Neutrosophic Closed Set and Neutrosophic Continuous Functions

A. A. Salama, Florentin Smarandache and Valeri Kroumov

1Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, 23 December Street, Port Said 42522, Egypt. Email: drsalama44@gmail.com
2Department of Mathematics, University of New Mexico Gallup, NM, USA. Email: smarand@unm.edu
3Okayama University of Science, Okayama, Japan.

Abstract
In this paper, we introduce and study the concept of "neutrosophic closed set "and "neutrosophic continuous function". Possible application to GIS topology rules are touched upon.

Keywords: Neutrosophic Closed Set, Neutrosophic Set; Neutrosophic Topology; Neutrosophic Continuous Function.

1 INTRODUCTION
The idea of "neutrosophic set" was first given by Smarandache [11, 12]. Neutrosophic operations have been investigated by Salama at el. [1-10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories, generalizing both their crisp and fuzzy counterparts [9, 13]. Here we shall present the neutrosophic crisp version of these concepts. In this paper, we introduce and study the concept of "neutrosophic closed set " and "neutrosophic continuous function".

2 TERMINOLOGIES
We recollect some relevant basic preliminaries, and in particular the work of Smarandache in [11, 12], and Salama at el. [1-10].

2.1 Definition [5]
A neutrosophic topology (NT for short) an a non empty set X is a family τ of neutrosophic subsets in X satisfying the following axioms

(NT$_1$) $O_x, l_y \in \tau$,
(NT$_2$) $G_i \cap G_z \in \tau$ for any $G_i, G_z \in \tau$,
(NT$_3$) $\bigcup G_i \in \tau \ \forall \left\{ G_i : i \in J \right\} \subseteq \tau$

In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in τ is known as neutrosophic open set (NOS for short) in X. The elements of τ are called open neutrosophic sets, A neutrosophic set F is closed if and only if it $C(F)$ is neutrosophic open.

2.1 Definition [5]
The complement of $(C(A)$ for short) of is called a neutrosophic closed set (NCS for short) in X. NOSA NCS X.

3 Neutrosophic Closed Set

3.1 Definition
Let (X, τ) be a neutrosophic topological space. A neutrosophic set A in (X, τ) is said to be neutrosophic closed (in shortly N-closed). If $\text{Ncl}(A) \subseteq G$ whenever $A \subseteq G$ and G is neutrosophic open; the complement of neutrosophic closed set is Neutrosophic open.

3.1 Proposition
If A and B are neutrosophic closed sets then $A \cup B$ is Neutrosophic closed set.

3.1 Remark
The intersection of two neutrosophic closed (N-closed for short) sets need not be neutrosophic closed set.

3.1 Example
Let $X = \{a, b, c\}$ and
A = \langle (0.5,0.5,0.5), (0.4,0.5,0.5), (0.4,0.5,0.5) \rangle

B = \langle (0.3,0.4,0.4), (0.7,0.5,0.5), (0.3,0.4,0.4) \rangle

Then T = \{ 0_\mathbb{N}, 1_\mathbb{N}, A, B \} is a neutrosophic topology on X. Define the two neutrosophic sets A_1 and A_2 as follows,

A_1 = \langle (0.5,0.5,0.5), (0.6,0.5,0.5), (0.6,0.5,0.5) \rangle

A_2 = \langle (0.7,0.6,0.6), (0.3,0.5,0.5), (0.7,0.6,0.6) \rangle

A_1 and A_2 are neutrosophic closed set but A_1 \cap A_2 is not a neutrosophic closed set.

3.2 Proposition

Let (X, \tau) be a neutrosophic topological space. If B is neutrosophic closed set and A \subseteq A \subseteq \text{Ncl}(B), then A is N-closed.

3.4 Proposition

In a neutrosophic topological space (X,\tau), T=\mathbb{N} (the family of all neutrosophic closed sets) if every neutrosophic subset of (X,\tau) is a neutrosophic closed set.

Proof. Suppose that every neutrosophic set A of (X,\tau) is N-closed. Let A \subseteq A \subseteq A \subseteq A and B \in \text{Ncl}(A). Hence, \text{Ncl}(A) = A, thus, A \subseteq \mathbb{N}. Therefore, B \in \mathbb{N} and hence B \in \mathbb{T}. Therefore \mathbb{T}=\mathbb{N} conversely, suppose that A be a neutrosophic set in (X,\tau). Let B be a neutrosophic open set in (X,\tau). Such that B \subseteq A. By hypothesis, B is neutrosophic N-closed. By definition of neutrosophic closure, \text{Ncl}(A) \subseteq B. Therefore A is N-closed.

3.5 Proposition

Let (X,\tau) be a neutrosophic topological space. A neutrosophic set A is neutrosophic open iff B \subseteq \text{Nint}(A), whenever B is neutrosophic closed and B \subseteq A.

Proof. Let A a neutrosophic open set and B a N-closed, such that B \subseteq A. Now, B \subseteq A \Rightarrow 1-B \subseteq 1-B and 1-A is a neutrosophic closed set \Rightarrow \text{Ncl}(1-A) \subseteq 1-B. That is, B=1-(1-B) \subseteq 1-Ncl(1-A). But 1-Ncl(1-A) = Nint(1-A). Thus, B \subseteq Nint(1-A). Conversely, suppose that B be a neutrosophic set, such that B \subseteq Nint(1-A) whenever B is neutrosophic closed and B \subseteq A. Let 1-A \subseteq B \Rightarrow 1-B \subseteq A. Hence by assumption 1-B \subseteq Nint(1-A), that is, 1-Nint(1-A) \subseteq B. But 1-Nint(1-A) =Ncl(1-A), Hence \text{Ncl}(1-A) \subseteq B. That is 1-A is neutrosophic open set. Therefore, A is neutrosophic open set.

3.6 Proposition

If Nint(A) \subseteq B \subseteq A and if A is neutrosophic open set then B is also neutrosophic open set.

4 Neutrosophic Continuous Functions

4.1 Definition

i) If \(B = \langle \mu_B, \sigma_B, \nu_B \rangle \) is a NS in Y, then the preimage of B under f denoted by \(f^{-1}(B) \) is a NS in X defined by

\[f^{-1}(B) = \langle f^{-1}(\mu_B), f^{-1}(\sigma_B), f^{-1}(\nu_B) \rangle. \]

ii) If \(A = \langle \mu_A, \sigma_A, \nu_A \rangle \) is a NS in X, then the image of A under f, denoted by \(f(A) \), is the a NS in Y defined by

\[f(A) = \langle f(\mu_A), f(\sigma_A), f(\nu_A) \rangle. \]

Here we introduce the properties of images and preimages some of which we shall frequently use in the following sections.

4.2 Definition

Let \(\langle X, \mathcal{T}_1 \rangle \) and \(\langle Y, \mathcal{T}_2 \rangle \) be two NTs, and let \(f : X \to Y \) be a function. Then \(f^{'} \) is said to be continuous iff the preimage of each NCS in \(\mathcal{T}_2 \) is a NS in \(\mathcal{T}_1 \).

4.3 Definition

Let \(\langle X, \mathcal{T}_1 \rangle \) and \(\langle Y, \mathcal{T}_2 \rangle \) be two NTs, and let \(f : X \to Y \) be a function. Then \(f^{'} \) is said to be open iff the image of each NS in \(\mathcal{T}_1 \) is a NS in \(\mathcal{T}_2 \).

4.1 Example

Let \(\langle X, \mathcal{T}_0 \rangle \) and \(\langle Y, \psi_{\mathcal{T}_0} \rangle \) be two NTs

(a) If \(f : X \to Y \) is continuous in the usual sense, then in this case, \(f^{'} \) is continuous in the sense of Definition 5.1 too. Here we consider the NTs on X and Y, respectively, as follows : \(\mathcal{T}_1 = \left\{ \langle \mu_G, 0, \mu_G \rangle : G \in \mathcal{T}_0 \right\} \) and
In this case we have, for each \(\mu_H, 0, \mu_H \in \Gamma_2 \),
\(H \in \mathcal{P}_Y \),
\(f^{-1}(\mu_H, 0, \mu_H) = f^{-1}(0, f^{-1}(\mu_H)) \in \Gamma_1 \).

(b) If \(f : X \to Y \) is neutrosophic open in the usual sense, then in this case, \(f \) is neutrosophic open in the sense of Definition 3.2.

Now we obtain some characterizations of neutrosophic continuity:

4.1 Proposition
Let \(f : (X, \Gamma_1) \to (Y, \Gamma_2) \).
\(f \) is neutrosophic continuous iff the preimage of each NS (neutrosophic closed set) in \(\Gamma_2 \) is a NS in \(\Gamma_2 \).

4.2 Proposition
The following are equivalent to each other:
(a) \(f : (X, \Gamma_1) \to (Y, \Gamma_2) \) is neutrosophic continuous.
(b) \(f^{-1}(N_{\text{Int}}(B)) \subseteq N_{\text{Int}}(f^{-1}(B)) \) for each CNS \(B \) in \(Y \).
(c) \(N_{\text{cl}}(f^{-1}(B)) \subseteq f^{-1}(N_{\text{cl}}(B)) \) for each NCB in \(Y \).

4.3 Example
Let \(\{Y, \Gamma_2\} \) be a NTS and \(f : X \to Y \) be a function. In this case \(\Gamma_1 = f^{-1}(H) : H \in \Gamma_2 \) is a NT on \(X \). Indeed, it is the coarsest NT on \(X \) which makes the function \(f : X \to Y \) continuous. One may call it the initial neutrosophic crisp topology with respect to \(f \).

4.4 Definition
Let \((X, T) \) and \((Y, S) \) be two neutrosophic topological spaces, then
(a) A map \(f : (X, T) \to (Y, S) \) is called N-continuous (in short N-continuous) if the inverse image of every closed set in \(Y \) is Neutrosophic closed in \(X \).
(b) A map \(f : (X, T) \to (Y, S) \) is called neutrosophic-gc irresolute if the inverse image of every Neutrosophic closed set in \((Y, S) \) is Neutrosophic closed in \((X, T) \).
(c) A map \(f : (X, T) \to (Y, S) \) is said to be strongly neutrosophic continuous if \(f^{-1}(A) \) is both neutrosophic open and neutrosophic closed in \((X, T) \) for each neutrosophic open set \(A \) in \((Y, S) \).
(d) A map \(f : (X, T) \to (Y, S) \) is said to be perfectly neutrosophic continuous if \(f^{-1}(A) \) is both neutrosophic open and neutrosophic closed in \((X, T) \) for each neutrosophic open set \(A \) in \((Y, S) \).
(e) A map \(f : (X, T) \to (Y, S) \) is said to be strongly N-continuous if the inverse image of every Neutrosophic open set in \(Y \) is neutrosophic open in \(X \).

(F) A map \(f : (X, T) \to (Y, S) \) is said to be perfectly N-continuous if the inverse image of every Neutrosophic open set in \(Y \) is both neutrosophic open and neutrosophic closed in \(X, T \).

4.3 Proposition
Let \((X, T) \) and \((Y, S) \) be any two neutrosophic topological spaces. Let \(f : (X, T) \to (Y, S) \) be generalized neutrosophic continuous. Then for every neutrosophic set \(A \) in \(X \), \(f(N_{\text{cl}}(A)) \subseteq N_{\text{cl}}(f(A)) \).

4.4 Proposition
Let \((X, T) \) and \((Y, S) \) be any two neutrosophic topological spaces. Let \(f : (X, T) \to (Y, S) \) be generalized neutrosophic continuous. Then for every neutrosophic set \(A \) in \(Y \), \(Ncl(f^{-1}(A)) \subseteq f^{-1}(Ncl(A)) \).

4.5 Proposition
Let \((X, T) \) and \((Y, S) \) be any two neutrosophic topological spaces. If \(A \) is a Neutrosophic closed set in \((X, T) \) and if \(f : (X, T) \to (Y, S) \) is neutrosophic continuous and neutrosophic-closed then \(f(A) \) is Neutrosophic closed in \((Y, S) \).

Proof.
Let \(G \) be a neutrosophic-open in \((Y, S) \). If \(f(A) \subseteq G \), then \(A \subseteq f^{-1}(G) \) in \((X, T) \). Since \(A \) is neutrosophic closed and \(f^{-1}(G) \) is neutrosophic open in \((X, T) \), \(Ncl(A) \subseteq f^{-1}(G) \) (i.e. \(f(Ncl(A)) \subseteq G \)). Now by assumption, \(f(Ncl(A)) \) is neutrosophic closed and \(Ncl(f(Ncl(A))) = f(Ncl(A)) \subseteq G \). Hence, \(f(A) \) is N-closed.

4.5 Proposition
Let \((X, T) \) and \((Y, S) \) be any two neutrosophic topological spaces. If \(f : (X, T) \to (Y, S) \) is neutrosophic continuous then it is N-continuous.

The converse of proposition 4.5 need not be true. See Example 4.3.

4.3 Example
Let \(X = \{a, b, c\} \) and \(Y = \{a, b, c\} \). Define neutrosophic sets \(A \) and \(B \) as follows \(A = \{(0.4, 0.4, 0.5), (0.2, 0.4, 0.3), (0.4, 0.4, 0.5)\} \)
\[B = \{(0.4, 0.5, 0.6), (0.3, 0.2, 0.3), (0.4, 0.5, 0.6)\} \]
Then the family \(T = \{0_b, 1_N, A\} \) is a neutrosophic topology on \(X \) and \(S = \{0_b, 1_N, B\} \) is a neutrosophic topology on \(Y \). Thus \((X, T) \) and \((Y, S) \) are neutrosophic topological spaces. Define \(f : (X, T) \to (Y, S) \) as \(f(a) = b, f(b) = a, f(c) = c \). Clearly \(f \) is N-continuous. Now \(f \) is not neutrosophic continuous, since \(f^{-1}(B) \notin T \) for \(B \in S \).

4.4 Example
Let \(X = \{a, b, c\} \). Define the neutrosophic sets \(A \) and \(B \) as follows,
\[A = \{(0.4, 0.5, 0.4), (0.5, 0.5, 0.5), (0.4, 0.5, 0.4)\} \]
Let (X,T) and (Y,S) be any two neutrosophic topological spaces. If $f : (X,T) \rightarrow (Y,S)$ is strongly N-continuous then f is strongly N-continuous.

The converse of proposition 3.23 is not true. See Example 4.7.

4.7 Example
Let $X = \{a,b,c\}$ and Define the neutrosophic sets A and B as follows.

$$A = \{(0.9,0.9,0.9), (0.1,0.1,0.1), (0.9,0.9,0.9)\}$$
$$B = \{(0.9,0.9,0.9), (0.1,0.1,0.1), (0.9,0.1,0.8)\}$$

and $S = \{0, 1\}$ are neutrosophic topologies on X. Thus (X,T) and (X,S) are neutrosophic topological spaces. Also define $f : (X,T) \rightarrow (X,S)$ as follows.

$$f(a) = a, f(b) = c, f(c) = b.$$ Clearly f is neutrosophic continuous. Since $D = \{(0.9,0.9,0.9), (0.1,0.01,0.01), (0.9,0.9,0.99)\}$ is an Neutrosophic open set in (X,S), $f^{-1}(D)$ is not neutrosophic open in (X,T).

4.8 Proposition
Let (X,T) and (Y,S) be any two neutrosophic topological spaces. If $f : (X,T) \rightarrow (Y,S)$ is strongly neutrosophic continuous then f is strongly N-continuous.

The converse of proposition 3.23 is not true. See Example 4.7.

4.9 Proposition
Let $(X,T),(Y,S)$ and (Z,R) be any three neutrosophic topological spaces. Suppose $f : (X,T) \rightarrow (Y,S), g : (Y,S) \rightarrow (Z,R)$ be maps. Assume f is neutrosophic g-c irresolute and g is N-continuous then $g \circ f$ is N-continuous.

4.10 Proposition
Let (X,T), (Y,S) and (Z,R) be any two neutrosophic topological spaces. Let $f : (X,T) \rightarrow (Y,S), g : (Y,S) \rightarrow (Z,R)$ be maps, such that f is strongly N-continuous and g is N-continuous. Then the composition $g \circ f$ is neutrosophic continuous.

4.5 Definition
A neutrosophic topological space (X,T) is said to be neutrosophic $T_{1\beta}$ if every Neutrosophic closed set in (X,T) is neutrosophic closed in (X,T).

4.11 Proposition
Let $(X,T),(Y,S)$ and (Z,R) be any neutrosophic topological spaces. Let $f : (X,T) \rightarrow (Y,S)$ and $g : (Y,S) \rightarrow (Z,R)$ be mapping and (Y,S) be neutrosophic $T_{1\beta}$ if f and g are N-continuous then the composition $g \circ f$ is N-continuous.

The proposition 4.11 is not valid if (Y,S) is not neutrosophic $T_{1\beta}$.

4.8 Example
Let $X = \{a,b,c\}$ and Define the closed sets A,B and C as follows.

$$A = \{0.4,0.4,0.6,0.5\}, \{0.4,0.4,0.3\}$$
$$B = \{0.4,0.5,0.6,0.5\}, \{0.3,0.4,0.3\}$$
$$C = \{0.5,0.3,0.5\}, \{0.5,0.3,0.4\}$$

A.A. Salama, Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed Set and Neutrosophic Continuous Functions

Then the family \(T = \{ 0_N, 1_N, A \} \), \(S = \{ 0_N, 1_N, B \} \) and \(R = \{ 0_N, 1_N, C \} \) are neutrosophic topologies on \(X \). Thus \((X,T),(X,S)\) and \((X,R)\) are neutrosophic topological spaces. Also define \(f : (X,T) \rightarrow (X,S) \) as \(f(a) = b, f(b) = a, f(c) = c \) and \(g : (X,S) \rightarrow (X,R) \) as \(g(a) = b, g(b) = c, g(c) = b \). Clearly \(f \) and \(g \) are \(N \)-continuous function. But \(g \circ f \) is not \(N \)-continuous. For \(1 - C \) is neutrosophic closed in \((X,R)\), \(f^{-1}(g^{-1}(1-C)) \) is not \(N \) closed in \((X,T)\), \(g \circ f \) is not \(N \)-continuous.

References

