutrosophic triplet ring if the following conditions hold:

1. (NTR, ∗) is a commutative neutrosophic triplet group with respect to ∗;
2. (NTR, #) is well defined and associateve;
3. a#(b ∗ c) = (a#b) ∗ (a#c) and (b ∗ c)#a = (b#a) ∗ (c#a) for all a, b, c ∈ NTR.

Notations 1. Since the neutrosophic triplet ring and the neutrosophic triplet field are algebraic structures
endowed with two internal laws * and #, in order to avoid any confusion, we use the following notation:

neut*(x) and anti*(x) for the neutrals and anti’s, respectively, of the element x with respect to the law * and
neu#(x) and ant#(x) for the neutrals and anti’s, respectively, of the element x with respect to the law #.

Remark 1. An NTR in general is not a classical ring.

Definition 6. Let (NTR, ∗, #) be a neutrosophic triplet ring and let a ∈ NTR. We call the structure a unitary
neutrosophic triplet ring (UNTR) if each element a has a neut#(a).

Definition 7. Let (NTR, ∗, #) be a neutrosophic triplet ring. NTR is called a commutative neutrosophic triplet
ring if the law # is commutative.

Definition 8. Let (NTR, ∗, #) be a neutrosophic triplet ring. If NTR has an element b such that a * b = b * a = b
for all a in NTR, then the element b is called the zero neutrosophic element of NTR and denoted by 0.

Hence if NTR has 0 element then 0 * a = a * 0 = 0 for all a in NTR. Also neut*(0) = 0 and anti*(0) = 0.
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Notations 2. For neutrosophic triplets with respect to the law * and # are denoted by (a, b, c)
∗

and (a, b, c)#
respectively.

Definition 9. Let (NTR, ∗, #) be a neutrosophic triplet ring and let 0 , a ∈ NTR. If there exists a neutrosophic
nonzero element 0 , b ∈ NTR such that b#a = 0, then b is called a neutrosophic left zero divisor of a. Similarly,
an element 0 , b ∈ NTR is called a neutrosophic right zero divisor of 0 , a ∈ NTR if a#b = 0.

A neutrosophic zero divisor of an element is one which is both a neutrosophic left zero divisor and a neutrosophic
right zero divisor of that element.

Example 3. Let’s consider the set ( {a, b, c}, *, # ), where the laws are defined as follows.

Law * is well-defined, commutative (since its matrix into the Cayley Table is symmetric with respect to the main
diagonal), and associative:

* a b c
a a a a
b a b a
c a a c

Cayley Table for Law *

Let’s prove the associativity: x * (y * z) = (x * y) * z, for any x, y, z ∈ {a, b, c).

(1) If there is at least one “a” among x, y, z, then the result is: x * (y * z) = a and (x * y) * z = a, since “a”
transforms everything into “a” according to the above table, i.e., a * a = a * b = b * a = a * c = c * a = a.

(2) If there are only b’s, then b * (b * b) = b and (b * b) * b = b.
(3) If there are only c’s, then c * (c * c) = c and (c * c) * c = c.
(4) If there are two b’s and one c, or two c’s and one b, then x * (y * z) = a and (x * y) * z = a,

Since b multiplied (*) with c will get a (or b * c = c * b = a) and further one “a” transforms everything into a [as
at point 1 above].

The neutrosophic triplets with respect to the law * are: (a, a, a)*, (a, a, b)*, (a, a, c)*, (b, b, b)*, (c, c, c)*.
The law * has no classical unitary element.
Hence, ({a, b, c}, *) is a commutative neutrosophic triplet group.

Law # is well-defined, commutative (since its matrix into the below Cayley Table is symmetric with respect to the
main diagonal), and associative:

# a b c
a a a a
b a a a
c a a a

Cayley Table for Law #

Associativity is proved since for any x, y, z ∈ {a, b, c), x # (y # z) = a and (x # y) # z = a because all
multiplications (#) give as result “a”.

Let’s prove the distributivity of # with respect to *.
For any x, y, z ∈ {a, b, c), x # (y * z) = a, since the multiplication (#) of anything gives “a”, and (x # y) * (x

# z) = a*a = a.
The set ({a, b, c}, #) is not a neutrosophic triplet set, since there is only one neutrosophic triplet (a, a, a) {we

have no corresponding neutrosophic triplet for b, nor for c}, and consequently ({a, b, c}, #) is not a neutrosophic
triplet group.

The law # has no classical unitary element.
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Hence, NTR = ( {a, b, c}, *, #) is a commutative neutrosophic triplet ring, and not a neutrosophic triplet field.

Theorem 1. Let NTR be a commutative neutrosophic triplet ring and a, b ∈ NTR such that a, b, neut#(a),
neut#(b), neut(a#b), and anti#(a#b) are cancellable and that neut#(a), neut#(b) and anti#(a), anti#(b) do exist in
NTR. Then

1. 1.neut ∗ (a) ∗ neut ∗ (b) = neut ∗ (a ∗ b),
2. anti ∗ (a) ∗ anti ∗ (b) = anti ∗ (a ∗ b),
3. neut#(a)#neut#(b) = neut#(a#b); and
4. anti#(a)#anti#(b) = anti#(a#b).

Proof. (1) and (2) are similar to the following.

(3) Consider the left-hand side, with neut#(a)#neut#(b). Multiply by a to the left and by b to the right;
then we have

a#neut#(a)#neut#(b)#b = (a#neut#(a))#(neut#(b)#b) = a#b,

since # is associative.
Now we consider the right-hand side; we have neut#(a#b). Multiplying by a to the left and by b to

the right, we have
a#neut#(a#b)#b = (a#b)#neut#(a#b) = a#b

since # is associative and commutative,
Thus, LHS = (a#b) = (a#b)#neut#(a#b) = RHS.

(4) Considering the left-hand side, we have anti#(a)#anti#(b).
Multiplying by a to the left and by b to the right, we have

a#anti#(a)#anti#(b)#b = (a#anti#(a))#(anti#(b)#b) = (neut#(a)#neut#(b)) = neut#(a#b),

using the previous proved result.
Now consider the right-hand side, where we have anti#(a#b).
Multiplying by a to the left and by b to the right, we have

a#anti#(a#b)#b = (a#b)#anti#(a#b) = neut#(a#b), since # is associative and commutative.

�

Open Question on Cancellability
The “cancellability” condition in Theorem 1 is a heavy condition.
Using only commutativity and associativity of a law (without cancellability), it is sometimes

possible to prove some neutrosophic triplet identities, but other times not.
In Example 3, the law * does not satisfy the cancellability property, since a * b = a * c but b , c

therefore a is not cancellable, similarly b * a = b * c but a , c so b is not cancellable, and c * a = c * b but b
, c therefore c is not cancellable either, yet the law * satisfies the first claim of the Theorem 1:

neut ∗ (a) ∗ neut ∗ (b) = neut ∗ (a ∗ b)

because
neut ∗ (a) ∗ neut ∗ (b) = a ∗ b = a, and neut ∗ (a ∗ b) = neut ∗ (a) = a

but it does not satisfy the second claim of Theorem 1:

anti ∗ (a) ∗ anti ∗ (b) = anti ∗ (a ∗ b)
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because
anti ∗ (a) ∗ anti ∗ (b) = {a, b, c} ∗ b = {a ∗ b, b ∗ b, c ∗ b} = {a, b, a} = {a, b}

while anti ∗ (a ∗ b) = anti(a) = {a, b, c}, since the element a has three anti’s, resulted from the following
neutrosophic triplets: (a, a, a), (a, a, b), (a, a, c). But {a, b} , {a, b, c}.

Our open question is: When the cancellability property of the elements of a neutrosophic triplet
set is needed, and when it is not, in order for the neutrosophic triplet identities to be valid?

Definition 10. Let (NTR, ∗, #) be a neutrosophic triplet ring and let S be a subset of NTR. Then S is called a
neutrosophic triplet subring of NTR if (S, ∗, #) is a neutrosphic triplet ring.

Definition 11. Let (NTR, ∗, #) be a neutrosophic triplet ring and I be a subset of NTR. Then I is called a
neutrosophic triplet ideal of NTR if the following conditions are satisfied.

1. (I, ∗) is a neutrosophic triplet subgroup of (NTR, ∗); and
2. For all x ∈ I and r ∈ NTR, x#r ∈ I and r#x ∈ I.

Theorem 2. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring, but the converse is not
true in general.

Remark 2. Let (NTR, ∗, #) be a neutrosophic triplet ring and let a ∈ NTR. Then the following are true.

1. anti*(a) in general are not unique in NTR.
2. anti#(a) (if they exist for some element a) in general are not unique in NTR.

Definition 12. Let (NTR, ∗, #) be a neutrosophic triplet ring and let 0 , a ∈ NTR. Then a is called a
neutroosphic nilpotent element if (a#)

n = 0, for some positive integer n > 1, where (a#)
n = a#a#...#a︸   ︷︷   ︸

n

(a occurs

n times).
In the previous Example 3, one replaces a = 0, b = 2, c = 4, then NTR2 = ( {0, 2, 4}, *, #) is a commutative

neutrosophic triplet ring, where (2#)2 = 2#2 = 0 with 2 , 0, and (4#)2 = 4#4 = 0 with 4 , 0, therefore the
non-zero elements 2 and 4 are neutrosophic nilpotent elements in NTR2.

Also, since 2#4 = 4#2 = 0, we say that 2 and 4 are neutrosophic zero-divisors in NTR2.

Theorem 3. Let NTR be a commutative neutrosophic triplet ring and a ∈ NTR such that neut#(an), and
anti#(an) do exist in NTR for an integer n ≥ 1 . Let a, neut#(a) be cancellable in NTR. Then

1. (neut# (a))n =neut#(an),
2. (anti#(a))n =anti#(an)

Proof. We prove by mathematical induction.
In Theorem 1(3), taking a = b, we have

neut#(a2)=neut#(a#a)=neut#(a)#neut#(a)=(neut#(a))2.

We assume that our equality is true for any positive integer up to n − 1, that is
neut#(an−1)=(neut#(a))n−1, and we need to prove it for n. By Theorem 1(3)

neut#(an)=neut#(a#an−1)=neut#(a)#neut#(an−1)= neut#(a)# (neut#(a))n−1=(neut#(a))n.

(2): similar to (1). �
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Theorem 4. Let NTR be a commutative neutrosophic triplet ring and let 0 , a ∈ NTR such that neut#(ak), and
anti#(ak) do exist in NTR for an integer k≥ 1. If a is a neutrosophic nilpotent, that is, an = 0 for some integer n >

1, then the following are true.

1. (neut#(a))n = neut#(0); and
2. (anti#(a))n = anti*(0).

Proof. (1) Suppose that 0 , a is a neutrosophic nilpotent in NTR and let an = 0 for some integer n > 1.
Using Theorem 3(1) and (2), we have

(neut# (a))n =neut#(an)=neut#(0) and (anti# (a))n =anti#(an)=anti#(0).

�

4. Integral Neutrosophic Triplet Domain and Neutrosophic Triplet Ring Homomorphism

Section 4 is about the introduction of the integral neutrosophic triplet domain and some of its
interesting properties. Moreover, in this section, we develop a neutrosophic triplet ring homomorphism.

Definition 13. A commutative neutrosophic triplet ringNTR is called an integral neutrosophic triplet domain
if for all a, b ∈ NTR, a#b = 0 implies a = 0 or b = 0.

Theorem 5. Let NTR be an integral neutrosophic triplet domain. Then the following are true for all a, b ∈ NTR.

1. If neut#(a) and neut#(b) do exist, then neut#(a)#neut#(b) = 0 implies neut#(a) = 0 or neut#(b) = 0.
2. If anti#(a) and anti#(b) do exist, then anti#(a)#anti#(b) = 0 implies anti#(a) = 0 or anti#(b) = 0.

Proof. (1) Obvious, since NTR is an integral neutrosophic triplet domain, and neut#(a) and neut#(b)
belong to NTR.

(2) Obvious, since NTR is an integral neutrosophic triplet domain, and anti#(a) and anti#(b) belong
to NTR. �

Definition 14. Let (NTR1, ∗, #) and (NTR2,⊕,⊗) be two neutrosophic triplet rings. Let f : NTR1 → NTR2

be a mapping. Then f is called a neutrosophic triplet ring homomorphism if the following conditions are true.

1. f (a ∗ b) = f (a) ⊕ f (b), for all a, b ∈ NTR1.
2. f (a#b) = f (a) ⊗ f (b), for all a, b ∈ NTR1.
3. f(neut*(a)) = neut⊕(f(a)), for all a ∈ NTR1.
4. f(anti*(a)) = anti⊕(f(a)), for all a ∈ NTR1.

5. Neutrosophic Triplet Fields

In this section, we study neutrosophic triplet fields and some of their interesting properties.

Definition 15. Let (NTR, ∗, #) be a neutrosophic triplet set together with two binary operations ∗ and #. Then
(NTR, ∗, #) is called a neutrosophic triplet field if the following conditions hold.

1. (NTR, ∗) is a commutative neutrosophic triplet group with respect to *.
2. (NTR, #) is a neutrosophic triplet group with respect to #.
3. a#(b ∗ c) = (a#b) ∗ (a#c) and (b ∗ c)#a = (b#a) ∗ (c#a) for all a, b, c ∈ NTR.
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Example 4. M6 = {0, 2, 3, 4} ⊂ Z6 is a commutative neutrosophic group under multiplication law # modulo 6
(Example 1). The Cayley Table for Law # is as the following:

# 0 2 3 4
0 0 0 0 0
2 0 4 0 2
3 0 0 3 0
4 0 2 0 4

Now we define a law * for the set M6 as the following table:

* 0 2 3 4
0 0 0 0 0
2 0 2 0 0
3 0 0 3 0
4 0 0 0 4

It is easily seen that (0, 0, 0)
∗
, (2, 2, 2)

∗
, (3, 3, 3)

∗
and (4, 4, 4)

∗
are neutrosophic triplets, the law * is

well defined and commutative. Let us prove its associative:

If a = b = c = 0 then a * (b * c) = 0 = (a * b) * c.
If a = b = c = 2 then a * (b * c) = 2 = (a * b) * c.
If a = b = c = 3 then a * (b * c) = 3 = (a * b) * c.
If a = b = c = 4 then a * (b * c) = 4 = (a * b) * c.

If at least two of a, b and c are different, we have a * (b * c) = 0 = (a * b) * c.
So associative law for * is true. Hence M6 is a commutative neutrosophic group under the law *.
Also it is easily check that a # (b * c) = (a # b) * (a # c) for all a, b and c in M5 is satisfied. (Note that *

and # are commutative). So (M5 *,#) is NTF.

Proposition 1. A neutrosophic triplet field NTF always has an anti(a) for every a ∈ NTF with respect to both
laws * and #.

Proof. The proof is straightforward. �

Theorem 6. A neutrosophic triplet ring is not in general a neutrosophic triplet field.

Counterexample is done in Example 3.

Theorem 7. A neutrosophic triplet field NTF is not in general an integral neutrosophic triplet domain INTD.

Theorem 8. Assume that f : NTR1 → NTR2 is a neutrosophic triplet ring homomorphism. The following
then hold.

1. If S is a neutrosophic triplet subring NTR1(∗, #), then f (S) is a neutrosophic triplet subring of NTR2(⊕,⊗).
2. If U is a neutrosophic triplet subring of NTR2, then f−1(U) is a neutrosophic triplet subring of NTR1.
3. If I is a neutrosophic triplet ideal of NTR2, then f−1(I) is a neutrosophic triplet ideal of NTR1.
4. If f is onto, and J is an ideal of NTR1, then f ( j) is an ideal of NTR2.

Proof. (1) Let a, b ∈ S, then a * b ∈ S, neut*(a) ∈ S, anti*(a) ∈ S. Then f (a), f (b) ∈ f (S) and f (a ∗ b) ∈ f (S),
but f (a ∗ b) = f (a) ⊕ f (b), since f is a homomorphism. Thus, we have proved that if f (a), f (b) ∈ f (S),
then f (a) ⊕ f (b) ∈ f (S. Since neut*(a) and anti*(a) ∈ S, f (neut(a)) and f (anti(a)) ∈ f (S) since f is a
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homomorphism. But f(neut*(a)) = neut⊕f(a), and f(anti*(a)) = anti⊕f(a). Therefore, if f (a) ∈ f (S), then
neut⊕f(a) = f(neut*(a))∈ f (S) and, similarly,

anti⊕f(a) = f(anti ∗ (a)) ∈ f (S).

Now, if a, b ∈ S, then a#b ∈ S. Since a#b ∈ S, f (a#b) ∈ f (S). But f (a#b) = f (a) ⊕ f (b). Therefore, if
f (a), f (b) ∈ S, then f (a) ⊗ f (b) = f (a#b) = f (S).

(2) f−1(U) =
{
a ∈ NTR1 : f (a) ∈ U

}
. Let a, b ∈ f−1(U). Then f(a), f(b) ∈ U. f (a) ⊕ f (b) = f(a*b)

∈ U and f (a) ⊗ f (b) = f (a#b) ∈ U. Then: a*b, a#b ∈ f−1(U). Since a ∈ f−1(U), then f(a) ∈ U. But
also neut⊕( f (a)) ∈ U, anti⊕( f (a)) ∈ U, because U is a neutrosophic subring of NTR2 and f is a
neutro-homomorphism. But neut⊕( f (a)) = f (neut∗(a)) ∈ U, anti⊕( f (a)) = f (anti∗(a)) ∈ U, whence
neut∗(a) ∈ f−1(U), anti∗(a) ∈ f−1(U).

(3) f−1(I) =
{
a ∈ NTR1 : f (a) ∈ I

}
. Let a ∈ f−1(I) and r ∈ NTR1. Then f(a) ∈ I and f(r) ∈ NTR2.

Because f is a neutro-homomorphism and I an ideal of NTR2, one has:

f (a) ⊗ f (r) = f (a#r) ∈ I,

hence a#r ∈ f−1(I).
(4) Let j ∈ f (J) and r ∈ NTR2. Since f is onto, then ∃h ∈ J ⊂ NTR1 such that f (h) = j and

∃ s ∈ NTR1 such that f (s) = r. h#s ∈ J because J is an ideal of NTR1. Then:

f (h#s) = f (h) ⊗ f (s) = j⊗ s ∈ f (J)

which is true, since h ∈ J, which is an ideal in NTR1, while s ∈ NTR1. �

6. Conclusions

In this paper, we presented the neutrosophic triplet ring. Further, we presented the zero divisor,
neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent, integral neutrosophic triplet domain,
and neutrosophic triplet ring homomorphism. Finally, we presented the neutrosophic triplet field. In
the future, we can develop neutrosophic triplet vector spaces, neutrosophic modules, and neutrosophic
triplet near rings, and so on.
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