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Abstract: Neutrosophic components (NC) under addition and product form different algebraic
structures over different intervals. In this paper authors for the first time define the usual product
and sum operations on NC. Here four different NC are defined using the four different intervals:
(0, 1), [0, 1), (0, 1] and [0, 1]. In the neutrosophic components we assume the truth value or the false
value or the indeterminate value to be from the intervals (0, 1) or [0, 1) or (0, 1] or [0, 1]. All the
operations defined on these neutrosophic components on the four intervals are symmetric. In all the
four cases the NC collection happens to be a semigroup under product. All of them are torsion free
semigroups or weakly torsion free semigroups. The NC defined on the interval [0, 1) happens to be
a group under addition modulo 1. Further it is proved the NC defined on the interval [0, 1) is an
infinite commutative ring under addition modulo 1 and usual product with infinite number of zero
divisors and the ring has no unit element. We define multiset NC semigroup using the four intervals.
Finally, we define n-multiplicity multiset NC semigroup for finite n and these two structures are
semigroups under + modulo 1 and {M(S),+,×} and {n-M(S),+,×} are NC multiset semirings.
Several interesting properties are discussed about these structures.

Keywords: neutrosophic components (NC); NC semigroup; multiset NC; n-multiplicity;
multiset NC semigroup; special zero divisors; torsion free semigroup; weakly torsion free semigroup;
infinite commutative ring; group under addition modulo 1; infinite neutrosophic communicative
ring; multiset NC semirings

1. Introduction

Semigroups play a vital role in algebraic structures [1–5] and they are applied in several fields
and it is a generalization of groups, as all groups are semigroups and not vice versa. Neutrosophic sets
proposed by Smarandache in [6] has become an interesting area of major research in recent days both
in the area of algebraic structures [7–11] as well as in applications ranging from medical diagnosis
to sentiment analysis [12,13]. The study of neutrosophic triplets happens to be a special form of
neutrosophic sets. Extensive study in this direction have been carried out by several researchers
in [8,14–17]. Here we are interested in the study of neutrosophic components (NC) over the intervals
(0, 1), (0, 1], [0, 1) and [0, 1]. So far researchers have studied and applied NC only on the interval
[0, 1] though they were basically defined by Smarandache [18] on all intervals. Further they have
not studied them under the usual operation + and ×. Here we venture to study NC on all the four
intervals and obtain several interesting algebraic properties about them.

Smarandache multiset semigroup studied in [19] is different from these semigroups. Further
these multiset NC semigroups are also different from multi semigroups in [20] which deals with multi
structures on semigroups.
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Any algebraic structure becomes more efficient for application only when it enjoys some strong
properties. In fact a set endowed with closed associative binary operation happens to be a semigroup.
This semigroup structure does not yield many applications like algebraic codes or commutative rings
or commutative semirings. Basically to have a vector space one needs at least the basic algebraic
structure to be a group under addition. The same is true in case of algebraic codes. However none of
the intervals [0, 1] or (0, 1) or (0, 1] can afford to have a group structure under +. One can not imagine
of a group structure under product for no inverse element can be got for any element in these intervals.
But when we consider the interval [0, 1) we see it is a group under addition modulo 1.

In fact for any collection of NC which are triplets to have a stronger structure than a semigroup
we need to have a strong structure on the interval over which it is built. That is why this paper studies
the NC on the interval [0, 1). These commutative rings in [0, 1) can be used to built both algebraic
codes on the NC for which we basically need these NC to be at least a commutative ring. With this
motivation, we have developed this paper.

This paper further proves that multiset NC built on the interval [0, 1) happens to be a commutative
semiring paving way to build multiset NC algebraic codes and multiset neutrosophic algebraic codes
which can be applied to cryptography with indeterminacy.

The paper is organized as follows. Section one is introductory in nature. Section 2 recalls the
basic concepts of partial order, torsion free semigroup and neutrosophic set. Section 3 introduces NC
on the four intervals [0, 1], (0,1), [0, 1) and (0, 1] and mainly prove they are infinite NC semigroups
which are torsion free. The new notion of weakly torsion free elements in a semigroup is introduced in
this paper and it is proved that NC semigroups built on intervals [0, 1] and [0, 1) are weakly torsion
free under usual product ×. We further prove the NC built using the interval [0, 1) happens to be an
infinite order commutative ring with infinite number of zero divisors and it has no unit. In Section 4
we prove multiset NC built using these four intervals are multiset neutrosophic semigroups under
usual product ×. We prove only in case of [0, 1) the multiset NC is a ring with infinite number of zero
divisors and in all the other interval, M(S) is a torsion free or weakly torsion free semigroup under ×.
Only in case of the interval [0, 1), M(S) is semigroup under modulo addition 1. In Section 5 we define
n-multiplicity multiset NC on all the intervals and obtain several interesting properties. Discussions
about this study are given in Section 6 and the final section gives conclusions and future research
based on their structures.

2. Basic Concepts

In this section we introduce the basic concepts needed to make this paper a self contained one.
We first recall the definition of partially ordered set.

Definition 1. There exist some distinct elements a, b ∈ S such that a < b or a > b, and other distinct elements
b, c ∈ S such that neither b < c nor b > c, then we say (S, <) is a partially ordered set. We say (S,≤) is a
totally ordered set if for every pair a, b,∈ S we have a ≤ b or b ≥ a.

The set of integers is a totally ordered set and the power set of a set X; P(X) is only a partially ordered set.

Next we proceed on to define torsion free semigroup.

Definition 2. A semigroup {S,×} is said to be a torsion free semigroup if for a, b ∈ S, a 6= b, an 6= bn for any
1 ≤ n < ∞.

We recall the definition of semiring in the following from [21].

Definition 3. For a non empty set S, {S,+,×} is defined as a semiring if the following conditions are true

1. {S,+} is a commutative semigroup with 0 as its additive identity.
2. {S,×} is a semigroup.
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3. a× (b + c) = a× b + a× c for all a, b, c,∈ S follows distribution law.

If {S,×} is a commutative semigroup we call {S,+,×} as a commutative semiring.

For more, see [21].
For example, set of integers under product is a torsion free semigroup. Finally we give the basic

definition of neutrosophic set.

Definition 4. The Neutrosophic components (NC) is a triplet (a, b, c) where a is the truth membership function
from the unit interval [0, 1], b is the indeterminacy membership function and c is the falsity membership function
all of them are from the unit interval [0, 1].

For more about Neutrosophic components (NC), sets and their properties please refer [6].
Next we proceed onto define the notion of multiset.

Definition 5. A neutrosophic multiset is a neutrosophic set where one or more elements are repeated with same
neutrosophic components or with different neutrosophic components.

Example 1. M = {a(0.3, 0.4, 0.5), a(0.3, 0.4, 0.5), b(1, 0, 0.2), b(1, 0, 0.2), c(0.7, 1, 0)} is a neutrosophic
multiset. For more refer [18]. However we in this paper use the term multiset NC to denote elements of
the form {5(0.3, 0.4, 1), 3(0.6, 0, 1), (0, 0.7, 0.5)} so 5 is the multiplicity of the NC (0.3, 0.4, 1) and 3 is the
multiplicity of the NC (0.6, 0, 1) and 1 is the multiplicity of the NC (0, 0.7, 0.5).

For more about multisets and multiset graphs [18,22].

3. Neutrosophic Components (NC) Semigroups under Usual Product and Sum

Throughout this section {x, y, z} will denote the truth value, indeterminate value, false value
where x, y, z belongs to [0, 1], the neutrosophic set. However we define special NC on the intervals
(0, 1), (0, 1] and [0, 1). We first prove S1 = {(x, y, z)/x, y, z ∈ (0, 1)} is a semigroup under product and
obtain several interesting properties about NC semigroups using the four intervals (0, 1), (0, 1], [0, 1)
and [0, 1].

Example 2. Let a = (0.3, 0.8, 0.5) and b = (0.9, 0.2, 0.7) be any two NC in S1. We define product a× b =
(0.3, 0.8, 0.5) × (0.9, 0.2, 0.7) = (0.3 × 0.9, 0.8 × 0.2, 0.5 × 0.7) = (0.27, 0.16, 0.35). It is again a neutrosophic
set in S1.

Definition 6. The four NC S1 = {(x, y, z)/x, y, z ∈ (0, 1)}, S2 = {(x, y, z)/x, y, z ∈ [0, 1)}, S3 =

{(x, y, z)/x, y, z ∈ (0, 1]} and S4 = {(x, y, z)/x, y, z ∈ [0, 1]} are all only partially ordered sets for if a = (x,
y, z) and b = (s, r, t) are in Si then a < b if and only if x < s, y < r, z < t; but not all elements are ordered in
Si, that is why we say Si are only partially ordered sets, and denote it by (Si,≤);where ≤ denotes the classical
order relation over reals; 1 ≤ i ≤ 4.

For instance if a = (0.3, 0.7, 0.5) and b = (0.5, 0.2, 0.3) are in Si then a and b cannot be compared.
If d = (0.8, 0.5, 0.7) and c = (0.6, 0.2, 0.5), then d > c or c < d.

In view of this we have the following theorem.

Theorem 1. Let S1 = {(x, y, z)/x, y, z ∈ (0, 1)} be the collection of all NC which are such that the elements
x, y and z do not take any extreme values.

1. {S1,×} is an infinite order commutative semigroup which is not a monoid and has no zero divisors.
2. Every a = (x, y, z) in S1 will generate an infinite cyclic subsemigroup under product of S1 denoted by

(P,×).
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3. The elements of P forms a totally ordered set, (for if a = (x, y, z) ∈ P we see a2 = a× a < a).
4. {S1,×} has no idempotents and {S1,×} is a torsion free semigroup.

Proof. Proof of 1: Clearly if a = (x, y, z) and b = (r, s, t) are in S1, then a× b = (x× r, y× s, z× t) is in
S1; as x× r, y× s and z× t ∈ (0, 1). Hence, {S1,×} is a semigroup under product. Further as number
of elements in (0, 1) is infinite so is S1. Finally as the product in (0, 1) is commutative so is the product
in S1. Hence the claim. (1, 1, 1) is not in S1 as we have used only the open interval (0, 1), we see {S1,×}
is not a monoid. S1 has no zero divisors as the elements are from the open interval which does not
include 0, hence the claim.

Proof of 2: Let a = (x, y, z) be in S, we see a × a = (x × x, y × y, z × z) = a2, and so on
a× a× . . .× a = an = (xn, yn, zn) and n can take values from (0, ∞). Thus a in S generates a cyclic
subsemigroup of infinite order, hence the claim.

Proof of 3: Let P = 〈a〉, a generates the semigroup under product, it is of infinite order and from
the property of elements in (0, 1); a > a2 > a3 > and so on > an. Hence the claim.

Proof of 4: If any a = (x, y, z) ∈ S1 as x, y, z ∈ (0, 1), and x, y and z are torsion free so is a. We see
a2 6= a for any a ∈ S1. Further if a 6= b for no n ∈ (0, ∞); an = bn. Hence the claim.

Definition 7. The four NC S1, S2, S3 and S4 mentioned in definition 6 under the usual product × forms a
commutative semigroup of infinite order defined as the NC semigroups.

Theorem 2. Let S2 = {(x, y, z)/x, y, z ∈ [0, 1)} be the collection of NC. {S2,×} is only a semigroup and not
a monoid and has infinite number of zero divisors. Further all other results mentioned in Theorem 1 are true
with an additional property if a 6= b; (a, b ∈ S2) we have

lim
n→∞

an = lim
n→∞

bn = (0, 0, 0)

as (0, 0, 0) ∈ S2.

Proof as in case of Theorem 1.
In view of this we define an infinite torsion free semigroup to be weakly torsion free if a 6= b; but

lim
n→∞

an = lim
n→∞

bn

Thus S2 is only a weakly torsion free semigroup.
It is interesting to note S1 is contained in S2 and in fact S1 is a subsemigroup of S2.The differences

between S1 and S2 is that S2 has infinite number of zero divisors and the lim
n→∞

an = (0, 0, 0) exists in S2

and S1 is torsion free but S2 is weakly torsion free.

Theorem 3. Let S3 = {(x, y, z)/x, y, z ∈ (0, 1]} be the collection of NC. {S3,×} is a monoid and has no
zero divisors.

Results 2 to 4 of Theorem 1 are true. Finally S1 is a subset of S3, in fact S1 is a subsemigroup of S3.
The main difference between S1 and S3 is that S3 is a monoid and S1 is not a monoid. The difference
between S2 and S3 is that S3 has no zero divisors but S2 has zero divisors and S3 is a monoid.

Next we prove a theorem for S4.

Theorem 4. Let S4 = {(x, y, z)/x, y, z ∈ [0, 1]}. {S4,×} is a semigroup and is a monoid and has zero
divisors. Other three conditions of Theorem 1 is true, but S4 like S2 is only a weakly torsion free semigroup.

Proof as in case of Theorem 1. We have S1 contained in S2 and S2 is contained in S4 and S1

contained in S3 and S3 is contained in S4.
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However, it is interesting to note S2 and S3 are not related in spite of the above relations.
Now we analyse all these four neutrosophic semigroups to find out, on which of them we can

define addition modulo 1. S1 does not include the element (0, 0, 0) as 0 is not in (0, 1), so S1 is not even
closed under addition modulo 1. So S1 in not a semigroup or a group under plus modulo 1. Since S3

and S4 contains (1, 1, 1) we cannot define addition modulo 1; hence, they can not have any algebraic
structure under addition modulo 1. Now consider {S2,+}, clearly {S2,+} is a group under addition
modulo 1.

In view of all these we have the following theorem.

Definition 8. The NC {S2,+} under usual addition modulo 1 is a group defined as the NC group denoted by
{S2,+}

Theorem 5. {S2,+} is a group under addition modulo 1.

Proof. For any y, x ∈ S2, x + y (mod 1) ∈ S2. (0, 0, 0) ∈ S2 acts as additive identity. Further for every x
there is a unique y ∈ S2 with x + y = (0, 0, 0). Hence the theorem.

Definition 9. The NC S2 under the operations of the usual addition + modulo 1 and usual product × forms a
commutative ring of infinite order defined as the NC commutative ring denoted by {S2,+,×}

Theorem 6. {S2,+,×} is a commutative ring with infinite number of zero divisors and has no multiplicative
identity (1, 1, 1).

Proof. Follows from the Theorem 1 and the fact S2 is closed under + modulo 1 by Theorem 5.
The distributive property is inherited from the number theoretic properties of modulo integers. As 1 is
not in [0, 1); (1, 1, 1) is not in S2, hence the result.

Next we proceed on to define multiset NC semigroups in the following section.

4. Multiset NC Semigroups

In this section we proceed on to define multiset NC semigroups using S1, S2, S3 and S4. We see
M(S1) = {Collection of all multiset NC using elements of S1}. On similar lines we define M(S2), M(S3)

and M(S4) using S2, S3 and S4 respectively. We prove {M(S2),+,×} is a multiset neutrosophic
semiring of infinite order.

Recall [18], A is a multi neutrosophic set, then A = {5(0.3, 0.7, 0.9), 12(0.6.0.2, 0.7), 8(0.1, 0.5, 0.1),
(0.6, 0.7, 0.5)}; that is in the multiset neutrosophic set A; (0.3, 0.7, 0.9) has occurred 5 times; (0.6, 0.2,
0.7) has occurred 12 times or its multiplicity is 12 in A and so on.

Let M(S1) = {Collection of all multisets using the elements from S1}, M(S1) is an infinite collection.
We just show how the classical product is defined on M(S1).

Let A = {9(0.3, 0.2, 0.4), 2(0.6, 0.7, 0.1), (0.1, 0.3, 0.2)} and B = {5(0.1, 0.2, 0.5), 10(0.8, 0.4, 0.5)} in
M(S1) be any two multisets. We define the classical product × of A and B as follows;

A× B = {9(0.3, 0.2, 0.4)× 5(0.1, 0.2, 0.5), 9(0.3, 0.2, 0.4)× 10(0.8, 0.4, 0.5),

2(0.6, 0.7, 0.1)× 5(0.1, 0.2, 0.5), 2(0.6, 0.7, 0.1)× 10(0.8, 0.4, 0.5),

(0.1, 0.3, 0.2)× 5(0.1, 0.2, 0.5), (0.1, 0.2, 0.5)× 10(0.8, 0.4, 0.5)}
= {45(0.03, 0.04, 0.2), 90(0.24, 0.08, 0.2), 10(0.06, 0.14, 0.05),

20(0.48, 0.28, 0.05), 5(0.01, 0.06, 0.1), 10(0.08, 0.08, 0.25)};

A× B is in M(S1), thus {M(S1),×} is a commutative semigroup of infinite order defined as the
multiset NC semigroup.
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Definition 10. Let M(Si) be the multi NC using elements of Si(i = 1, 2, 3, 4), {M(Si),×} on the usual
product × is defined as the multiset neutrosophic semigroup for i = 1, 2, 3 and 4.

Definition 11. Let {S2,×} be the multiset NC semigroup under × , elements of the form (a, 0, 0), (0, b, c)
and so on which are infinite in number with a, b, c ∈ S2 contribute to zero divisors. Hence multisets using these
types of elements contribute to zeros of the form n(0, 0, 0); 1 < n < ∞ . As the zeros are of varying multiplicity
we call these zero divisors as special type of zero divisors.

We will provide examples of them.

Example 3. Let R = {(S2),×} be the multiset NC semigroup under product. Let A = (0.6, 0, 0) and B =
(0, 0.4, 0.5) be in R, A× B = (0, 0, 0). Take D = {9(0.6, 0.9, 0)} and E = 9(0, 0, 0.4) in R; we get D× E =

{81(0, 0, 0)}. Take W = {7(0, 0.5, 0), 4(0, 0.6, 0)} and V = {(0.7, 0, 0.4), 20(0.8, 0, 0)} be two multisets in R;
W ×V = {7× 44(0, 0, 0) + 7× 20(0, 0, 0) + 4× 44(0, 0, 0) + 4× 20(0, 0, 0)} = {704(0, 0, 0)} is a special
type of zero divisor of R.

Thus M(S2) is closed under the binary operation ×.

Theorem 7. The neutrosophic multiset semigroups {M(Si),×} for i = 1, 2, 3, 4 are commutative and of
infinite order satisfying, the following properties for each M(Si); i = 1, 2, 3, 4.

1. {M(S1),×} has no trivial or non-trivial special type of zero divisors and no trivial or non-trivial
idempotents.

2. {M(S2),×} has infinite number of special type of zero divisors and no non-trivial idempotents.
3. {M(S3),×} has no trivial or non-trivial special zero divisors but has (1, 1, 1) as identity and has no non

trivial idempotents.
4. {M(S4),×} has non-trivial special type of zero divisors and has (1, 1, 1) as its identity and has idempotents

of the form {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1) and so on }.

Proof. 1. Follows from the fact that S1 has no zero divisors and idempotents as it is built on the
interval (0, 1).

2. Evident from the fact S2 is built on [0, 1) so has special type of zero divisors by definition but no
idempotent.

3. True from the fact S3 is built on (0, 1], so (1, 1, 1) ∈ M(S3).
4. S4 which is built on [0, 1] has infinite special type of zero divisors as (0, 0, 0) ∈ S4 by Definition 11

and (1, 1, 1) ∈ M(S4) and has idempotents of the form {(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1) and
so on }.
Hence the claims of the theorem.

Now we proceed onto define usual addition on M(S1)

S1 = {(x, y, z)/x, y, z ∈ (0, 1)} in not even closed under addition. For there are x, y ∈ (0, 1) such
that x + y is 1 or greater than 1, so these elements are not in (0 , 1), hence our claim.

Recall S2 = {(x, y, z)/x, y, z ∈ [0, 1)}. We can define addition modulo 1 and product under that
addition both S2 and [0, 1) are closed.

Let a = (0.7, 0.6, 0.9) and b = (0.5, 0.9, 0.4) be in S2, we find a + b mod 1.
a + b = (0.7, 0.6, 0.9) + (0.5, 0.9, 0.4) = (0.7 + 0.5(mod 1), 0.6 + 0.9(mod 1), 0.9 + 0.4(mod 1)) =

(0.2, 0.5, 0.3) is in S2. (0, 0, 0) in S2 acts as the additive identity.
For every a ∈ S2 there is a unique b ∈ S2 such that a + b = (0, 0, 0)mod 1. Thus (S2,+) is a NC

group of infinite under addition modulo 1. Further (S2,×) is a semigroup under product of infinite
order which is commutative and not a monoid as (1, 1, 1) is not in S2.

Now we illustrate how addition is performed on any two neutrosophic multisets in M(S2).
Let A = {7(0.3, 0.8, 0.45), 9(0.02, 0.41, 0.9), (0.6, 0.3, 0.2)} and B = {5(0.1, 0, 0.9), 2(0.6, 0.5, 0)} be

any two multisets of M(S2). To find the sum of A with B under addition modulo 1.
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A + B = { 35[(0.3, 0.8, 0.45) + (0.1, 0, 0.9)]mod 1, 45[(0.02, 0.41, 0.9) + (0.1, 0, 0.9)]mod 1, 5[(0.6, 0.3,
0.2) + (0.1,0, 0.9)]mod 1, 14[(0.3, 0.8, 0.45) + (0.6, 0.5,0)]mod 1, 18[(0.02, 0.41, 0.9) + (0.6, 0.5, 0)]mod 1,
2[(0.6, 0.3, 0.2) + (0.6, 0.5, 0)]mod 1} = {35(0.4, 0.8, 0.35), 45(0.12, 0.41, 0.8), 5(0.7, 0.3, 0.1), 14(0.9, 0.3,
0.45), 18(0.62, 0.91, 0.9), 2(0.2, 0.8, 0.2)}

is in M(S2). This is the way addition modulo 1 operation is performed. For M(S3) and M(S4) we
can not define usual addition modulo 1 as (1, 1, 1) ∈ M(S3) and M(S4).

Next we proceed on to describe the product of any two elements in M(S2). We take the above A
and B and find A× B. A× B = {35[(0.3,0.8,0.45) × (0.1, 0, 0.9)], 45[(0.02, 0.41, 0.9) × (0.1, 0, 0.9)], 5[(0.6,
0.3, 02)× (0.1, 0, 0.9)], 14[(0.3, 0.8, 0.45)×(0.6, 0.5 0)], 18[(0.02, 0.41. 0.9)× (0.0.6, 0.5, 0)], 2[(0.6, 0.3, 0.2)
× ( 0.6, 0.5, 0)]} = {35(0.03, 0, 0.405), 45(0.002,0, 0.81), 5(0.06, 0, 0.18), 14(0.18, 0.4, 0), 18(0.012, 0.205, 0),
2(0.36, 0.15, 0)}, is in M(S2).

Theorem 8. {M(S2),+} is a multiset NC semigroup under addition modulo 1.

Proof. M(S2) is closed under the binary operation addition modulo 1. Thus M(S2) is the neutrosophic
multiset semigroup under + modulo 1.

Now we proceed on to define a special type of zero divisors. In view of this we have the
following theorem.

Theorem 9. R = {M(S2),×} is an infinite commutative multiset NC semigroup, which is not a monoid and
has special type of zero divisors.

Proof. We see M(S2) under the binary operation product is closed and is associative as the base set S2

is associative and commutative and is closed under the binary operation product. Thus {(S2),×} is
commutative semigroup of infinite order. Further M(S2) does not contain (1, 1, 1) so {M(S2),×} is
not a monoid.

From the above definition and description of special zero divisors R has infinite number
of them.

We have the following theorem.

Theorem 10. {M(S2),+,×} is a NC multiset commutative semiring of infinite order which has infinite
numbers of special type of zero divisors.

Proof. Follows from Theorem 8 and Theorem 9.

Next we proceed on to define n- multiplicity neutrosophic multisets and derive some properties
related with them. M(S3) and M(S4) are just multiset NC semigroups under product and in fact they
are monoids. Further M(S4) has infinite number of special zero divisors.

5. n-Multiplicity Neutrosophic Set Semigroups Using S1, S2, S3 and S4

In this section we define the new notion of n-multiplicity NC using S1, S2, S3 and S4. We prove
these n-multiplicity NC are of infinite order but what is restricted is the multiplicity n, that is any
element cannot exceed multiplicity n; it can maximum be n, where n is a positive finite integer. Finally
we prove {M(S2),+,×} where S2 = [0, 1) is a NC n-multiset commutative semiring of infinite order.

We will first illustrate this situation by some examples before we make an abstract definition
of them.

Example 4. Let 4-M(S1) = {collection all multisets with entries from S1 = {(x, y, z)/x, y, z ∈
(0, 1)}, such that any element in S1 can maximum repeat itself only four times}. Here n =

4, A = {4(0.5, 0.7, 0.4), 3(0.1, 0.9, 0.7), 4(0.1, 0.2, 0.3), 4(0.7, 0.8, 0.4), 4(0.8, 0.8, 0.8), 2(0.9, 0.9, 0.9),
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3(0.7, 0.9, 0.6), (0.6, 0.1, 0.1)} be a 4-multiplicity multiset from 4-M(S1). We see the NC
(0.5, 0.7, 0.4), (0.1, 0.2, 0.3), (0.7, 0.8, 0.4) and (0.8, 0.8,0.8) have multiplicity four which is the highest
multiplicity an element of 4-M(S1) can have. The NC (0.1, 0.9, 0.7) and (0.7,0.9,0.6) have multiplicity
3. The multiplicity of (0.9, 0.9, 0.9) is two and that of (0.6, 0.1, 0.1) is one. Clearly S1 does not contain
the extreme values 0 and 1 as S1 is built using the open interval (0, 1). However on M(S1) we can not
define addition.

Thus 4-M(S1) can not have the operation of addition defined on it. Now we show how the
operation × is defined on 4-M(S1) for the some A, B ∈ 4-M(S1). Now

A× B = {3(0.3, 0.7, 0.8), 2(0.5, 0.9, 0.6), 4(0.2, 0.3, 0.4)} × {(0.1, 0.3, 0.7), 2(0.5, 0.7, 0.1)}
= {3(0.03, 0.21, 0.56), 2(0.05, 0.27, 0.42), 4(0.02, 0.09, 0.28),

6(0.15, 0.49, 0.08), 4(0.25, 0.63, 0.06), 8(0.1, 0.21, 0.04)}

we now use the fact we can have maximum only 4 multiplicity of an element so we replace
6(0.15, 0.49, 0.08) by 4(0.15, 0.49, 0.08) and 8(0.1, 0.21, 0.04) by 4(0.1, 0.21, 0.04). Now the thresholded
product is {(3(0.03, 0.21, 0.56), 2(0.05, 0.27, 0.42), 4(0.02, 0.09, 0.28), 4(0.15, 0.49, 0.08), 4(0.25, 0.63, 0.06),
4(0.1, 0.21, 0.04))} ∈ 4-M(S1).

{4-M(S1),×} is a commutative neutrosophic multiset semigroup of infinite order and the
multiplicity of any element cannot exceed 4.

This semigroup is not a monoid and it has no special zero divisors or zero divisors or units.

Definition 12. 12 Let n-M(Si) ={ collection of all multisets with entries from Si of at-most multiplicity
n; 2 ≤ n < ∞}(1 ≤ i < 4). n-M(Si) under usual product, × is defined as the n-multiplicity NC semigroup,
1 ≤ i ≤ 4.

In view of this we have the following theorem.

Theorem 11. Let n-M(Si) = {t(x, y, z)|x, y, z ∈ Si; 1 ≤ t ≤ n} be the n-multiplicity neutrosophic multisets
(1 ≤ i ≤ 4).

1. n-M(Si) is not closed under the binary operation ‘+’ under usual addition, for i = 1, 3 and 4.
2. n-M(Si) is a (n-multiplicity neutrosophic multiset) semigroup under the usual product for i = 1, 2, 3

and 4.
3. {n-M(Si),×} is a monoid for i = 3 and 4. .
4. {n-M(Si),×} has no special zero divisors if Si = S1 and S3 but they have no non trivial idempotents. S2

and special zero divisors and no non trivial idempotents, but S4 has both non trivial special zero divisors
and non trivial idempotents.

Proof. Proof of 1: If A = {(0.3, 0.8, 0.9)} and B = {(0.4, 0.3, 0.1)} ∈ n-M(Si). A + B = {(0.7, 1.1,
1.0)} /∈ n-M(Si) as Si when built using S3 and S4 and by example 4 n-M(S1). Only M(S2) is closed
under addition.

Proof of 2: Since (Si,×) is closed under product so is n-M(Si) with replacing the numbers greater
than n by n in the resultant product; i = 1, 2, 3 and 4 are semigroups, hence the claim.

Proof of 3: As (1, 1, 1) ∈ S3 and S4 so is in n-M(S3) and n-M(S4) respectively so they are monoids.
Proof of 4: n-M(Si) has no special zero divisors in case of S1 and S3. Finally Si = {(x, y, z)|x, y, z ∈

Si}, has zero divisors and special zero divisors in case of S2 and S4 for i = 2 and 4, and non trivial
idempotents contributed by 0’s and 1’s only in case of S4. Hence the theorem.

Example 5. Let 5-M(S2) = {Collection of all neutrosophic multisets which can occur at most
5-times that is the multiplicity is 5 with elements from S2 = {(x, y, z)|x, y, z ∈ [0, 1)}} Let A =
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4(0.2, 0.5, 0.7), 3(0.1, 0.2, 0.3), 5(0.3, 0.1, 0.2), (0.1, 0.2, 0.8) ∈ 5-M(S2) We see the multiplicity of (0.3, 0.1,
0.2) is 5 others are less than 5.

Let A = {3(0.3, 0.2, 0), 4(0.5, 0.6, 0.9), 5(0.1, 0.2, 0.7)} and B = {4(0.8, 0.1, 0.9), 2(0.6, 0.6, 0.6)} ∈
5-M(S2). Now we first find A× B = {5(0.24, 0.02, 0), 5(0.4, 0.06, 0.81), 5(0.08, 0.02, 0.63), 5(0.06, 0.12,
0.42)} ∈ 5(M(S2).

A + B = {5(0.1, 0.3, 0.9), 5(0.9, 0.8, 0.6), 5(0.3, 0.7, 0.8), 5(0.9, 0.3, 0.6), 5(0.1, 0.2, 0.5), 5(0.7, 0.8,
0.3)} ∈ 5-M(S2). Addition is done modulo 1. However we have closure axiom to be true under + for elements
in S2 and in case of S1; 0 /∈ S1 = (0, 1)). This closure axiom is flouted.

If addition modulo 1 is done we have to see that 1 is not included in the interval and 0 is included in that
interval so we need to have only closed open interval [0, 1). Under these two constraints only we can make S2 as
well as M(S2) and n-M(S2) as semigroups under addition modulo 1.

We can built strong structure only using the [0, 1).

Theorem 12. Let n-M(S2) = Collection of all multisets of S built using S2 = {(x, y, z)|x, y, z ∈ [0, 1)} with
multiplicity less than or equal to n; 2 ≤ n ≤ ∞

{ n-M(S2),×} is a commutative neutrosophic multiset semigroup of infinite order and is not a monoid,
n-M(S2) has infinite number of zero divisors.

Proof. If A and B ∈ n-M(S2) we find A× B and update the multiplicities in A× B to be less than or
equal to n so that A× B ∈ n-M(S2). by Theorem 11(2).

Clearly (1, 1, 1) /∈ n-M(S2) so is not a monoid.

Theorem 13. B = {n-M(S2),+,×}, the n-multiplicity multiset NC is a commutative semiring of infinite
order and has no unit, where S2 = [0, 1).

Proof. Follows from the fact { n-M(S2), +} is a commutative semigroup under addition modulo 1,
Theorem 11(1) and Theorem 12 and {n-M(S2), ×} is a commutative semigroup under ×. Hence
the claim.

6. Discussions

The main motive of this paper is to construct strong algebraic structures with two binary
operations on the NC. Here we are able to get a NC commutative ring structure using the base
interval as [0, 1). This will lead to future research of constructing Smarandache neutrosophic vector
spaces and Smarandache neutrosophic algebraic codes using the same interval [0, 1). Now using the
same interval [0, 1), we construct multiset NC and n-multiset NC 2 ≤ n < ∞. On these we were able
to built only neutrosophic multiset(n-multiplication set) commutative semiring structure. Now using
these we can construct Smarandache multiset neutrosophic semi vector spaces which will be taken as
future research. So this is significant first step to develop other strong structures and apply them to
NC codes and NC cryptography.

7. Conclusions

In this paper, authors have made a study of NC on the 4-intervals (0, 1) (0, 1], [0, 1] and [0, 1).
We define usual + and× on these intervals which is very different from the study taken so far. The main
properties enjoyed by these NC semigroups are developed. Further of these intervals only the interval
[0, 1) gives a nice algebraic structure viz an abelian group under usual addition modulo 1, which in
turn helps in constructing NC commutative ring under usual addition modulo 1 and product, the ring
has infinite number of zero divisors, whereas all the other intervals are semigroups/monoids which
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are torsion free or weakly torsion free of infinite order under ×. Further in this paper we introduce the
notion of multiset NC semigroups using these four intervals under product. Furthermore, the multiset
NC forms a commutative semiring with zero divisors only when the interval [0, 1) is used. Finally we
introduce n-multiplicity multiset using these NC. They are also semigroups which is torsion free or
weakly torsion free under product.

For future research we will be using the product and addition modulo 1 in the place of min and
max in Single Valued Neutrosophic Set (SVNS) and would compare the results with the existing ones
when applied as SVNS models to real world problems.

Apart from all these we can use these NC, multiset NC and n-multiplicity multiset NC to built
NC codes which is one of the applications to neutrosophic cryptography which will be taken up by the
authors for future research.
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