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Abstract
We define the neutrosophic normed space and the statistical convergence in neu-

trosophic normed space. We give the statistically Cauchy sequence in neutrosophic

normed space and present the statistically completeness in connection with a neu-

trosophic normed space.
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1 Introduction

Fuzzy Sets (FSs) put forward by Zadeh [28] has influenced deeply all the scientific

fields since the publication of the paper. It is seen that this concept, which is very

important for real-life situations, had not enough solution to some problems in time.

New quests for such problems have been coming up. Atanassov [1] initiated

Intuitionistic fuzzy sets (IFSs) for such cases. Neutrosophic set (NS) is a new

version of the idea of the classical set which is defined by Smarandache [24]. The

first world publication related to the concept of neutrosophy was published in 1998

and included in the literature [22]. Examples of other generalizations are FS [28]

interval-valued FS [26], IFS [1], interval-valued IFS [2], the sets paraconsistent,

dialetheist, paradoxist, and tautological [23], Pythagorean fuzzy sets [27].

Using the concepts Probabilistic metric space and fuzzy, fuzzy metric space

(FMS) is introduced in [14]. Kaleva and Seikkala [9] have defined the FMS as a
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distance between two points to be a non-negative fuzzy number. In [7] some basic

properties of FMS studied and the Baire Category Theorem for FMS proved.

Further, some properties such as separability, countability are given and Uniform

Limit Theorem is proved in [8]. Afterward, FMS has used in the applied sciences

such as fixed point theory, image and signal processing, medical imaging, decision-

making et al. After defined of the intuitionistic fuzzy set (IFS), it was used in all

areas where FS theory was studied. Park [21] defined IF metric space (IFMS), which

is a generalization of FMSs. Park used George and Veeramani’s [7] thought of

applying t-norm and t-conorm to FMS meanwhile defining IFMS and studying its

basic features.

Bera and Mahapatra defined the neutrosophic soft linear spaces (NSLSs) [3].

Later, neutrosophic soft normed linear spaces(NSNLS) has been defined by Bera

and Mahapatra [4]. In [4], neutrosophic norm, Cauchy sequence in NSNLS,

convexity of NSNLS, metric in NSNLS were studied. In future studies on this

subject, it is also possible to work with the idea of ‘‘Probabilistic metric space’’

using neutrosophic probability [25].

In this paper was organized as follows:

1. Introduction

2. Preliminaries

3. Method

4. Neutrosophic Normed Spaces

5. Statistical convergence on NNS

6. Statistical complete NNS

7. Conclusion

2 Preliminaries

Choose A � Zþ. Randomly select an integer in J ¼ ½1; n�. Likely, if we calculate

the ratio of the number of elements of set A in the interval J and the number of all

elements in the interval J, it will be seen that this ratio belongs to set A. If this

possibility consists (for n ! 1), then we can say that this limit is used to as the

asymptotic density(AD) of A. This refers us that the AD is a type of possibility of

selection a number from the set A. ForA;B � Zþ, if ADB is finite, then the set A is

as asymptotically equal to the set B (A�B). The notions of a lower AD and of

convergence in density was given by Freedman in [6] as follows:

If the following conditions are hold, then for every values of J, the function g is

called lower AD such that g is a function that characterize for all sets of N:

i. If A�B, then gðAÞ ¼ gðBÞ,
ii. If A \ B ¼ ;, then gðAÞ þ gðBÞ� gðA [ BÞ,
iii. gðAÞ þ gðBÞ� 1þ gðA \ BÞ, for all A,

iv. gðZþÞ ¼ 1.
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According to the definition of lower AD, we can give the definition upper AD as

follows:

Let g be any density and A be any set of N. The function g is called upper AD, if

gðAÞ ¼ 1� gðZþnAÞ.
If gðAÞ ¼ gðAÞ, then A has natural density(ND) according to g, for A � Zþ. The

term AD is often used for the function

dðAÞ ¼ lim inf
k!1

AðkÞ
k

;

where A � N and AðkÞ ¼
P

x� k;x2A 1. Also the ND of A is given by dðAÞ ¼
limk k

�1jAðkÞj where jAðkÞj denotes the number of elements in AðkÞ.
A real numbers sequence ðakÞ is statistically convergent(SC) to L if for every

e[ 0 the set fk 2 N : jak � Lj� eg has ND zero and denoted by S. In this case, we

write S� lim ak ¼ L or ak ! LðSÞ.
The sequence ðakÞ is statistically Cauchy sequence(SCa) if for every e[ 0 there

is a positive integer N ¼ NðeÞ such that

d fk 2 N : jak � aNðeÞj � eg
� �

¼ 0:

Triangular norms (t-norms) (TN) were initiated by Menger [16]. In the problem of

computing the distance between two elements in space, Menger offered using

probability distributions instead of using numbers for distance. TNs are used to

generalize with the probability distribution of triangle inequality in metric space

conditions. Triangular conorms (t-conorms) (TC) know as dual operations of TNs.

TNs and TCs are very significant for fuzzy operations(intersections and unions).

Definition 1 Give an operation 	 : ½0; 1� 
 ½0; 1� ! ½0; 1�. If the operation 	 is

satisfying the following conditions, then it is called that the operation 	 is

continuous TN: For s; t; u; v 2 ½0; 1�,
i. s 	 1 ¼ s

ii. If s� u and t� v, then s 	 t� u 	 v,
iii. 	 is continuous,

iv. 	 is commutative and associative.

Definition 2 Give an operation � : ½0; 1� 
 ½0; 1� ! ½0; 1�. If the operation � is

satisfying the following conditions, then it is called that the operation � is

continuous TC:

i. s � 0 ¼ s,

ii. If s� u and t� v, then s � t� u � v,
iii. � is continuous,

iv. � is commutative and associative.

Form above definitions, we note that if we choose 0\e1; e2\1 for e1 [ e2, then
there exist 0\e3; e4\0; 1 such that e1 	 e3 � e2, e1 � e4 � e2. Further, if we choose
e5 2 ð0; 1Þ, then there exist e6; e7 2 ð0; 1Þ such that e6 	 e6 � e5 and e7 � e7 � e5.
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Definition 3 [13] Take F be an arbitrary set, N ¼ f\u;GðuÞ;BðuÞ; YðuÞ[ : u 2
Fg be a NS such that N : F 
 F 
 Rþ ! ½0; 1�. Let 	 and � show the continuous TN

and continuous TC, respectively. If the following conditions are hold, then the four-

tuple ðF;N; 	; �Þ is called neutrosophic metric space(NMS):

i. 0�Gðu; v; kÞ� 1, 0�Bðu; v; kÞ� 1, 0� Yðu; v; kÞ� 1 8k 2 Rþ,
ii. Gðu; v; kÞ þ Bðu; v; kÞ þ Yðu; v; kÞ� 3, (for k 2 Rþ),
iii. Gðu; v; kÞ ¼ 1 (for k[ 0) iff u ¼ v,

iv. Gðu; v; kÞ ¼ Gðv; u; kÞ (for k[ 0),

v. Gðu; v; kÞ 	 Gðv; y; lÞ�Gðu; y; kþ lÞ ð8k; l[ 0Þ,
vi. Gðu; v; :Þ : ½0;1Þ ! ½0; 1� is continuous,
vii. limk!1Gðu; v; kÞ ¼ 1 ð8k[ 0Þ,
viii. Bðu; v; kÞ ¼ 0 (for k[ 0) iff u ¼ v,

ix. Bðu; v; kÞ ¼ Bðv; u; kÞ (for k[ 0),

x. Bðu; v; kÞ � Bðv; y; lÞ�Bðu; y; kþ lÞ ð8k; l[ 0Þ,
xi. Bðu; v; :Þ : ½0;1Þ ! ½0; 1� is continuous,
xii. limk!1Bðu; v; kÞ ¼ 0 ð8k[ 0Þ,
xiii. Yðu; v; kÞ ¼ 0 (for k[ 0) iff u ¼ v,

xiv. Yðu; v; kÞ ¼ Yðv; u; kÞ ð8k[ 0Þ,
xv. Yðu; v; kÞ � Yðv; y; lÞ� Yðu; y; kþ lÞ ð8k; l[ 0Þ,
xvi. Yðu; v; :Þ : ½0;1Þ ! ½0; 1� is continuous,
xvii. limk!1Yðu; v; kÞ ¼ 0 (for k[ 0),

xviii. If k� 0, then Gðu; v; kÞ ¼ 0, Bðu; v; kÞ ¼ 1 and Yðu; v; kÞ ¼ 1.

8u; v; y 2 F. Then N ¼ ðG;B; YÞ is called Neutrosophic metric(NM) on F.

3 Method

Density is an important concept in the Number Theory and has many variations. The

reason for this variation is that some density definitions do not apply to all

sequences. Asymptotic density (AD) is an example of this case. The emergence of

new density definitions is meant to fill these and similar gaps.

The AD is one of the opportunities to evaluate how large a subset of N. It is

intuitively known that Zþ are much more than perfect squares. Simply put, each

perfect square is positive and there are more positive numbers than perfect squares.

The set of positive integers is not, actually, larger than the set of perfect squares.

Because both sets are infinite and countable. Then, these are put in one-to-one

correspondence. However, if one goes through N, the squares become increasingly

infrequent. It is precisely in this instance, natural density (ND) helps us and makes

this intuition precise.

The Theory of FS has submitted to employ imprecise, vagueness and inexact data

[28]. FSs, have been widely implemented in different disciplines and technologies.

The Theory of FS cannot always cope with the lack of knowledge of membership

degrees. That’s why Atanassov [1] introduced the theory of IFS which the extension

of FSs.
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The statistical convergence is a generalization of the notion of ordinary

convergence. The concept of statistical convergence was defined in IF normed

spaces by Karakus et al. [11]. After Karakus et al. [11] work, various statistical

convergence definitions were used with IFNS [5, 10, 12, 15, 17–20].

In this paper, neutrosophic normed space (NNS) is defined and the definition

statistical convergence with respect to NNS is given. The fundamental properties of

NNS and statistical convergence with respect to NNS are investigated.

4 Neutrosophic normed spaces

Definition 4 Take F as a vector space, N ¼ f\u;GðuÞ;BðuÞ;YðuÞ[ : u 2 Fg be

a normed space(NS) such that N : F 
 Rþ ! ½0; 1�. Let 	 and � show the

continuous TN and continuous TC, respectively. If the following conditions are

hold, then the four-tuple V ¼ ðF;N ; 	; �Þ is called NNS: For all u; v 2 F and

k; l[ 0 and for each r 6¼ 0,

i. 0�Gðu; kÞ� 1, 0�Bðu; kÞ� 1, 0�Yðu; kÞ� 1 8k 2 Rþ,
ii. Gðu; kÞ þ Bðu; kÞ þ Yðu; kÞ� 3, (for k 2 Rþ),
iii. Gðu; kÞ ¼ 1 (for k[ 0) iff u ¼ 0,

iv. Gðru; kÞ ¼ Gðu; k
jrjÞ,

v. Gðu; lÞ 	 Gðv; kÞ�Gðuþ v; kþ lÞ,
vi. Gðu; :Þ is continuous non-decreasing function

vii. limk!1Gðu; kÞ ¼ 1,

viii. Bðu; kÞ ¼ 0 (for k[ 0) iff u ¼ 0,

ix. Bðru; kÞ ¼ Bðu; k
jrjÞ,

x. Bðu; lÞ � Bðv; kÞ�Bðuþ v; kþ lÞ,
xi. Bðu; :Þ is continuous non-increasing function,

xii. limk!1Bðu; kÞ ¼ 0,

xiii. Yðu; kÞ ¼ 0 (for k[ 0) iff u ¼ 0,

xiv. Yðru; kÞ ¼ Yðu; k
jrjÞ,

xv. Yðu; lÞ � Yðv; kÞ�Yðuþ v; kþ lÞ,
xvi. Yðu; :Þ is continuous non-increasing function

xvii. limk!1Yðu; kÞ ¼ 0,

xviii. If k� 0, then Gðu; kÞ ¼ 0, Bðu; kÞ ¼ 1 and Yðu; kÞ ¼ 1.

Then N ¼ ðG;B;YÞ is called Neutrosophic norm(NN).

Example 1 Let ðF; k:kÞ be a NS. Give the operations 	 and � as TN u 	 v ¼ uv;

TC u � v ¼ uþ v� uv. For k[ kuk,

Gðu; kÞ ¼ k
kþ kuk ; Bðu; kÞ ¼ kuk

kþ kuk Yðu; kÞ ¼ kuk
k

;

8u; v 2 F and k[ 0. If we take k�kuk, then Gðu; kÞ ¼ 0, Bðu; kÞ ¼ 1 and

Yðu; kÞ ¼ 1. Then, ðF;N ; 	; �Þ is NNS such that N : F 
 Rþ ! ½0; 1�.
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Definition 5 Let V be a NNS, the sequence ðanÞ in V, 0\e\1 and k[ 0. Then, the

sequence ðanÞ is converges to a if and only if there exists N 2 N such that

Gðan � a; kÞ[ 1� e, Bðan � a; kÞ\e and Yðan � a; kÞ\e. That is

limn!1 Gðan � a; kÞ ¼ 1, limn!1 Bðan � a; kÞ ¼ 0 and limn!1 Yðan � a; kÞ ¼ 0

as k[ 0. In that case, the sequence ðanÞ is called a convergent sequence in V. The

convergent in NNS is denoted by N � lim an ¼ L.

Theorem 1

i. If ðanÞ in V is convergent, then the limit point is unique.

ii. In V, if limn!1 an ¼ a and limn!1 bn ¼ b, then limn!1 an þ bn ¼ aþ b.

iii. In V, if limn!1 an ¼ a and a 6¼ 0, then limn!1 aan ¼ aa.

Since the theorem can be proved straightforward, we omitted it.

Definition 6 Let V be a NNS, the sequence ðanÞ in V, 0\e\1 and k[ 0. Then, the

sequence ðanÞ is Cauchy in NNS V if there is a N 2 N such that

Gðan � am; kÞ[ 1� e, Bðan � am; kÞ\e and Yðan � am; kÞ\e for n;m�N. A

NNS V is called complete iff every Cauchy sequence ðanÞ is converges to a in NNS

V.

Example 2 Consider the G;B;Y in Example 1. Then the V is a NNS. Further,

lim
m;n!1

k
kþ kan � amk

¼ 1; lim
m;n!1

kan � amk
kþ kan � amk

¼ 0; lim
m;n!1

kan � amk
k

¼ 0;

that is

lim
m;n!1

Gðan � am; kÞ ¼ 1; lim
m;n!1

Bðan � am; kÞ ¼ 0; lim
m;n!1

Yðan � am; kÞ ¼ 0:

Hence, we say that the sequence ðanÞ is a Cauchy in NNS V.

Note that every convergent sequence in V is a Cauchy. But the inverse of this

expression is not be true. For example, choose U ¼ f1
n
: n 2 Ng � R and kak ¼ jaj.

From the G;B;Y and NN in Example 1, we can say that ðU;N; 	; �Þ is a NNS. The
sequence ðanÞ is also Cauchy, but

lim
n!1

Bðan � am; kÞ ¼ lim
j 1
n
� 1

m
j

kþ j 1
n
� 1

m
j
6¼ 0: ð1Þ

That is the Cauchy sequence ðanÞ is not convergent in NMS.

Theorem 2

i. If for u; v 2 ½0; 1�, we take the continuous TN u 	 v ¼ minfu; vg and the

continuous TC u � v ¼ maxfu; vg , then every Cauchy sequence is bounded

in NMS V.

ii. Let the sequences ðanÞ and ðbnÞ be Cauchy and the sequence ðanÞ is scalars
in NMS V. Then, the sequences ðan þ bnÞ and ðananÞ are also Cauchy in

NMS V.
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iii. V is a complete NMS, if every Cauchy sequence has a convergent

subsequence in NMS V.

From the definitions of NMS, G;B;Y, Cauchy sequence in V, completeness, it

can be easily proved.

Example 3 let V be a NNS. If we take Gðu; v; kÞ ¼ Gðu� v; kÞ, Bðu; v; kÞ ¼
Bðu� v; kÞ and Yðu; v; kÞ ¼ Yðu� v; kÞ, then N ¼ ðG;B; YÞ is a NMS on F, which

is induced by the NNM N . Further, Gðu� v; kÞ ¼ Gðv� u; kÞ, Bðu� v; kÞ ¼
Bðv� u; kÞ and Yðu� v; kÞ ¼ Yðv� u; kÞ.

Definition 7 Let V be a NNS. For k[ 0, u 2 F and 0\e\1,

Oðu; e; kÞ ¼ fv 2 F : Gðu� v; kÞ[ 1� e; Bðu� v; kÞ\e; Yðu� v; kÞ\eg

is called open ball (OB) with center u, radius e.
A subset A � F is called open if for each u 2 A, there exist k[ 0, 0\e\1 such

that Oðu; e; kÞ � A.

If we take sN as the family of all open subset of F, then sN ¼ fforeach u 2
A; thereexist k[ 0; 0\e\1suchthat Oðu; e; kÞ � Ag is called the topology

induced by NN.

Definition 8 The set A � F is called neutrosophic-bounded(NB) in NNS V, if there

exist k[ 0, and e 2 ð0; 1Þ such that Gðu; kÞ[ 1� e, Bðu; kÞ\e and Yðu; kÞ\e for
each u 2 A.

Theorem 3 Every compact subset A of a NNS is NB.

This theorem can be proved similar to Theorem 3.9 in [13].

If V is NNS induced by NN and A � F, then A is NB if and only if it is bounded.

Then, using the Theorem 3, we have:

Corollary 1 In a NNS V, every compact set is closed and NB.

5 Statistical convergence on NNS

Definition 9 Take a NNS V. A sequence ðakÞ is called statistical convergence with

respect to NN (SC-NN), if there exist L 2 F such that the set

Ke :¼
�

k� n : Gðak � L; kÞ� 1� e or Bðak � L; kÞ� e; Yðak � L; kÞ� e

�

or equivalently
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Ke :¼
�

k� n : Gðak � L; kÞ[ 1� e or Bðak � L; kÞ\e; Yðak � L; kÞ\e

�

:

has ND zero, for every e[ 0 and k[ 0. That is dðKeÞ ¼ 0 or equivalently,

lim
n

1

n

�
�
�
�

�

k� n : Gðak � L; kÞ� 1� e or Bðak � L; kÞ� e; Yðak � L; kÞ� e

��
�
�
� ¼ 0:

Therefore, we write SN � lim ak ¼ L or ak ! LðSN Þ. The set of SC-NN will be

denoted by SN . If L ¼ 0, then we will write S0N .

Example 4 Let ðF; k:kÞ be a NS. For all u; v 2 ½0; 1�, define the TN u 	 v ¼ uv and

the TC u � v ¼ minfuþ v; 1g. We take G;B;Y in Example 1, for all a 2 F, k[ 0.

Then V is a NNS. Define,

ak ¼
1; k ¼ m2 ðm 2 NÞ
0; otherwise

�

Consider

Knðe; kÞ ¼ fk� n : Gðak; kÞ� 1� e or Bðak; kÞ� e; Yðak; kÞ� eg

for every e 2 ð0; 1Þ and for any k[ 0. Then we have,

Knðe; kÞ ¼ k� n :
k

kþ kakk
� 1� e or

kakk
kþ kakk

� e;
kakk
k

� e

� �

¼ k� n : kakk�
ke

1� e
; or kakk� ke

� �

¼ fk� n : ak ¼ 1g ¼ fk� n : k ¼ m2 and m 2 Ng:

Then,

1

n
Knðe; kÞj j ¼ 1

n
fk� n : k ¼ m2 and m 2 Ng
�
�

�
��

ffiffiffi
n

p

n

That is, when n becomes sufficiently large, the quantity Gðak; kÞ becomes less than

1� e and similarly the quantities Bðak; kÞ and Yðak; kÞ become larger than e. So,
1
n
Knðe; kÞj j ¼ 0 for e[ 0 and k[ 0.

Lemma 1 may be easily obtained by using the definitions and properties of

density dedicated in Sect. 2 and Definition 9.

Lemma 1 Choose a NNS V. The following statements are equivalent, for every

e[ 0 and k[ 0:

• i. SN � lim ak ¼ L,
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• ii. limn
1
n

�
�
�
�
�
k� n : Gðak � L; kÞ� 1� e

	
�
�
�
� ¼ limn

1
n

�
�
�
�
�
Bðak � L; kÞ� e

	
�
�
�
�

¼ limn
1
n

�
�
�
�
�
Yðak � L; kÞ� e

	
�
�
�
� ¼ 0

• iii. limn
1
n

�
�
�
�
�
k� n : Gðak � L; kÞ[ 1� e and, Bðak � L; kÞ\e,

Yðak � L; kÞ\e
	
�
�
�
� ¼ 1,

• iv. limn
1
n

�
�
�
�
�
k� n : Gðak � L; kÞ[ 1� e

	
�
�
�
� ¼ limn

1
n

�
�
�
�
�
k� n : Bðak � L; kÞ\ e

	
�
�
�
�

¼ limn
1
n

�
�
�
�
�
k� n : Yðak � L; kÞ\e

	
�
�
�
� ¼ 1.

• v. S� limGðak � L; kÞ ¼ 1, and S� limBðak � L; kÞ ¼ 0, S� lim

Yðak � L; kÞ ¼ 0.

Theorem 4 Let V be a NNS. If ðakÞ is SC-NN, then SN � lim ak ¼ L is unique.

Proof Suppose that SN � lim ak ¼ L1 and SN � lim ak ¼ L2 for L1 6¼ L2. Choose

e[ 0. Then, for a given l[ 0, ð1� eÞ 	 ð1� eÞ[ 1� l and e � e\l. For any

k[ 0, let’s write the following sets:

KG1ðe; kÞ :¼
n
k� n : G



ak � L1;

k
2

�
� 1� e

o
;

KG2ðe; kÞ :¼
n
k� n : G



ak � L2;

k
2

�
� 1� e

o

KB1ðe; kÞ :¼
n
k� n : B



ak � L1;

k
2

�
� e

o

KB2ðe; kÞ :¼
n
k� n : B



ak � L2;

k
2

�
� e

o

KY1ðe; kÞ :¼
n
k� n : Y



ak � L1;

k
2

�
� e

o

KY2ðe; kÞ :¼
n
k� n : Y



ak � L2;

k
2

�
� e

o
:

We know that SN � lim ak ¼ L1. Then, using the Lemma 1, for all k[ 0,

dðKG1ðl; kÞÞ ¼ dðKB1ðl; kÞÞ ¼ dðKY1ðl; kÞÞ ¼ 0:

Further, since we get SN � lim ak ¼ L2, using the Lemma 1, for k[ 0,

dðKG2ðl; kÞÞ ¼ dðKB2ðl; kÞÞ ¼ dðKY2ðl; kÞÞ ¼ 0:

Let

123

Neutrosophic normed spaces and statistical convergence



KN ðl; kÞ :¼
�
KG1ðl; kÞ [ KG2ðl; kÞ

	
\
�
KB1ðl; kÞ [ KB2ðl; kÞ

	

\
�
KY1ðl; kÞ [ KY2ðl; kÞ

	
:

Then observe that dðKN ðl; kÞÞ ¼ 0 which implies dðN=KN ðl; kÞÞ ¼ 1. Then, we

have three possible situations, when take k 2 N=KN ðl; kÞ:

i. k 2 N=
�
KG1ðl; kÞ [ KG2ðl; kÞ

�
,

ii. k 2 N=
�
KB1ðl; kÞ [ KB2ðl; kÞ

�
,

ii. k 2 N=
�
KY1ðl; kÞ [ KY2ðl; kÞ

�
.

Firstly, consider (i). Then we have

GðL1 � L2; kÞ�G ak � L1;
k
2

� 


	 G ak � L2;
k
2

� 


[ ð1� eÞ 	 ð1� eÞ:

and so since ð1� eÞ 	 ð1� eÞ[ 1� l,

GðL1 � L2; kÞ[ 1� l: ð2Þ

Using the (2), for all k[ 0, we obtain GðL1 � L2; kÞ ¼ 1, where l[ 0 is arbitrary.

That is, L1 ¼ L2 is obtained.

For the situation (ii.), if we take k 2 N=
�
KB1ðl; kÞ [ KB2ðl; kÞ

�
, then we can

write

BðL1 � L2; kÞ�B ak � L1;
k
2

� 


� B ak � L2;
k
2

� 


\e � e:

Using e � e\l, we can see that BðL1 � L2; kÞ\l. For all k[ 0, we obtain

BðL1 � L2; kÞ ¼ 0, where l[ 0 is arbitrary. Thus L1 ¼ L2. Again, for the situation

(iii.), if we take k 2 N=
�
KY1ðl; kÞ [ KY2ðl; kÞ

�
, then we can write

YðL1 � L2; kÞ�Y ak � L1;
k
2

� 


� Y ak � L2;
k
2

� 


\e � e:

Using e � e\l, we can see that YðL1 � L2; kÞ\l. For all k[ 0, we obtain

YðL1 � L2; kÞ ¼ 0. Thus L1 ¼ L2. This step completes the proof. h

Theorem 5 If N � lim ak ¼ L for NNS V , then SN � lim ak ¼ L.

Proof If N � lim ak ¼ L, then, for every e[ 0 and k[ 0, there exist a number

N 2 N such that Gðak � L; kÞ[ 1� e, and Bðak � L; kÞ\e, Yðak � L; kÞ\e,
for all k�N. Therefore, the set

fk� n : Gðak � L; kÞ� 1� e; or Bðak � L; kÞ� e; Yðak � L; kÞ� eg

has at most finitely many terms. Hence, since every finite subset of N has density

zero,
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lim
n

1

n
jfk� n : Gðak � L; kÞ� 1� e; or Bðak � L; kÞ� e;

Yðak � L; kÞ� egj ¼ 0:

This completes the proof. h

Theorem 6 Let V be an NNS. SN � lim ak ¼ L iff there exists a increasing index

sequence J ¼ fj1; j2; . . .g � N, while dðJÞ ¼ 1, N � limn!1 ajn ¼ L.

Proof Suppose that SGN � lim ak ¼ L. For any k[ 0 and l ¼ 1; 2; . . .,

PN ðl; kÞ ¼
�

k�N : Gðak � L; kÞ[ 1� 1

l
and Bðak � L; kÞ\ 1

l
;

Yðak � L; kÞ\ 1

l

�

and

RN ðl; kÞ ¼
�

k�N : Gak � L; kÞ� 1� 1

l
or

Bðak � L; kÞ� 1

l
; Yðak � L; kÞ� 1

l

�

:

Then, dðRN ðl; kÞÞ ¼ 0, since SN � lim ak ¼ L. Further, for k[ 0 and l ¼ 1; 2; . . .,
PN ðl; kÞ 
 PN ðlþ 1; kÞ and so,

dðPGN ðl; kÞÞ ¼ 1: ð3Þ

Now, we will show that for k 2 PN ðl; kÞ, N � lim ak ¼ L. Assume that

N � lim ak 6¼ L, for some k 2 PN ðl; kÞ. Then, there is q[ 0 and a positive integer

N such that Gðak � L; kÞ� 1� q or Bðak � L; kÞ� q, Yðak � L; kÞ� q, for all

k�N. Let Gðak � L; kÞ[ 1� q and Bðak � L; kÞ\q, Yðak � L; kÞ\q for all

k\N. Hence

lim
n

1

n

�
�
�
�fk�N : Gðak � L; kÞ[ 1� q and

Bðak � L; kÞ\q; Yðak � L; kÞ\sg
�
�
�
� ¼ 0:

Since q[ 1=l, we obtain dðPN ðl; kÞÞ ¼ 0, which contradicts (3). That’s why,

N � lim ak ¼ L.
Assume that there exists a subset J ¼ fj1; j2; . . .g � N such that dðJÞ ¼ 1 and

N � limn!1 ajn ¼ L, i.e. there exists N 2 N such that Gðak � L; kÞ[ 1� l and

Bðak � L; kÞ\l, Yðak � L; kÞ\l, for every l[ 0 and k[ 0. In that case,
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RN ðl; kÞ :¼ fk�N : Gðak � L; kÞ� 1� l or Bðak � L; kÞ
� l; Yðak � L; kÞ� lg
� N � fjNþ1; jNþ2;...g:

Therefore dðRN ðl; kÞÞ� 1� 1 ¼ 0. Hence SN � lim ak ¼ L. h

6 Statistical complete NNS

Definition 10 The sequence ðakÞ is called statistically Cauchy with respect to NN

N (SCa� NN) in NNS V, if there exists N ¼ NðeÞ, for every e[ 0 and k[ 0 such

that

KCe :¼ fk� n : Gðak � aN ; kÞ� 1� e or Bðak � aN ; kÞ� e; Yðak � aN ; kÞ� eg

has ND zero. That is, dðKCeÞ ¼ 0.

Theorem 7 If a sequence ðakÞ is SC � NN in NNS V, then it is SCa� NN.

Proof Let ðakÞ be SC-NN. We get ð1� eÞ 	 ð1� eÞ[ 1� l and e � e\l, for a

given e[ 0, choose l[ 0. Then we have,

dðAðe; kÞÞ ¼ d k� n : G ak � L; k
2

� 


� 1� e or

��

B ak � L; k
2

� 


� e;Y ak � L; k
2

� 


� e

�
 ð4Þ

and so

d ACðe; kÞ
� �

¼ d k� n : G ak � L; k
2

� 


Þ[ 1� e and

��

Bðak � LÞ; k
2




\e; Yðak � LÞ; k
2
Þ\e

�

Þ ¼ 1;

for k[ 0. Let p 2 ACðe; kÞ. Then,

Gðap � L; kÞ[ 1� e and Bðap � L; kÞ\e; Yðap � L; kÞ\e:

Let

Bðe; kÞ ¼ k� n : Gðak � ap; kÞ� 1� l or
�

Bðak � ap; kÞ� l; Yðak � ap; kÞ� l
	
:

We claim that Bðe; kÞ � Aðe; kÞ. Let q 2 Bðe; kÞ=Aðe; kÞ. Then,

Gðaq � ap; kÞ� 1� l and G aq � L; k
2

� 


[ 1� l;

in particular Gðap � L; k
2
Þ[ 1� e. Then,
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1� l�Gðaq � ap; kÞ�G aq � L; k
2

� 


	 G ap � L; k
2

� 


[ ð1� eÞ 	 ð1� eÞ[ 1� l;

which is not possible. Moreover,

Bðaq � ap; kÞ� l and B aq � L; k
2

� 


\l;

in particular Bðap � L; k
2
Þ\e. Then,

l�Bðaq � ap; kÞ�B aq � L; k
2

� 


	 B ap � L; k
2

� 


\e � e\l;

which is not possible. Similarly,

Yðaq � ap; kÞ� l and Y aq � L; k
2

� 


\l;

in particular Yðap � L; k
2
Þ\e. Then,

l�Yðaq � ap; kÞ�Y aq � L; k
2

� 


	 Y ap � L; k
2

� 


\e � e\l;

which is not possible. In that case, Bðe; kÞ � Aðe; kÞ. Then, by (4), dðe; kÞ ¼ 0 and

ðakÞ is SCa-NN. h

Definition 11 The NNS V is called statistically ðSC � NNÞ complete, if every

SCa� NN is SC � NN.

Theorem 8 Every NNS V is ðSC � NNÞ�complete.

Proof Let ðakÞ be SCa� NN but not SC � NN. Choose l[ 0. We get ð1� eÞ 	
ð1� eÞ[ 1� l and e � e\l, for a given e[ 0 and k[ 0,. Since ðakÞ is not

SC � NN,

Gðak � aN ; kÞ�G ak � L; k
2

� 


	 G aN � L; k
2

� 


[ ð1� eÞ 	 ð1� eÞ[ 1� l;

Bðak � aN ; kÞ�B ak � L; k
2

� 


� B aN � L; k
2

� 


\e � e\l;

Yðak � aN ; kÞ�Y ak � L; k
2

� 


� Y aN � L; k
2

� 


\e � e\l:

For

Tðe; kÞ ¼ fk�N : Bak�aN ðeÞ� 1� lg;

dðTCðe; kÞÞ ¼ 0 and so dðTðe; kÞÞ ¼ 1, which is a contradiction, since ðakÞ was

SCa� NN. So that ðakÞ must be SC � NN. Hence every NNS is

ðSC � NNÞ�complete. h

From Theorems 6, 7, 8, we have:
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Theorem 9 Let V be an NNS. Then, for any sequence ðakÞ 2 F, the following

conditions are equivalent:

i. ðakÞ is SC � NN.

ii. ðakÞ is SCa� NN.

iii. NNS V is ðSC � NNÞ�complete.

iv. There exists an increasing index sequence J ¼ ðjnÞ of natural numbers such
that dðJÞ ¼ 1 and the subsequence ðajnÞ is a SCa� NN.

7 Conclusion

We have defined to neutrosophic normed space and statistical convergence in

neutrosophic normed space. The structural characteristic properties of NNSs have

been established and examples are given. Further, statistical convergence with

respect to neutrosophic norm is introduced and some fundamental properties are

examined. Statistical Cauchy sequence and statistically completeness for neutro-

sophic norm are defined.
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