Neutrosophic \mathcal{N}-structures and their applications in semigroups

MADAD KHAN, SAIMA ANIS, FLORENTIN SMARANDACHE, YOUNG BAE JUN

Received 3 September 2017; Revised 1 October 2017; Accepted 5 October 2017

Abstract. The notion of neutrosophic \mathcal{N}-structure is introduced, and applied it to semigroup. The notions of neutrosophic \mathcal{N}-subsemigroup, neutrosophic \mathcal{N}-product and ε-neutrosophic \mathcal{N}-subsemigroup are introduced, and several properties are investigated. Conditions for neutrosophic \mathcal{N}-structure to be neutrosophic \mathcal{N}-subsemigroup are provided. Using neutrosophic \mathcal{N}-product, characterization of neutrosophic \mathcal{N}-subsemigroup is discussed. Relations between neutrosophic \mathcal{N}-subsemigroup and ε-neutrosophic \mathcal{N}-subsemigroup are discussed. We show that the homomorphic preimage of neutrosophic \mathcal{N}-subsemigroup is a neutrosophic \mathcal{N}-subsemigroup, and the onto homomorphic image of neutrosophic \mathcal{N}-subsemigroup is a neutrosophic \mathcal{N}-subsemigroup.

Keywords: Neutrosophic \mathcal{N}-structure, neutrosophic \mathcal{N}-subsemigroup, ε-neutrosophic \mathcal{N}-subsemigroup, neutrosophic \mathcal{N}-product.

Corresponding Author: Y. B. Jun (skywine@gmail.com)

1. Introduction

Zadeh [?] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov [?] introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache proposed the term “neutrosophic” because “neutrosophic” etymologically comes from “neutrosophy” [French neutre, Latin neuter, neutral, and Greek sophia, skill/wisdom] which means knowledge of neutral thought, and this third/neutural represents the main distinction between “fuzzy”/“intuitionistic fuzzy” logic/set and “neutrosophic” logic/set, i.e. the included middle component (Lupasco-Nicolescu’s logic in philosophy), i.e. the neutral/indeterminate/unknown part (besides the “truth”/“membership” and “falsehood”/“non-membership” components
that both appear in fuzzy logic/set). Smarandache introduced the degree of indeterminacy/neutrality (i) as independent component in 1995 (published in 1998) and defined the neutrosophic set on three components

\[(t, i, f) = (\text{truth, indeterminacy, falsehood}).\]

For more detail, refer to the site

http://fs.gallup.unm.edu/FlorentinSmarandache.htm.

The concept of neutrosophic set (NS) developed by Smarandache \[?\] and Smarandache \[?\] is a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various part (refer to the site

http://fs.gallup.unm.edu/neutrosophy.htm).

A (crisp) set \(A\) in a universe \(X\) can be defined in the form of its characteristic function \(\mu_A : X \to \{0, 1\}\) yielding the value 1 for elements belonging to the set \(A\) and the value 0 for elements excluded from the set \(A\). So far most of the generalization of the crisp set have been conducted on the unit interval \([0, 1]\) and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point \(\{1\}\) into the interval \([0, 1]\). Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. \[?\] introduced a new function which is called negative-valued function, and constructed \(N\)-structures. This structure is applied to \(BE\)-algebra, \(BCK/BCI\)-algebra and \(BCH\)-algebra etc. (see \[?\], \[?\], \[?\], \[?\]).

In this paper, we introduce the notion of neutrosophic \(N\)-structure and applied it to semigroup. We introduce the notion of neutrosophic \(N\)-subsemi-group and investigate several properties. We provide conditions for neutrosophic \(N\)-structure to be neutrosophic \(N\)-subsemigroup. We define neutrosophic \(N\)-product, and give characterization of neutrosophic \(N\)-subsemigroup by using neutrosophic \(N\)-product. We also introduce \(\epsilon\)-neutrosophic subsemigroup, and investigate relations between neutrosophic subsemigroup and \(\epsilon\)-neutrosophic subsemigroup. We show that the homomorph preimage of neutrosophic \(N\)-subsemigroup is a neutrosophic \(N\)-subsemigroup, and the onto homomorph image of neutrosophic \(N\)-subsemigroup is a neutrosophic \(N\)-subsemigroup.

2. Preliminaries

Let \(X\) be a semigroup. Let \(A\) and \(B\) be subsets of \(X\). Then the multiplication of \(A\) and \(B\) is defined as follows:

\[AB = \{ab \in X \mid a \in A, b \in B\}.

By a subsemigroup of \(X\), we mean a nonempty subset \(A\) of \(X\) such that \(A^2 \subseteq A\). We consider the empty set \(\emptyset\) is always a subsemigroup of \(X\).

We refer the reader to the book \[?\] for further information regarding fuzzy semigroups.
For any family \(\{ a_i \mid i \in \Lambda \} \) of real numbers, we define:

\[
\bigvee \{ a_i \mid i \in \Lambda \} := \begin{cases}
\max \{ a_i \mid i \in \Lambda \} & \text{if } \Lambda \text{ is finite,} \\
\sup \{ a_i \mid i \in \Lambda \} & \text{otherwise}
\end{cases}
\]

and

\[
\bigwedge \{ a_i \mid i \in \Lambda \} := \begin{cases}
\min \{ a_i \mid i \in \Lambda \} & \text{if } \Lambda \text{ is finite,} \\
\inf \{ a_i \mid i \in \Lambda \} & \text{otherwise.}
\end{cases}
\]

For any real numbers \(a \) and \(b \), we also use \(a \lor b \) and \(a \land b \) instead of \(\bigvee \{ a, b \} \) and \(\bigwedge \{ a, b \} \), respectively.

3. Neutrosophic \(\mathcal{N} \)-Structures

Denote by \(\mathcal{F}(X, [-1, 0]) \) the collection of functions from a set \(X \) to \([-1, 0]\). We say that an element of \(\mathcal{F}(X, [-1, 0]) \) is a negative-valued function from \(X \) to \([-1, 0]\) (briefly, \(\mathcal{N} \)-function on \(X \)). By an \(\mathcal{N} \)-structure, we mean an ordered pair \((X, f) \) of \(X \) and an \(\mathcal{N} \)-function \(f \) on \(X \). In what follows, let \(X \) denote the nonempty universe of discourse unless otherwise specified.

Definition 3.1. A neutrosophic \(\mathcal{N} \)-structure over \(X \) is defined to be the structure:

\[
X_{\mathcal{N}} := \left\{ \frac{x}{(T_{X}, I_{X}, F_{X})} \mid | x | \in X \right\}
\]

where \(T_{X} \), \(I_{X} \) and \(F_{X} \) are \(\mathcal{N} \)-functions on \(X \) which are called the negative truth membership function, the negative indeterminacy membership function and the negative falsity membership function, respectively, on \(X \).

Note that every neutrosophic \(\mathcal{N} \)-structure \(X_{\mathcal{N}} \) over \(X \) satisfies the condition:

\[
(\forall x \in X) (-3 \leq T_{X}(x) + I_{X}(x) + F_{X}(x) \leq 0).
\]

Example 3.2. Consider a universe of discourse \(X = \{x, y, z\} \). We know that

\[
X_{\mathcal{N}} = \left\{ \begin{array}{c}
x \\
(-0.7, -0.5, -0.1) \\
(-0.2, -0.3, -0.4) \\
(-0.3, -0.6, -0.1)
\end{array} \right\}
\]

is a neutrosophic \(\mathcal{N} \)-structure over \(X \).

Definition 3.3. Let \(X_{\mathcal{N}} := \left(\frac{T_{X}}{(T_{X}, I_{X}, F_{X})} \right) \) and \(X_{\mathcal{M}} := \left(\frac{T_{X}}{(T_{X}, I_{X}, F_{X})} \right) \) be neutrosophic \(\mathcal{N} \)-structures over \(X \). We say that \(X_{\mathcal{M}} \) is a neutrosophic \(\mathcal{N} \)-substructure over \(X \), denoted by \(X_{\mathcal{N}} \subseteq X_{\mathcal{M}} \), if it satisfies:

\[
(\forall x \in X) (T_{X}(x) \geq T_{X}(x), I_{X}(x) \leq I_{X}(x), F_{X}(x) \leq F_{X}(x)).
\]

If \(X_{\mathcal{N}} \subseteq X_{\mathcal{M}} \) and \(X_{\mathcal{M}} \subseteq X_{\mathcal{N}} \), we say that \(X_{\mathcal{N}} = X_{\mathcal{M}} \).

Definition 3.4. Let \(X_{\mathcal{N}} := \left(\frac{T_{X}}{(T_{X}, I_{X}, F_{X})} \right) \) and \(X_{\mathcal{M}} := \left(\frac{T_{X}}{(T_{X}, I_{X}, F_{X})} \right) \) be neutrosophic \(\mathcal{N} \)-structures over \(X \).

1. The union of \(X_{\mathcal{N}} \) and \(X_{\mathcal{M}} \) is defined to be a neutrosophic \(\mathcal{N} \)-structure

\[
X_{\mathcal{N} \cup \mathcal{M}} = (X; T_{\mathcal{N} \cup \mathcal{M}}, I_{\mathcal{N} \cup \mathcal{M}}, F_{\mathcal{N} \cup \mathcal{M}}),
\]
where
\[
T_{N\cup M}(x) = \bigwedge \{T_N(x), T_M(x)\},
\]
\[
I_{N\cup M}(x) = \bigvee \{I_N(x), I_M(x)\},
\]
\[
F_{N\cup M}(x) = \bigwedge \{F_N(x), F_M(x)\},
\]
for all \(x \in X\).

(2) The intersection of \(X_N\) and \(X_M\) is defined to be a neutrosophic \(N\)-structure
\[
X_{N\cap M} = (X; T_{N\cap M}, I_{N\cap M}, F_{N\cap M}),
\]
where
\[
T_{N\cap M}(x) = \bigvee \{T_N(x), T_M(x)\},
\]
\[
I_{N\cap M}(x) = \bigwedge \{I_N(x), I_M(x)\},
\]
\[
F_{N\cap M}(x) = \bigvee \{F_N(x), F_M(x)\},
\]
for all \(x \in X\).

Definition 3.5. Given a neutrosophic \(N\)-structure \(X_N := (X; T_N, I_N, F_N)\) over \(X\), the complement of \(X_N\) is defined to be a neutrosophic \(N\)-structure
\[
X_{N^c} := \frac{X}{(T_{N^c}, I_{N^c}, F_{N^c})}
\]
over \(X\), where
\[
T_{N^c}(x) = -1 - T_N(x), \quad I_{N^c}(x) = -1 - I_N(x) \quad \text{and} \quad F_{N^c}(x) = -1 - F_N(x),
\]
for all \(x \in X\).

Example 3.6. Let \(X = \{a, b, c\}\) be a universe of discourse and let \(X_N\) be the neutrosophic \(N\)-structure over \(X\) in Example ???. Let \(X_M\) be a neutrosophic \(N\)-structure over \(X\) which is given by
\[
X_M = \left\{ \frac{x}{(-0.3, -0.5, -0.2)}, \frac{y}{(-0.4, -0.2, -0.2)}, \frac{z}{(-0.5, -0.7, -0.8)} \right\}.
\]
The union and intersection of \(X_N\) and \(X_M\) are given as follows respectively:
\[
X_{N\cup M} = \left\{ \frac{x}{(-0.7, -0.5, -0.2)}, \frac{y}{(-0.4, -0.3, -0.4)}, \frac{z}{(-0.5, -0.7), -0.8) \right\},
\]
and
\[
X_{N\cap M} = \left\{ \frac{x}{(-0.3, -0.5, -0.1)}, \frac{y}{(-0.2, -0.2, -0.2)}, \frac{z}{(-0.3, -0.6, -0.1) \right\}.
\]
The complement of \(X_N\) is given by
\[
X_{M^c} = \left\{ \frac{x}{(-0.7, -0.5, -0.8)}, \frac{y}{(-0.6, -0.8, -0.8)}, \frac{z}{(-0.5, -0.3, -0.2) \right\}.\]
4. Applications in Semigroups

In this section, we take a semigroup X as the universe of discourse unless otherwise specified.

Definition 4.1. A neutrosophic \mathcal{N}-structure X_N over X is called a neutrosophic \mathcal{N}-subsemigroup of X if the following condition is valid:

$$
(\forall x, y \in X) \left(T_N(xy) \leq \bigvee \{T_N(x), T_N(y)\},
I_N(xy) \geq \bigwedge \{I_N(x), I_N(y)\},
F_N(xy) \leq \bigvee \{F_N(x), F_N(y)\} \right).
$$

Let X_N be a neutrosophic \mathcal{N}-structure over X and let $\alpha, \beta, \gamma \in [-1, 0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. Consider the following sets:

$$
T_N^\alpha := \{x \in X \mid T_N(x) \leq \alpha\},
I_N^\beta := \{x \in X \mid I_N(x) \geq \beta\},
F_N^\gamma := \{x \in X \mid F_N(x) \leq \gamma\}.
$$

The set

$$
X_N(\alpha, \beta, \gamma) := \{x \in X \mid T_N(x) \leq \alpha, I_N(x) \geq \beta, F_N(x) \leq \gamma\}
$$

is called a (α, β, γ)-level set of X_N. Note that

$$
X_N(\alpha, \beta, \gamma) = T_N^\alpha \cap I_N^\beta \cap F_N^\gamma.
$$

Theorem 4.2. Let X_N be a neutrosophic \mathcal{N}-structure over X and let $\alpha, \beta, \gamma \in [-1, 0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If X_N is a neutrosophic \mathcal{N}-subsemigroup of X, then the (α, β, γ)-level set of X_N is a subsemigroup of X whenever it is nonempty.

Proof. Assume that $X_N(\alpha, \beta, \gamma) \neq \emptyset$ for $\alpha, \beta, \gamma \in [-1, 0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$. Let $x, y \in X_N(\alpha, \beta, \gamma)$. Then $T_N(x) \leq \alpha$, $I_N(x) \geq \beta$, $F_N(x) \leq \gamma$, $T_N(y) \leq \alpha$, $I_N(y) \geq \beta$ and $F_N(y) \leq \gamma$. Thus it follows from (4.1) that

$$
T_N(xy) \leq \bigvee \{T_N(x), T_N(y)\} \leq \alpha,
$$

$$
I_N(xy) \geq \bigwedge \{I_N(x), I_N(y)\} \geq \beta,
$$

$$
F_N(xy) \leq \bigvee \{F_N(x), F_N(y)\} \leq \gamma.
$$

So $xy \in X_N(\alpha, \beta, \gamma)$. Hence $X_N(\alpha, \beta, \gamma)$ is a subsemigroup of X.

Theorem 4.3. Let X_N be a neutrosophic \mathcal{N}-structure over X and let $\alpha, \beta, \gamma \in [-1, 0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If T_N^α, I_N^β and F_N^γ are subsemigroups of X, then X_N is a neutrosophic \mathcal{N}-subsemigroup of X.

Proof. Assume that there are $a, b \in X$ such that $T_N(ab) > \bigvee \{T_N(a), T_N(b)\}$. Then $T_N(ab) > t_\alpha \geq \bigvee \{T_N(a), T_N(b)\}$ for some $t_\alpha \in [-1, 0]$. Thus $a, b \in T_N^\alpha$ but $ab \notin T_N^\alpha$, which is a contradiction. So

$$
T_N(xy) \leq \bigvee \{T_N(x), T_N(y)\},
$$
for all \(x, y \in X \).

Assume that \(I_N(ab) < \bigwedge \{ I_N(a), I_N(b) \} \), for some \(a, b \in X \). Then \(a, b \in I_N^{t} \) and \(ab \notin I_N^{t} \), for \(t \in [-1, 0) \). This is a contradiction. Thus

\[
I_N(xy) \geq \bigwedge \{ I_N(x), I_N(y) \},
\]

for all \(x, y \in X \).

Now, suppose that there exist \(a, b \in X \) and \(t, \gamma \in [-1, 0) \) such that

\[
F_N(ab) > t \geq \bigvee \{ F_N(a), F_N(b) \}.
\]

Then \(a, b \in F_N^{t} \) and \(ab \notin F_N^{t} \), which is a contradiction. Thus

\[
F_N(xy) \leq \bigvee \{ F_N(x), F_N(y) \},
\]

for all \(x, y \in X \). Hence \(X_N \) is a neutrosophic \(N \)-subsemigroup of \(X \).

Theorem 4.4. The intersection of two neutrosophic \(N \)-subsemigroups is also a neutrosophic \(N \)-subsemigroup.

Proof. Let \(X_N := \frac{X}{I_N(I_N,F_N)} \) and \(X_M := \frac{X}{I_M(I_M,F_M)} \) be neutrosophic \(N \)-subsemigroups of \(X \). For any \(x, y \in X \), we have

\[
T_{N \cap M}(xy) = \bigvee \{ T_N(xy), T_M(xy) \}
\]

\[
\leq \bigvee \{ \bigvee \{ T_N(x), T_N(y) \}, \bigvee \{ T_M(x), T_M(y) \} \}
\]

\[
= \bigvee \{ \bigvee \{ T_N(x), T_M(x) \}, \bigvee \{ T_N(y), T_M(y) \} \}
\]

\[
= \bigvee \{ T_N \cap M(x), T_N \cap M(y) \},
\]

\[
I_{N \cap M}(xy) = \bigwedge \{ I_N(xy), I_M(xy) \}
\]

\[
\geq \bigwedge \{ \bigwedge \{ I_N(x), I_N(y) \}, \bigwedge \{ I_M(x), I_M(y) \} \}
\]

\[
= \bigwedge \{ \bigwedge \{ I_N(x), I_M(x) \}, \bigwedge \{ I_N(y), I_M(y) \} \}
\]

\[
= \bigwedge \{ I_N \cap M(x), I_N \cap M(y) \}
\]

and

\[
F_{N \cap M}(xy) = \bigvee \{ F_N(xy), F_M(xy) \}
\]

\[
\leq \bigvee \{ \bigvee \{ F_N(x), F_N(y) \}, \bigvee \{ F_M(x), F_M(y) \} \}
\]

\[
= \bigvee \{ \bigvee \{ F_N(x), F_M(x) \}, \bigvee \{ F_N(y), F_M(y) \} \}
\]

\[
= \bigvee \{ F_{N \cap M}(x), F_{N \cap M}(y) \},
\]

for all \(x, y \in X \). Then \(X_{N \cap M} \) is a neutrosophic \(N \)-subsemigroup of \(X \).

Corollary 4.5. If \(\{ X_{N_i} \mid i \in \mathbb{N} \} \) is a family of neutrosophic \(N \)-subsemigroups of \(X \), then so is \(X_{\cap N_i} \).
Let \(X_N := \frac{x}{(T_N,F_N)} \) and \(X_M := \frac{x}{(T_M,F_M)} \) be neutrosophic \(N \)-structures over \(X \). The neutrosophic \(N \)-product of \(X_N \) and \(X_M \) is defined to be a neutrosophic \(N \)-structure over \(X \)

\[
X_N \circ X_M = \left\{ x \frac{T_{N \circ M}}{T_{N \circ M}(x), F_{N \circ M}(x), I_{N \circ M}(x) \mid x \in X} \right\},
\]

where

\[
T_{N \circ M}(x) = \begin{cases} \wedge_{x=yz} \{T_N(y) \lor T_M(z)\} & \text{if } \exists y, z \in X \text{ such that } x = yz \\ 0 & \text{otherwise}, \end{cases}
\]

\[
I_{N \circ M}(x) = \begin{cases} \lor_{x=yz} \{I_N(y) \land I_M(z)\} & \text{if } \exists y, z \in X \text{ such that } x = yz \\ -1 & \text{otherwise} \end{cases}
\]

and

\[
F_{N \circ M}(x) = \begin{cases} \wedge_{x=yz} \{F_N(y) \lor F_M(z)\} & \text{if } \exists y, z \in X \text{ such that } x = yz \\ 0 & \text{otherwise} \end{cases}
\]

For any \(x \in X \), the element \(\frac{x}{(T_{N \circ M}(x), I_{N \circ M}(x), F_{N \circ M}(x))} \) is simply denoted by

\[
(X_N \circ X_M)(x) := (T_{N \circ M}(x), I_{N \circ M}(x), F_{N \circ M}(x))
\]

for the sake of convenience.

Theorem 4.6. A neutrosophic \(N \)-structure \(X_N \) over \(X \) is a neutrosophic \(N \)-subsemigroup of \(X \) if and only if \(X_N \circ X_N \subseteq X_N \).

Proof. Assume that \(X_N \) is a neutrosophic \(N \)-subsemigroup of \(X \) and let \(x \in X \). If \(x \neq yz \) for all \(x, y \in X \), then clearly \(X_N \circ X_N \subseteq X_N \). Assume that there exist \(a, b \in X \) such that \(x = ab \). Then

\[
T_{N \circ N}(x) = \wedge_{x=ab} \{T_N(a) \lor T_N(b)\} \geq \wedge_{x=ab} T_N(ab) = T_N(x),
\]

\[
I_{N \circ N}(x) = \lor_{x=ab} \{I_N(a) \land I_N(b)\} \leq \lor_{x=ab} I_N(ab) = I_N(x),
\]

and

\[
F_{N \circ N}(x) = \wedge_{x=ab} \{F_N(a) \lor F_N(b)\} \geq \wedge_{x=ab} F_N(ab) = F_N(x).
\]

Thus \(X_N \circ X_N \subseteq X_N \).

Conversely, let \(X_N \) be any neutrosophic \(N \)-structure over \(X \) such that \(X_N \circ X_N \subseteq X_N \). Let \(x \) and \(y \) be any elements of \(X \) and let \(a = xy \). Then

\[
T_N(xy) = T_N(a) \leq T_{N \circ N}(a) = \wedge_{a=bc} \{T_N(b) \lor T_N(c)\} \leq T_N(x) \lor T_N(y),
\]

\[
I_N(xy) = I_N(a) \geq I_{N \circ N}(a) = \lor_{a=bc} \{I_N(b) \land I_N(c)\} \geq I_N(x) \land I_N(y),
\]

for the sake of convenience.
and
\[F_N(xy) = F_N(a) \leq F_{N\circ N}(a) = \bigwedge_{a=bc} \{F_N(b) \vee F_N(c)\} \leq F_N(x) \vee F_N(y). \]

Thus \(X_N \) is a neutrosophic \(N \)-subsemigroup of \(X \).

Since \([-1, 0]\) is a completely distributive lattice with respect to the usual ordering, we have the following theorem.

Theorem 4.7. If \(\{X_N, \mid i \in \mathbb{N}\} \) is a family of neutrosophic \(N \)-subsemigroups of \(X \),

then \((\{X_N, \mid i \in \mathbb{N}\}, \subseteq) \) forms a complete distributive lattice.

Theorem 4.8. Let \(X \) be a semigroup with identity \(e \) and let \(X_N := X_{(T_N, I_N, F_N)} \) be a neutrosophic \(N \)-structure over \(X \) such that

\[(\forall x \in X) (X_N(e) \geq X_N(x)), \]

that is, \(T_N(e) \leq T_N(x), \quad I_N(e) \geq I_N(x) \quad \text{and} \quad F_N(e) \leq F_N(x) \)

for all \(x \in X \). If \(X_N \) is a neutrosophic \(N \)-subsemigroup of \(X \), then \(X_N \) is neutrosophic idempotent, that is, \(X_N \circ X_N = X_N \).

Proof. For any \(x \in X \), we have
\[
T_N \circ N(x) = \bigwedge_{x=yz} \{T_N(y) \vee T_N(z)\} \leq T_N(x) \vee T_N(e) = T_N(x),
\]
\[
I_{N \circ N}(x) = \bigvee_{x=yz} \{I_N(y) \wedge I_N(z)\} \geq I_N(x) \wedge I_N(e) = I_N(x)
\]

and
\[
F_{N \circ N}(x) = \bigwedge_{x=yz} \{F_N(y) \vee F_N(z)\} \leq F_N(x) \vee F_N(e) = F_N(x).
\]

This shows that \(X_N \subseteq X_N \circ X_N \). Since \(X_N \supseteq X_N \circ X_N \), by Theorem 4.7, we know that \(X_N \) is neutrosophic idempotent.

Definition 4.9. A neutrosophic \(N \)-structure \(X_N \) over \(X \) is called an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(X \), if the following condition is valid:

\[
(\forall x, y \in X) \quad \begin{cases}
T_N(xy) \leq \bigvee \{T_N(x), T_N(y), \varepsilon_T\} \\
I_N(xy) \geq \bigwedge \{I_N(x), I_N(y), \varepsilon_I\} \\
F_N(xy) \leq \bigvee \{F_N(x), F_N(y), \varepsilon_F\}
\end{cases}
\]

where \(\varepsilon_T, \varepsilon_I, \varepsilon_F \in [-1, 0] \) such that \(-3 \leq \varepsilon_T + \varepsilon_I + \varepsilon_F \leq 0 \).

Example 4.10. Let \(X = \{e, a, b, c\} \) be a semigroup with the Cayley table which is given in Table 1.

Let \(X_N \) be a neutrosophic \(N \)-structure over \(X \) which is given as follows:

\[
X_N = \left\{ \begin{array}{ccc}
e & a & b \\
(-0.4, -0.3, -0.25) & (-0.3, -0.5, -0.25) & (-0.2, -0.3, -0.2) \\
b & c & \end{array} \right\}, \quad
\end{array}
\]

Then \(X_N \) is an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(X \) with \(\varepsilon = (-0.4, -0.2, -0.3). \)
Proposition 4.11. Let X_N be an ε-neutrosophic N-subsemigroup of X. If $X_N(x) \leq (\varepsilon_T, \varepsilon_I, \varepsilon_F)$, that is, $T_N(x) \geq \varepsilon_T$, $I_N(x) \leq \varepsilon_I$ and $F_N(x) \geq \varepsilon_F$, for all $x \in X$, then X_N is a neutrosophic N-subsemigroup of X.

Proof. Straightforward. \hfill \Box

Theorem 4.12. Let X_N be a neutrosophic N-structure over X and let $\alpha, \beta, \gamma \in [-1,0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If X_N is an ε-neutrosophic N-subsemigroup of X, then the (α, β, γ)-level set of X_N is a subsemigroup of X whenever $(\alpha, \beta, \gamma) \leq (\varepsilon_T, \varepsilon_I, \varepsilon_F)$, that is, $\alpha \geq \varepsilon_T$, $\beta \leq \varepsilon_I$ and $\gamma \geq \varepsilon_F$.

Proof. Assume that $X_N(\alpha, \beta, \gamma) \neq \emptyset$ for $\alpha, \beta, \gamma \in [-1,0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$. Let $x, y \in X_N(\alpha, \beta, \gamma)$. Then $T_N(x) \leq \alpha$, $I_N(x) \geq \beta$, $F_N(x) \leq \gamma$, $T_N(y) \leq \alpha$, $I_N(y) \geq \beta$ and $F_N(y) \leq \gamma$. Thus it follows from (??) that

\[
T_N(xy) \leq \bigvee\{T_N(x), T_N(y), \varepsilon_T\} \leq \bigvee\{\alpha, \varepsilon_T\} = \alpha,
\]

\[
I_N(xy) \geq \bigwedge\{I_N(x), I_N(y), \varepsilon_I\} \geq \bigwedge\{\beta, \varepsilon_I\} = \beta,
\]

\[
F_N(xy) \leq \bigvee\{F_N(x), F_N(y), \varepsilon_F\} \leq \bigvee\{\gamma, \varepsilon_F\} = \gamma.
\]

So $xy \in X_N(\alpha, \beta, \gamma)$. Hence $X_N(\alpha, \beta, \gamma)$ is a subsemigroup of X. \hfill \Box

Theorem 4.13. Let X_N be a neutrosophic N-structure over X and let $\alpha, \beta, \gamma \in [-1,0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If T_N^α, I_N^β and F_N^γ are subsemigroups of X for all $\varepsilon_T, \varepsilon_I, \varepsilon_F \in [-1,0]$ with $-3 \leq \varepsilon_T + \varepsilon_I + \varepsilon_F \leq 0$ and $(\alpha, \beta, \gamma) \leq (\varepsilon_T, \varepsilon_I, \varepsilon_F)$, then X_N is an ε-neutrosophic N-subsemigroup of X.

Proof. Assume that there are $a, b \in X$ such that

\[
T_N(ab) > \bigvee\{T_N(a), T_N(b), \varepsilon_T\}.
\]

Then $T_N(ab) > t_\alpha \geq \bigvee\{T_N(a), T_N(b), \varepsilon_T\}$, for some $t_\alpha \in [-1,0)$. It follows that $a, b \in T_N^{t_\alpha}$, $ab \notin T_N^{t_\alpha}$ and $t_\alpha \geq \varepsilon_T$. This is a contradiction, since $T_N^{t_\alpha}$ is a subsemigroup of X by hypothesis. Thus

\[
T_N(xy) \leq \bigvee\{T_N(x), T_N(y), \varepsilon_T\},
\]

for all $x, y \in X$. Suppose that $I_N(ab) < \bigwedge\{I_N(a), I_N(b), \varepsilon_I\}$, for some $a, b \in X$. If we take $t_\beta := \bigwedge\{I_N(a), I_N(b), \varepsilon_I\}$, then $a, b \in I_N^{t_\beta}$, $ab \notin I_N^{t_\beta}$ and $t_\beta \leq \varepsilon_I$. This is a contradiction. So

\[
I_N(xy) \geq \bigwedge\{I_N(x), I_N(y), \varepsilon_I\},
\]

\begin{table}[h]
\centering
\caption{Cayley table for the binary operation “\cdot”}
\begin{tabular}{c|ccc}
\hline
 \cdot & e & a & b \\
\hline
 e & e & e & e \\
 a & e & a & e \\
 b & e & b & b \\
 c & e & a & c \\
\hline
\end{tabular}
\end{table}
for all \(x, y \in X\). Now, suppose that there exist \(a, b \in X\) and \(t_\gamma \in [-1, 0]\) such that

\[
F_N(ab) > t_\gamma \geq \bigvee \{F_N(a), F_N(b), \varepsilon_F\}.
\]

Then \(a, b \in F_N^{t_\gamma}, ab \notin F_N^{t_\gamma}\) and \(t_\gamma \geq \varepsilon_F\), which is a contradiction. Thus

\[
F_N(xy) \leq \bigvee \{F_N(x), F_N(y), \varepsilon_F\},
\]

for all \(x, y \in X\). Hence \(X_N\) is an \(\varepsilon\)-neutrosophic \(N\)-subsemigroup of \(X\). \(\square\)

Theorem 4.14. For any \(\varepsilon_T, \varepsilon_I, \varepsilon_F, \delta_T, \delta_I, \delta_F \in [-1, 0]\) with \(-3 \leq \varepsilon_T + \varepsilon_I + \varepsilon_F \leq 0\) and \(-3 \leq \delta_T + \delta_I + \delta_F \leq 0\), if \(X_N\) and \(X_M\) are an \(\varepsilon\)-neutrosophic \(N\)-subsemigroup and a \(\delta\)-neutrosophic \(N\)-subsemigroup, respectively, of \(X\), then their intersection is a \(\xi\)-neutrosophic \(N\)-subsemigroup of \(X\) for \(\xi := \varepsilon \land \delta\), that is, \((\xi_T, \xi_I, \xi_F) = (\varepsilon_T \lor \delta_T, \varepsilon_I \land \delta_I, \varepsilon_F \lor \delta_F)\).

Proof. For any \(x, y \in X\), we have

\[
T_{N \cap M}(xy) = \bigvee \{T_N(xy), T_M(xy)\}
\leq \bigvee \left\{ \bigvee \{T_N(x), T_M(y), \varepsilon_T\}, \bigvee \{T_M(x), T_M(y), \delta_T\} \right\}
\leq \bigvee \left\{ \bigvee \{T_N(x), T_M(y), \xi_T\}, \bigvee \{T_M(x), T_M(y), \xi_T\} \right\}
= \bigvee \left\{ \bigvee \{T_N(x), T_M(x), \xi_T\}, \bigvee \{T_N(y), T_M(y), \xi_T\} \right\}
= \bigvee \left\{ \bigvee \{T_N(x), T_M(x)\}, \bigvee \{T_N(y), T_M(y)\}, \xi_T \right\},
\]

\[
I_{N \cap M}(xy) = \bigwedge \{I_N(xy), I_M(xy)\}
\geq \bigwedge \left\{ \bigwedge \{I_N(x), I_M(y), \varepsilon_I\}, \bigwedge \{I_M(x), I_M(y), \delta_I\} \right\}
\geq \bigwedge \left\{ \bigwedge \{I_N(x), I_M(y), \xi_I\}, \bigwedge \{I_M(x), I_M(y), \xi_I\} \right\}
= \bigwedge \left\{ \bigwedge \{I_N(x), I_M(x), \xi_I\}, \bigwedge \{I_N(y), I_M(y), \xi_I\} \right\}
= \bigwedge \left\{ \bigwedge \{I_{N \cap M}(x), I_{N \cap M}(y), \xi_I\} \right\},
\]

10
and
\[F_{N \cap M}(xy) = \bigvee \{ F_N(xy), F_M(xy) \} \]
\[\leq \bigvee \{ \bigvee \{ F_N(x), F_N(y), \varepsilon_F \}, \bigvee \{ F_M(x), F_M(y), \delta_F \} \} \]
\[= \bigvee \{ \bigvee \{ F_N(x), F_M(x), \xi_F \}, \bigvee \{ F_N(y), F_M(y), \xi_F \} \} \]
\[= \bigvee \{ \bigvee \{ F_N(x), F_M(x) \}, \bigvee \{ F_N(y), F_M(y) \}, \xi_F \} \]
\[= \bigvee \{ F_{N \cap M}(x), F_{N \cap M}(y), \xi_F \}. \]

Then \(X_{N \cap M} \) is a \(\xi \)-neutrosophic \(N \)-subsemigroup of \(X \).

\[\square \]

Theorem 4.15. Let \(X_N \) be an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(X \). If
\[\kappa := (\kappa_T, \kappa_I, \kappa_F) = \left(\bigvee_{x \in X} \{ T_N(x) \}, \bigwedge_{x \in X} \{ I_N(x) \}, \bigvee_{x \in X} \{ F_N(x) \} \right), \]
then the set
\[\Omega := \{ x \in X \mid T_N(x) \leq \kappa_T \vee \varepsilon_T, I_N(x) \geq \kappa_I \wedge \varepsilon_I, F_N(x) \leq \kappa_F \vee \varepsilon_F \} \]
is a subsemigroup of \(X \).

Proof. Let \(x, y \in \Omega \) for any \(x, y \in X \). Then
\[T_N(x) \leq \kappa_T \vee \varepsilon_T = \bigvee_{x \in X} \{ T_N(x) \} \vee \varepsilon_T, \]
\[I_N(x) \geq \kappa_I \wedge \varepsilon_I = \bigwedge_{x \in X} \{ I_N(x) \} \wedge \varepsilon_I, \]
\[F_N(x) \leq \kappa_F \vee \varepsilon_F = \bigvee_{x \in X} \{ F_N(x) \} \vee \varepsilon_F, \]
\[T_N(y) \leq \kappa_T \vee \varepsilon_T = \bigvee_{y \in X} \{ T_N(y) \} \vee \varepsilon_T, \]
\[I_N(y) \geq \kappa_I \wedge \varepsilon_I = \bigwedge_{y \in X} \{ I_N(y) \} \wedge \varepsilon_I, \]
\[F_N(y) \leq \kappa_F \vee \varepsilon_F = \bigvee_{y \in X} \{ F_N(y) \} \vee \varepsilon_F. \]

Thus it follows from (??) that
\[T_N(xy) \leq \bigvee \{ T_N(x), T_N(y), \varepsilon_T \} \]
\[\leq \bigvee \{ \kappa_T \vee \varepsilon_T, \kappa_T \vee \varepsilon_T, \varepsilon_T \} \]
\[= \kappa_T \vee \varepsilon_T, \]
For any Proof.

Theorem 4.16. Let \(xy \in \Omega \), then \(X \). Hence \(\Omega \) is a subsemigroup of \(X \).

For a map \(f : X \to Y \) of semigroups and a neutrosophic \(N \)-structure \(X_N := \frac{Y}{(T_N,F_N)} \) over \(Y \) and \(\varepsilon = (\varepsilon_T,\varepsilon_I,\varepsilon_F) \) with \(-3 \leq \varepsilon_T + \varepsilon_I + \varepsilon_F \leq 0\), define a neutrosophic \(N \)-structure \(X_N^\varepsilon := \frac{X}{(T_N^\varepsilon,F_N^\varepsilon)} \) over \(X \) by:

\[
T_N^\varepsilon : X \to [-1,0], \quad x \mapsto \bigvee \{T_N(f(x)),\varepsilon_T\},
\]

\[
F_N^\varepsilon : X \to [-1,0], \quad x \mapsto \bigwedge \{I_N(f(x)),\varepsilon_I\},
\]

\[
F_N^\varepsilon : X \to [-1,0], \quad x \mapsto \bigvee \{F_N(f(x)),\varepsilon_F\}.
\]

Theorem 4.16. Let \(f : X \to Y \) be a homomorphism of semigroups. If a neutrosophic \(N \)-structure \(X_N := \frac{Y}{(T_N,F_N)} \) over \(Y \) is an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(Y \), then \(X_N^\varepsilon := \frac{X}{(T_N^\varepsilon,F_N^\varepsilon)} \) is an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(X \).

Proof. For any \(x, y \in X \), we have

\[
T_N^\varepsilon(xy) = \bigvee \{T_N(f(xy)),\varepsilon_T\}
= \bigvee \{T_N(f(x)f(y)),\varepsilon_T\}
\leq \bigvee \{\bigvee \{T_N(f(x)),T_N(f(y)),\varepsilon_T\},\varepsilon_T\}
= \bigvee \left\{ \bigvee \{T_N(f(x)),\varepsilon_T\}, \bigvee \{T_N(f(y)),\varepsilon_T\},\varepsilon_T \right\}
= \bigvee \{T_N^\varepsilon(x),T_N^\varepsilon(y),\varepsilon_T\},
\]

\[
I_N^\varepsilon(xy) = \bigwedge \{I_N(f(xy)),\varepsilon_I\}
= \bigwedge \{I_N(f(x)f(y)),\varepsilon_I\}
\geq \bigwedge \left\{ \bigwedge \{I_N(f(x)),I_N(f(y)),\varepsilon_I\},\varepsilon_I \right\}
= \bigwedge \left\{ \bigwedge \{I_N(f(x)),\varepsilon_I\}, \bigwedge \{I_N(f(y)),\varepsilon_I\},\varepsilon_I \right\}
= \bigwedge \{I_N^\varepsilon(x),I_N^\varepsilon(y),\varepsilon_I\},
\]

12
and
\[F^N_N(xy) = \bigvee \{ F_N(f(xy)), \varepsilon_F \} \]
\[= \bigvee \{ F_N(f(x)f(y)), \varepsilon_F \} \]
\[= \bigvee \{ F_N(f(x)), F_N(f(y)), \varepsilon_F \} \]
\[= \bigvee \{ F_N(f(x)), \varepsilon_F \}, \bigvee \{ F_N(f(y)), \varepsilon_F \} \]
\[= \bigvee \{ F_N(x), F_N^N(y), \varepsilon_F \} . \]

Then \(X^N := \frac{X}{(T^N, I^N, F^N)} \) is an \(\varepsilon \)-neutrosophic \(N \)-subsemigroup of \(X \). \(\square \)

Let \(f : X \to Y \) be a function of sets. If \(Y^N := \frac{Y}{(T^N, I^N, F^N)} \) is a neutrosophic \(N \)-structures over \(Y \), then the preimage of \(Y^N \) under \(f \) is defined to be a neutrosophic \(N \)-structures
\[f^{-1}(Y^N) = \frac{X}{(f^{-1}(T^N), f^{-1}(I^N), f^{-1}(F^N))} \]
over \(X \), where \(f^{-1}(T^N)(x) = T^N(f(x)), f^{-1}(M)(x) = M(f(x)) \) and \(f^{-1}(F^N)(x) = F^N(f(x)) \) for all \(x \in X \).

Theorem 4.17. Let \(f : X \to Y \) be a homomorphism of semigroups. If \(Y^N := \frac{Y}{(T^N, I^N, F^N)} \) is a neutrosophic \(N \)-subsemigroup of \(Y \), then the preimage of \(Y^N \) under \(f \) is a neutrosophic \(N \)-subsemigroup of \(X \).

Proof. Let
\[f^{-1}(Y^N) = \frac{X}{(f^{-1}(T^N), f^{-1}(I^N), f^{-1}(F^N))} \]
be the preimage of \(Y^N \) under \(f \). For any \(x, y \in X \), we have
\[f^{-1}(T^N)(xy) = T^N(f(xy)) = T^N(f(x)f(y)) \]
\[\leq \bigvee \{ T^N(f(x)), T^N(f(y)) \} \]
\[= \bigvee \{ f^{-1}(T^N)(x), f^{-1}(T^N)(y) \} , \]
\[f^{-1}(I^N)(xy) = I^N(f(xy)) = I^N(f(x)f(y)) \]
\[\geq \bigwedge \{ I^N(f(x)), I^N(f(y)) \} \]
\[= \bigwedge \{ f^{-1}(I^N)(x), f^{-1}(I^N)(y) \} \]
and
\[f^{-1}(F^N)(xy) = F^N(f(xy)) = F^N(f(x)f(y)) \]
\[\leq \bigvee \{ F^N(f(x)), F^N(f(y)) \} \]
\[= \bigvee \{ f^{-1}(F^N)(x), f^{-1}(F^N)(y) \} . \]

Then \(f^{-1}(Y^N) \) is a neutrosophic \(N \)-subsemigroup of \(X \). \(\square \)
Let \(f : X \to Y \) be an onto function of sets. If \(X_N := \frac{X}{(T_N, I_N, F_N)} \) is a neutrosophic \(\mathcal{N} \)-structures over \(X \), then the image of \(X_N \) under \(f \) is defined to be a neutrosophic \(\mathcal{N} \)-structures
\[
f(X_N) = \frac{Y}{(f(T_N), f(I_N), f(F_N))}
\]
over \(Y \), where
\[
f(T_N)(y) = \bigwedge_{x \in f^{-1}(y)} T_N(x),
\]
\[
f(I_N)(y) = \bigvee_{x \in f^{-1}(y)} I_N(x),
\]
\[
f(F_N)(y) = \bigwedge_{x \in f^{-1}(y)} F_N(x).
\]

Theorem 4.18. For an onto homomorphism \(f : X \to Y \) of semigroups, let \(X_N := \frac{X}{(T_N, I_N, F_N)} \) be a neutrosophic \(\mathcal{N} \)-structure over \(X \) such that
\[
(\forall T \subseteq X) \left(\exists x_0 \in T \right) \begin{cases}
T_N(x_0) = \bigwedge_{z \in T} T_N(z) \\
I_N(x_0) = \bigvee_{z \in T} I_N(z) \\
F_N(x_0) = \bigwedge_{z \in T} F_N(z)
\end{cases}
\]

If \(X_N \) is a neutrosophic \(\mathcal{N} \)-subsemigroup of \(X \), then the image of \(X_N \) under \(f \) is a neutrosophic \(\mathcal{N} \)-subsemigroup of \(Y \).

Proof. Let
\[
f(X_N) = \frac{Y}{(f(T_N), f(I_N), f(F_N))}
\]
be the image of \(X_N \) under \(f \). Let \(a, b \in Y \). Then \(f^{-1}(a) \neq \emptyset \) and \(f^{-1}(a) \neq \emptyset \) in \(X \), which imply from (??) that there are \(x_a \in f^{-1}(a) \) and \(x_b \in f^{-1}(b) \) such that
\[
T_N(x_a) = \bigwedge_{z \in f^{-1}(a)} T_N(z), \quad I_N(x_a) = \bigvee_{z \in f^{-1}(a)} I_N(z), \quad F_N(x_a) = \bigwedge_{z \in f^{-1}(a)} F_N(z),
\]
\[
T_N(x_b) = \bigwedge_{w \in f^{-1}(b)} T_N(w), \quad I_N(x_b) = \bigvee_{w \in f^{-1}(b)} I_N(w), \quad F_N(x_b) = \bigwedge_{w \in f^{-1}(b)} F_N(w).
\]
Thus
\[
f(T_N)(ab) = \bigwedge_{x \in f^{-1}(ab)} T_N(x) \leq T_N(x_a x_b)
\]
\[
\leq \bigvee \{T_N(x_a), T_N(x_b)\}
\]
\[
= \bigvee \left\{ \bigwedge_{z \in f^{-1}(a)} T_N(z), \bigwedge_{w \in f^{-1}(b)} T_N(w) \right\}
\]
\[
= \bigvee \{ f(T_N)(a), f(T_N)(b) \},
\]
\[
= \frac{f(T_N)(a), f(T_N)(b)}{f(T_N)(a), f(T_N)(b)}.
\]
\[f(I_N)(ab) = \bigvee_{x \in f^{-1}(ab)} I_N(x) \geq I_N(x_a x_b) \]
\[\geq \bigwedge \{ I_N(x_a), I_N(x_b) \} \]
\[= \bigwedge \left\{ \bigvee_{z \in f^{-1}(a)} I_N(z), \bigvee_{w \in f^{-1}(b)} I_N(w) \right\} \]
\[= \bigwedge \{ f(I_N)(a), f(I_N)(b) \}, \]

and
\[f(F_N)(ab) = \bigwedge_{x \in f^{-1}(ab)} F_N(x) \leq F_N(x_a x_b) \]
\[\leq \bigvee \{ F_N(x_a), F_N(x_b) \} \]
\[= \bigvee \left\{ \bigwedge_{z \in f^{-1}(a)} F_N(z), \bigwedge_{w \in f^{-1}(b)} F_N(w) \right\} \]
\[= \bigvee \{ f(F_N)(a), f(F_N)(b) \}. \]

So \(f(X_N) \) is a neutrosophic \(N \)-subsemigroup of \(Y \). \qed

CONCLUSIONS

In order to deal with the negative meaning of information, Jun et al. \cite{Jun} have introduced a new function which is called negative-valued function, and constructed \(N \)-structures. The concept of neutrosophic set (NS) has been developed by Smarandache in \cite{Smarandache1} and \cite{Smarandache2} as a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. In this article, we have introduced the notion of neutrosophic \(N \)-structure and applied it to semigroup. We have introduced the notion of neutrosophic \(N \)-subsemigroup and investigated several properties. We have provided conditions for neutrosophic \(N \)-structure to be neutrosophic \(N \)-subsemigroup. We have defined neutrosophic \(N \)-product, and gave characterization of neutrosophic \(N \)-subsemigroup by using neutrosophic \(N \)-product. We also have introduced \(\varepsilon \)-neutrosophic subsemigroup, and investigated relations between neutrosophic subsemigroup and \(\varepsilon \)-neutrosophic subsemigroup. We have shown that the homomorphic preimage of neutrosophic \(N \)-subsemigroup is a neutrosophic \(N \)-subsemigroup, and the onto homomorphic image of neutrosophic \(N \)-subsemigroup is a neutrosophic \(N \)-subsemigroup.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for their valuable suggestions.

REFERENCES

Madad Khan (madadkhan@ciit.net.pk madadmath@yahoo.com)
Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Saima Anis (saimaanis@ciit.net.pk)
Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Florentin Smarandache (fsmarandache@gmail.com)
Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA

Young Bae Jun (skywine@gmail.com)
Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea