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Abstract
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discussed their basic attributions in neutrosophic bi-topological space (NBTS). In this paper,
the relationships among these classes like neutrosophic (1,2)-continuous/ open/ strongly
open/ generality open/ maps are discussed. Moreover, our work in this paper is examined
and some examples are shown to support this research.
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1. Introduction

The connotations of the maps in bi-topological spaces have been
discussed and explained extensively in general topology see ([3], [4]). After
that, some applications in general topology and non-classical topology
like soft bi-topological spaces are discussed see ([5], [6]). Smarandache
[7] presented the neutrosophic set / logic/ probability/ statistics, the
neutrosophic set is studied in topology, algerbra and other fields. It is one
of the non-classical sets, like fuzzy, nano, soft and so on, see ([8]-[35]).
Next, some applications of neutrosophic set are studied see ([36]). In
2014, the connotations of “neutrosophic closed set “ and “neutrosophic
continuous function” are given [37]. In this work, some new classes of
neutrosophic (1,2)-maps are investigated and discussed their basic
attributions in (NBTS). In this paper, the relationships among these classes
like neutrosophic (1,2)-continuous/open/strongly open/ generality
open/ maps are discussed. Moreover, our work in this paper is examined
and some examples are shown to support this research.

2. Preliminaries

Definition 2.1 : [1] Assume ¥ #¢. A neutrosophic set (NS) 8 is
defined as 8=(«,d,(a),0,(x),!,(@):ae¥) where d () is the degree
of membership, @,() is the degree of indeterminacy and /,(e) is the
degree of non-membership, Vae ¥ to 6.

Definition 2.2 [1] Assume 6 and J are neutrosophic sets (NSs) as
following

0=(,0,(a), @a), ((2): ae¥) andf=(ad,(a) ),

,(a):aeY). Then

(1) &cpBif and only if d ()< d (@), @(0)2 o/ (o) and (,(a)2
/@),

2) & =(al,(a)1-w,(x),0,(x):ac¥),

B) upf=(a,d,(a)vi ) w(a)ray(a) ()l ,(a):aeY),

(4) Onf=(a,0,(a)rd () a,(x)v o (), L, (@) VI (a): ae V)

Definition 2.3 : [1] 1, and 0, are of the form 0,, = {«,(0,1,1)) : e ¥} and
1, = {,(1,0,0)) : xe \P}.

Definition 2.4:[2] We say (¥, 7) is a neutrosophic topological space (NTS)
if and only if 7 is a collection of (NSs) in ¥ and it such that:
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(1) 1,,0,€e7,
(2) npPer forany 9,fe7,
3) U,Hz € 7 for any arbitrary family {6 |ie I} c 7.

Also, any e 7 is called neutrosophic open set (NOS) and we say
neutrosophic closed set (NCS) for its complement.

Definition 2.5 : [2] The neutrosophic closure of (NS) 6 =(«,d (@), ®,(),
L, (): e W) is the intersection of all (NCS) containing 6 and is referred
by Ncl(6). While the neutrosophic interior of @ is the union of all (NOS)
is contained in @ and is referred by Nint(6).

Definition 2.6: [2] Forany (NS) 8 ={(«,d (@), ®,(), ! ,(@) : ¢ € ¥) in (NTS)
(¥, 7) we say that @ is a neutrosophic semi-open set (NSOS) if there exists
(NOS) B =(a,d,(a) w,(@), L () : e ¥) such that < &< Ncl(0).

3. Neutrosophic Strongly Open Maps:

In this section, the connotations of neutrosophic (1, 2)-strongly/
generality/ open maps are investigated and their relations with
neutrosophic (1, 2)-open/continuous maps are stated. Some of their
applications are given. Moreover, the current work is supported by a
number of examples.

Definition3.1:Let £ : (¥,7,,7,) = (,4,,4,) be aneutrosophic map (NM)
from a neutrosophic bi-topological space (NBTS) (¥,7,,7,) into (NBTS)
(Q,4,,4,), & is called a neutrosophic (1, 2)- continuous map (N-(1,2)-CM)
if £7(B) is neutrosophic (1,2)-open set (N-(1,2)-OS) in (¥,7,,7,) for any
(N-(1,2)-05) B=(5,0,(5), 05(5), £,(5):5€ Q) in (Q,4,4,).

Definition 3.2 : Let ¢ : (¥,7,,7,) > (Q,4,4,) be a (NM) from a (NBTS)
(¥,7,,7,) into (NBTS) (,4,,4,), & is called a neutrosophic (1, 2)- open
map (N-(1,2)-OM) if &(B) is (N-(1,2)-OS) in (Q, 4, 4,) for any (N-(1,2)-OS)
0={e,0,(a),0,(x), !,(a):ae¥) in (¥,1,7,).

Definition 3.3 : Let ¢:(¥,7,7,) > (Q,A4,4) be a (NM) from a
(NBTS) (¥,7,,7,) into (NBTS) (Q,4,,4,), £ is called a neutrosophic (1,
2)-strongly open map (N-(1,2)-SOM) if &£(6) € 4, U4, for any (NSOS)
0={x,0d,(a),w,(x),!,(a):ac¥) in (¥,1,N7,).
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Example 3.4 : Let £:(¥,7,,7,) > (,4,4,) be a (NM) from a (NBTS)
(Y,7,,7,) into (NBTS) (©,4,,4,), where 4 or 4, isaneutrosophic discrete
topology (NDT). Hence, 4, U4, = NS(Q), where NS(Q) is the family of all
the (NSs) in Q. Hence, for any (NSOS) 8 ={(«,d,,(a), w,(2), ! ,(«): € \¥)
in (¥,7,7,) we have £(6) € 4, U4, and this implies that & is a (N-(1,2)-
SOM).

Remark 3.5 : It is easy to show that each (N-(1,2)-SOM) is (N-(1,2)-OM).

However, the converse is not necessary true in general.

Example 3.6 : Let ¥={s,s,,s,}, 7,={1,,0,,0}, 7,={1,,0,,0 B},
where 8={(s,050106), (s,0303,05), (s,0.3,04,07)} an d
B=1(s,,07,01,02), (5,,0.6,0.2,0.1), (5,,09,0.3,02)} let Q={a,,a,a,)
A=4=1{1,,0,,C,D,E}, where C={a,06,02,0.7), (a,,04,04,0.6),
(a,,0.4,05,0.8)}, D={(a,,0.8,0.2,0.3), (1,,0.7,03,02), (a,,0.8,0.4,03)},
and E=1{(a,,09,0.1,0.2), (4,,0.8,0.2,0.1), (a,,0.9,0.3,0.3)}. Let
&Y, r,1,) > (QA4,4) be a (NM), where &(s,)=a,, £(s,)=a, and
&(s,)=a,. Then ¢ : (¥,7,,7,) = (Q, 4, 4,) isa(N-(1,2)-OM)butnot (N-(1,2)-
SOM), since there is a (NSOS) Hin (¥, 7, N7,) where H ={(s ,0.5,0.1,0.6),
(5,,04,0.1,0.1), (s,,05,03,0.6)}, but EH)=TeA U, where
T ={(a,,0.5,0.1,0.6), (a,,0.4,0.1,0.1), (a,,0.5,0.3,0.6)}.

Theorem3.7:If £ : (¥,7,,7,) = (2,4, 4,)) is (N-(1,2)-OM) from neutrosophic
discrete bi-topological space (NDBTS) (¥, 1,,7,) into (NBTS) (Q,4,,4,), then
& is (N-(1,2)-SOM).

Proof : suppose 6 ={(«,d_(2), o,(a),{ () : e ¥) is (NSOS) in (\¥,7,,7,)
we consider that & is (N-(1,2)-OS) in (¥,7,,7,) [since (¥,7,,7,) is
(NDBTS)]. Therefore, £(6) is (N-(1,2)-OS) in (Q,4,,4,) [since & is (N- (1,
2)-OM)], so & is (N- (1, 2)-OM).

Definition 3.8 : Let ¢ : (¥,7,,7,) > (Q,4,4,) be a (NM) from a (NBTS)
(¥,7,,7,) into (NBTS) (Q,4,4,), & is called a neutrosophic (1,
2)-generality open map (N-(1,2)-GOM) if £(0) is (NSOS) in (¥,7,N7,)
for each 8 =(, 0, (), w,(2),{ () : xe ¥) (NSOS) in (¥,7,N7,).
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Example 3.9 : Let £:(¥,7,,7,) > (,4,4,) be a (NM) from a (NBTS)
(¥,7,,7,) onto (NBTS) (Q,4,4,), where 7, or 7, is a neutrosophic
indiscrete topology (NIT), we have 7,7, ={1,,0,}. Therefore, for
any (NSOS) 6=(«a,d_ (o) a,(x), { (&): e ¥) in (¥,7,N7,) we have
6=0,or 1, and this implies that £(6)=0, or 1, and hence & is a (N-
(1,2)-GOM).

Remark 3.10 : It is easy to show that each (N-(1,2)-SOM) is (N- (1,2)-GOM).
However, the converse is not necessary true in general.

Example 3.11 : take ¢:(¥,7,,7,)—>(Q,4,4,) in Example (3.6), we
obtain & is a (N-(1,2)-OM) but not (N-(1,2)-SOM). For any (NSOS) 6 in
(W, 7,N7,), we have there exists (NOS) gin (¥,z,(7,) satisfies S < 6
c Ncl(p). But, pe 7,n7,, thus B canbe formed by union of two (NOSs)
pe 1, and Be 7,. Hence B is (N-(1,2)-OS)in (¥, 7,,7,). Therefore &(5)
is (N-(1,2)-0S) in (©,4,,4,) [since & is a (N-(1,2)-OM)]. Also, &(8)c
£(0) < E(Ncl(B)) = Ncl(E(B)). But &(B)e A, NA, then £(6) is (NSOS)in
(Q, 4, N 4,). Hence ¢ is (N-(1,2)-GOM) but not (N-(1,2)-SOM).

Theorem 3.12 : If £ : (¥, 7,,7,) = (Q,4,,4,) is (N-(1,2)-OM) and (N-(1, 2)-
CM), then & is (N-(1,2)-GOM).

Proof : Let &:(¥,7,7,)—>(Q,4,4) be a (N-(1, 2)-CM) and
(N-(1,2)-OM) from a (NBTS) (¥,7,,7,) into (NBTS) (2,4,,4,), suppose
0=(a,0,(a),0,(x), l,(x):ae¥) is (NSOS) in (,4,N4) then
there exists (NOS) g in (Q,4,NA4,) satisfies: S 8 c Ncl(f)=
E(P) c &£(0) c E(NCI(B)). In other side, the (NOS) g is a (N-(1,2)-OS)
in bi-topological space (¥,7,,7,) since B e 7,17, we consider that
E(Ncl(B))  Ncl(E(B)) [since & is (N-(1, 2)-CM)]. Moreover, &(6) is
(N-(1,2)-0S) in (R, 4,,4,) [since & is (N-(1,2)-OM)], Then &(6) is (NSOS)
in (Q,4,NA,). Therefore, & is (N-(1,2)-GOM).

Remark 3.13 : We can explain our results by this diagram:

| N- (1, 2)-GOM |‘— N- (1,2)-SOM > N-(1,2)-0M LY

Figure 1

The relationships among four classes of the neutrosophic (1, 2)-maps
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4. Conclusion

In thiswork, attempthasbeenmade toapply the notion of neutrosophic
maps to study some types in (NBTSs) like; neutrosophic (1,2)-continuous/
open/ strongly open/ generality open/ maps. Moreover, the properties
of these new notions are investigated. We will use the soft sets theory
in future work to investigate new classes of neutrosophic soft maps and
then we can disuse their applications in neutrosophic soft bi- topological
spaces.
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