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ABSTRACT 
 

 Entropy is a measure of uncertainty and often used in information theory to determine 

the precise testimonials about unclear situations. Different entropy measures available in 

the literature are based on the exact form of the observations and lacks in dealing with the 

interval-valued data. The interval-valued data often arises from the situations having 

ambiguity, imprecise, unclear, indefinite, or vague states of the experiment and is called 

neutrosophic data. In this research modified forms of different entropy measures for 

normal probability distribution have been proposed by considering the neutrosophic form 

data. The performance of the proposed neutrosophic entropies for normal distribution has 

been assessed via a simulation study. Moreover, the proposed measures are also applied 

to two real data sets for their wide applicability. The results of the study suggested the 

use of the proposed methods in the presence of fuzzy, interval-valued, or neutrosophic 

data.  
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1. INTRODUCTION 
 

 The normal distribution has gained immense importance due to its wide real-life 

applications. For a random variable 𝑋 ∈ ℝ, the location parameter 𝜇 ∈ ℝ and scale 

parameter 𝜎 > 0, the probability density function (pdf) of a normal distribution is defined 

by 
 

𝑓(𝑥) =
1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2
) , −∞ < 𝑥 < +∞ (1) 
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 One of the reasons for the wide application of normal distribution is that the sum for a 

large number of observations from a random variable can be approximated by the normal 

distribution, irrespective of the prior original distribution of the random variable [1]. 

Furthermore, the random errors that usually appear in several measurements 

approximately follow a normal distribution, a reason to give the name of error 

distribution to the normal distribution [2]. Moreover, almost all the discrete and 

continuous distributions can be approximated by the normal distribution under some 

conditions [3-5].  
 

 The concept of entropy is proposed by Entropy Clausius in 1850 to measure of 

uncertainty and unpredictability of the state [6]. It is also introduced by [7, 8] as a 

measure of disorder. In information theory, entropy is defined as the average level of 

information or uncertainty inherent in a random variable’s possible outcomes. Numerous 

studies have been conducted where different types of entropy measures have been 

proposed. Among those types, Shannon entropy and Rényi Entropy are well-known. 

Recall that the Shannon entropy is defined by [9]  
 

𝐻(𝑥) = − ∫ 𝑓(𝑥) log(𝑓(𝑥)) 𝑑𝑥 (2) 

 

and Rényi Entropy [10] is defined by   
 

𝐻𝛼(𝑋) =  
1

1 − 𝛼
𝑙𝑜𝑔2 ∫ 𝑓(𝑥)𝛼𝑑𝑥, (3) 

 

where 𝛼 is the order of Rényi entropy. Note that the Rényi entropy for 𝛼 = 0 is Schur 

Concave. 
 

 Neutrosophic statistics is an extension of classical statistics. It has gain importance 

due to its capacity to deal with sets of values more specifically an interval. To be more 

precise, when the values or parameters have confusion attached with them, then that 

particular value or parameter is replaced with a set of values [11, 12]. To represent the 

neutrosophic version of parameter or statistic, a subscript “𝑁” is used such as 𝑥𝑁 [13, 14]. 

Analogously, any number 𝑥 replaced by a set is denoted here as 𝑥𝑁 i.e. neutrosophic 𝑥 or 

uncertain 𝑥. It is important to note that fuzzy logic is a special case of neutrosophic logic 

[15]. This 𝑥𝑁 is mostly the interval including 𝑥, generally it is a set which approximates 𝑥 

[16]. The neutrosophic statistical number is defined by  
 

𝑁 = 𝑑 + 𝑖 
 

where “𝑑” is the determining part of N and “𝑖” is the indeterminate part (unsure) of 𝑁. 

For more details, we refer the readers to [5, 17-22]. 

 

2. NEUTROSOPHIC ENTROPY OF NORMAL DISTRIBUTION 
 

 In this section, we first present the Shannon entropy and Rényi entropy for normal 

distribution. After that, the neutrosophic versions of these two entropies for the normal 

distribution are proposed by combining the logic of neutrosophic with the said entropies.  
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2.1 Shannon Entropy of Normal Distribution 

 The Shannon entropy for the normal probability distribution is defined as: 
 

𝐻(𝑥) = − ∫
1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2
) log (

1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2
)) 𝑑𝑥 

+∞

−∞

 (4) 

 

𝐻(𝑥) =
1

2
ln(2𝜋𝑒𝜎2) (5) 

 

 Equation (5) shows the Shannon entropy of the normal distribution. For more details 

we referrer the reader to [23].  

 

2.2 Neutrosophic Shannon Entropy of Normal Distribution 

 The statistic in equation (5) is ideal for the cases where we have crisp numbers and 

values for parameters. However, in real-life situations, we scarcely come across crisp 

values. In other words, there is always some uncertainty that makes it difficult for us to 

draw decisions with certainty. For example, the temperature does not have an exact value 

as it lies between the highest recorded temperatures and the lowest at a particular time 

point. The same is the situation with stock exchange records and numerous other cases in 

the real world. Neutrosophy being the extension of classical statistics could be helpful in 

these kinds of circumstances. To this end, using equation (5) we define neutrosophic 

Shannon entropy for normal distribution by  
 

𝐻𝑁(𝑥) = {
1

2
ln(2𝜋𝑒𝜎𝐿

2) ,
1

2
ln(2𝜋𝑒𝜎𝑈

2) } (6) 

 

 Here 𝜎𝐿 is the estimate of the parameter σ of the normal distribution that is obtained 

from the lower bound of the interval from the samples where the uncertainty lies and  

σ𝑈 being the estimate of parameter σ of the normal distribution that is obtained from the 

upper bound of the interval from uncertain samples. In the situations where doubts appear 

on more than one values (an interval), the lowest among them is considered as “𝐿” the 

largest value as “𝑈”. Using equation (6) we can obtain two results, one for the lower and 

other for the upper bound of any interval and then we can state that the entropy in the 

particular case lies between these results. 

 

2.3 Rényi Entropy of Normal Distribution 

 To develop a neutrosophic version of Rényi Entropy we here briefly discuss the 

derivation of Rényi entropy of normal distribution. For this purpose, we plug pdf of a 

normal distribution from equation (1) in the general formulation of Rényi entropy given 

in equation (3). Assuming that 𝛼 = 2 the Rényi entropy is 
 

𝐻2(𝑋) =
1

1 − 2
𝑙𝑜𝑔2 ∫ (

1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2
))

2

𝑑𝑥
+∞

−∞

 (7) 

 

 Assume that 𝑡 =
𝑥−𝜇

2𝜎
 , then 𝜎𝑑𝑡 = 𝑑𝑥. By plugging this result in equation (7) we 

obtain  
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𝐻2(𝑋) = −𝑙𝑜𝑔2

1

2𝜋𝜎
∫ exp (−𝑡2)𝑑𝑡

+∞

−∞

 

 

 𝐻2(𝑋) = −𝑙𝑜𝑔2

1

2√𝜋𝜎
 (8) 

 

 Equation (8) shows the Rényi entropy of the Normal distribution.  

 

2.4 Neutrosophic Rényi Entropy of Normal Distribution: 

 Analogous to the idea presented in the case of neutrosophic Shannon entropy in 

Section 2.2, neutrosophic Rényi entropy of normal distribution based on the statistic 

given in equation (7) is defined by  
 

𝐻2𝑁(𝑋) = {−𝑙𝑜𝑔2

1

2√𝜋𝜎𝐿

, −𝑙𝑜𝑔2

1

2√𝜋𝜎𝑈

} (9) 

 

where 𝜎𝐿 be the lower and 𝜎𝑈 be the upper limit values of the parameter in the given 

interval. Furthermore, by equation (8) we can also obtain two results one for the lower 

and the other for the upper bound of an interval which will indicate that the entropy of 

that particular case lies between these bounds. 

 

3. SIMULATION STUDY 
 

 In this Section, a simulation study is conducted to determine the efficiency of the 

proposed entropy measures for normal distribution. For the simulation study, the 

following steps are followed.  

Step 1: Compute the theoretical neutrosophic Shannon and Rényi entropy for some 

chosen interval of 𝜎 in the interval form.  

Step 2: Random number pop 1 and pop 2 were generated from a normal distribution 

of sample size 10,000 Generate pop 1 ~ Normal Distribution and  

pop 2 ~ Normal Distribution  

Step 3: Compute the estimates of standard deviation 𝜎 of normal distribution for  

the lower and upper bound from the obtained samples. 

Step 4: Now 𝐻𝑁(𝑥) can be attained from the equation (6). 

Step 5: Now  𝐻2𝑁(𝑥) can be attained from the equation (8). 

Step 6: We repeat steps 1-4 for 1000 random samples and different parameters to 

check the efficacy of the novel measure. 

Step 7: Compute the empirical neutrosophic Shannon and Rényi entropy for normal 

distribution by taking an average of the obtained matrix from the obtained 

entropies in the interval form. 

Step 8: Compare the theoretical and empirical neutrosophic entropies. The empirical 

results obtained from simulations for the neutrosophic Shannon entropy of 

normal distribution are shown in Table 1 for different values of 𝜎, keeping 

the mean as constant.  
 



Rehan Ahmad Khan Sherwani et al. 307 

 It can be observed from Table 1 that there are some patterns and relationships among 

the values of estimates of parameters and proposed entropy measure. Furthermore, by 

increasing the values of parameters the neutrosophic Shannon entropy also increases. 

 

Table 1 

Lower and Upper limits of Neutrosophic Shannon Entropy for  

Normal Distribution for Fixed Values of   and Different Values of 𝝈 

Neutrosophic Shannon Entropy  =(150,188) 

 𝝈 Lower Limit Upper Limit 

1.  (0.05,0.25) -0.079 0.726 

2.  (0.10,0.14) 0.267 0.436 

3.  (0.25,0.37) 0.726 0.922 

4.  (0.45,0.62) 1.019 1.179 

 

 On the contrary Table 2 shows the empirical results of neutrosophic Rényi entropy of 

normal distribution based on simulation studies for different values of 𝜎 and fixed mean. 

It can be seen from Table 2 that on increasing the value of the parameter the neutrosophic 

entropy decreases. 

 

Table 2 

Lower and Upper Limits of Neutrosophic Rényi Entropy for  

Normal Distribution for Fixed   and Different Values of 𝝈 

Neutrosophic Rényi Entropy  = (150,188) 

 𝝈 Lower Limit Upper Limit 

1.  (0.05,0.25) 2.175 4.497 

2.  (0.10,0.14) 3.011 3.496 

3.  (0.25,0.37) 1.609 2.174 

4.  (0.45,0.62) 0.864 1.326 

 



Neutrosophic Entropy Measures for the Normal Distribution…… 308 

 
Figure 1: The lower and upper bounds of Neutrosophic Shannon and Rényi 

Entropy for Norma Distribution for  = (0.05, 0.25) &  = (150, 188) 

 

 For 𝜎 = (0.05, 0.25) and 𝜇 = (150, 188), the neutrosophic Shannon and Rényi 

entropy for the normal distribution is shown in Figure 1. The red line represents the lower 

bound of the obtained interval of neutrosophic entropy while the blue line represents the 

upper bound of the obtained interval of neutrosophic entropy of the normal distribution. 

There exists an indeterminacy among an interval of values of parameters indicating the 

need of neutrosophic entropy in this situation.  

 

4. REAL-LIFE APPLICATIONS 
 

4.1 Application 1 

 In this example, we consider the monthly temperature of Oslon, France is collected 

for ten years (2010 – 2020) from World Weather Online in the form of average low and 

average high temperature (see Appendix for data). The normality of these two levels of 

temperature data is checked using a probability-probability plot using Minitab Software 

version 18.0. From Figure 2 and Figure 3, we see that the low average temperature, as 

well as high average temperature, follows approximately normal distributions at 5% level 

of significance.  
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Figure 2: PP-Plots of Average Low Temperatures of Oslon, France  

during the period of 2010-2020 

 

 
Figure 3: PP-Plots of Average High Temperatures of Oslon, France  

during the period of 2010-2020 
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 Furthermore, from Figure 2 and Figure 3, we obtain the following estimates of lower 

and upper bounds for two parameters of normal distribution.  
 

(𝜇𝐿 , 𝜇𝑈) = (44.12, 59.78) (10) 
 

(𝜎𝐿 , 𝜎𝑈) = (9.410, 13.21) & 𝑁 = 129 (11) 
 

 By using equation (6), the neutrosophic Shannon entropy of normal distribution is  
 

𝐻𝑁(X) = {1.590  ,1.737} (12) 
 

 We see that the entropy values for both the average high temperatures and average 

low temperatures are close to 1. This indicates that there lies maximum uncertainty in the 

weather condition of Oslon, France between 2010 and 2020. In other words, a close to 

neutrosophic value means that this kind of data has a huge amount of information 

indicating that weather conditions keep changing even in an intense cold situation in 

France. 

 

4.2 Application 2 

 A juice company situated in Lahore, Pakistan performed a quality check on their 

frozen orange juice concentrate cardboard cans weighing 6-0z to determine the leakage. 

These cans are manufactured in a machine by spinning them from cardboard stock and 

attaching the metal bottom panel. By inspection of a can, we may determine whether a 

can could leak either on the side seam or around the bottom joint during the process of 

filling. This creates nonconformity in the data. However, the industrial experimenter is 

uncertain about the classification of some items either conforming or non-conforming 

during the inspection. Due to the uncertainty, the industrial engineers can expect the 

percent nonconforming product from 0.028 to 0.0379. The data is shown in Table 3.  

 

Table 3 

Number of Nonconforming Units in the Quality Check of Juice Company 

Sr. 

No. 

Number of Nonconforming 

Units 𝑫𝒊 

Sr. 

No. 

Number of Nonconforming 

Units 𝑫𝒊 

1.  12 13 2.  8 8 

3.  15 15 4.  10 10 

5.  8 10 6.  5 8 

7.  10 10 8.  13 13 

9.  4 4 10.  11 13 

11.  7 7 12.  20 20 

13.  16 16 14.  18 20 

15.  9 11 16.  24 24 

17.  14 14 18.  15 15 

19.  10 10 20.  9 12 

21.  5 8 22.  12 12 

23.  6 8 24.  7 10 

25.  17 17 26.  13 15 

27.  12 15 28.  9 9 

29.  22 22 30.  6 9 
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 In this situation, when some observations are unclear and uncertain, the classical 

entropy measures are not suitable and the proposed entropy measures fit well. By 

probability-probability plot of upper and lower limits, we see that it follows 

approximately normal distribution at 5% level of significance.  

 

 
Figure 4: PP Plots of Lower Limit of Non-Conforming Units 

 

 
Figure 5: PP Plots of Upper Limit of Non-Conforming Units 
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(𝜎𝐿 , 𝜎𝑈) = (4.687, 5.117) & 𝑁 = 30. 
 

 We then calculate the Neutrosophic Shannon entropy of normal distribution using 

equation (20) that is by  
 

𝐻𝑁(𝑋) = {
1

2
ln(2𝜋𝑒𝜎𝐿

2) ,
1

2
ln(2𝜋𝑒𝜎𝑈

2) } 

 

which by considering 𝑒 = 2.7182818 becomes 
 

𝐻𝑁(𝑋) = {
1

2
(2.574268)  ,

1

2
(2.65051)  } 

 

𝐻𝑁(𝑋) = {1.287  ,1.325}. 
 

 The obtained neutrosophic entropy {1.287, 1.325} is close to 1 indicating that the 

amount of uncertainty in the given situation is very high. This means that the leakage can 

be caused from both the side and bottom of the can. The manufacturer needs to take good 

care of both these parts to prevent this kind of error. 

 

5. CONCLUSION 
 

 In this study neutrosophic versions of Shannon entropy and R�́�nyi entropy for the 

normal distribution are proposed by the combination of neutrosophic statistics and 

information theory, which has not been discussed in the past, especially with the 

combination of entropy. The proposed neutrosophic versions of entropies are found 

suitable for the situations where the data or the parameters occur in form of intervals 

(having some vagueness and indeterminacy). To check the performance and efficiency of 

the proposed measure of entropy, a simulation study was performed considering normal 

distribution and two real-life datasets. In both real-life examples, both upper and lower 

limits of neutrosophic entropies are found close to 1 which ensure the existence of a huge 

amount of uncertainty in the data and confirm the need of applying neutrosophic 

measures instead of classical entropy measures. Following the same idea, the 

neutrosophic entropy measures can be derived for some other distribution and 

implemented in real-life situations where uncertainty exists.  
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