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Abstract

Purpose of this paper is to interpret the multiplication of neutrosophic cubic set. Here we define the notation of ¥-
multiplication of neutrosophic cubic set and study it with the help of neutrosophic cubic M-subalgebra, neutrosophic
cubic normal ideal and neutrosophic cubic closed normal ideal. We also study x-multiplication under
homomorphism and cartesian product through significant characteristics.

Keywords: B-algebra, Neutrosophic cubic set, ¥-Multiplication, Cartesian product, Homomorphism.
1.Introduction

Theory of existing and non-existing value was first introduced by Zadeh [1,2]. Cubic set was defined by Jun et al.
[3] in 2012, which was the modern form of interval-valued fuzzy set. Cubic set with the help of subalgebras, ideals
and closed ideals of B-algebra was studied by Senapati et al. [4]. After the defing of BCK-algebra and BCI-algebra
by Imai et al. [5] and Iseki [6], cubic set through subalgebras and g-ideals in BCK/BClI-algebra was investigated by
Jun et al. [7, 8]. Notion of M-subalgebra on G-algebra is introduced and analyzed by Khalid et al. [9]. Interval-
valued fuzzy set on B-algebra was studied by Senapati et al. [10,11]. Intuitionistic fuzzy translation and
multiplication of G-algebra were deeply studied by by Khalid et al. [19]. Neutrosophic cubic set is the extended
form of interval valued intuitionistic fuzzy theory with indeterminacy was introduced by Smarandache [12].
Neutrosophic logics and neutrosophic probability gave the new idea of research were interpret by Smarandache [13].
Neutrosophic cubic was introduced by Jun et al. [14]. Neutrosophic cubic point, (a,f)-fuzzy ideals and
neutrosophic cubic (a, B)-ideals were analyzed by Gulistan et al. [15]. A new idea of normal ideal and closed
normal ideal under neutrosophic cubic set was given and investigated by Khalid et al. [16]. Neutrosophic cubic set
was investigated by Jun et al. [17]. PS fuzzy ideals were studied by Priya et al. [18]. Rosenfeld’s fuzzy subgroup
was studied by Biswas [20]. B-homomorphism was deeply studied by Neggers et al. [21]. Neutrosophic soft cubic
subalgebra was extensively studied by Khalid et al. [22]. A B-algebra is an important logical class of algebra was
defined by Neggers et al. [23]. T-Neutrosophic Cubic Set was defined and deeply investigated by Khalid et al. [24].

In this paper, we define y-multiplication of neutrosophic cubic set and investigate the neutrosophic cubic M-
subalgebra, neutrosophic cubic normal ideal (NCNID) and neutrosophic cubic closed normal ideal (NCCNID) under
y-multiplication with the help of P-intersection, P-union etc. We also study the cartesian product and
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homomorphism of ¥-multiplication of neutrosophic cubic normal ideal (sMNCNID) and ¥-multiplication of
neutrosophic cubic closed normal ideal (’MNCCNID) with important results.

2. Preliminaries

Definition 2.1 [19] A nonempty set X with a constant 0 and * is said to be B-algebra if it fulfills these conditions:
Ligxt=0,

2:4*x0=0, forall{ € X.

B@xp)xt=tx(tx(O0*xt) VLt teX

Definition 2.2 [21] A nonempty subset K of B-algebra X is called a subalgebra of Y if { * t € KV t,t € K, a mapping
f: X = Y of B-algebra is called B-homomorphism if f(t * £) = f(t) * f(t) V{, £t € X.

Definition 2.3 [1] Let X be a collection of elements like §. Then a FS ] in X is defined as ] = {< {,v;(}) > [t € X},
where (1) is called the existenceship value of § in ] and v;(t) € [0,1].

For a family J; = {< 1, v};() > |t € X} of FSs in X, where i € k and k is index set, Then join (V) and meet
(A) are as follows:

Y Ji = (igk v,) () = sup{vy|i € k}

and

AJi = (A Vi) @) = infly i €13,

respectively, V § € X.

Definition 2.4 [2] An IVFS B is of the form B = {< t,V(t) > |t € X}, where Vg|X = D[0,1], here D[0,1] is the
collection of all subintervals of [0,1]. The intervals Vg (t) = [vg(}), vE ()] V t € X denote the degree of existence of §
to the set B, also ¥§ = [1 — vg(§),1 — v (t)] shows the complement of V.

For a family B; = {< t,Vg(t) > |t € X} of IVFSs in X where k is an index set and i € k, the union G =
.Uk\N)Bi (t) and the intersection F = .ﬂk\NzBi (1) are defined below:
1€ 1€

G(3) = rsup{Vg; ()i € k}

and

F(t) = rinf{Vg, (1)]i € K},
respectively, V § € X.

Definition 2.5 [20] Consider two elements D, D, € D[0,1]. If D; = [t7,t]] and D, = [13,15], then rmax(D,,D,) =
[max(t7,17), max(t7,t7)] which is denoted by D; V' D, and rmin(D,,D,) = [min(}7,t3), min(tf, )] which is
denoted by D; A"D,. Thus, if D;=[t,t2]€D[0,1]fori=1,23,.., then we define rsup;(D;)=
[sup;(t7), sup;(5)], i.e, VID; = [V;t,V;t']. Similarly we define rinf;(D;) = [inf;(t7), inf;(})], i.e., AT D; =
[A 57 8] Now we call D; =D, & t7 >1t; and {f >17. Similarly the relations D; <D, and D, =D, are
defined.
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Definition 2.6 [19] A fuzzy set B ={<t,vg(t) > |t € X} is called a fuzzy subalgebra of X if vg(f*t) =
min{vg (1), vg ()} V1, ¢ € X.

Definition 2.7 [14] Let X be a nonempty set. A NCS is P, = (B, A), where B = {{t; Br(t), B;(t), Br(1))|t € X} is an
interval neutrosophic set in X and A = {(t; Ar(}), A; (1), Ag(£) )|t € X} is a neutrosophic set in X.

Definition 2.8 [3] Let U be a universe and cubic set in U, we mean a structure {, V4 (1), A, (£)| § € U} in which v,
isan IVF setin U and A, is a fuzzy set in U. A cubic set A = {t,Vo(1), Ao (})| t € U} is simply denoted by C(U),
which is the set of all cubic sets in U.

Definition 2.9 [3] Let C = {(t, C(t), A(}))} be a cubic set, where C(}) is an IVFS in Y, A(}) is a fuzzy set in Y. Then A
is cubic subalgebra under * if it fulfills these axioms:

C1: C(t * £) = rmin{C(%), C(t)},

C2: At *t) < max{A(t),AB)} VLt EX
Definition 2.10 [18] A fuzzy set B = {< t,vg(t) > |t € X} is called a fuzzy ideal of X if
(1) vg(0) = vg(1),
(i) vg(t) = min{vg(t *£),vg(t)} Vit € X

Definition 2.11 [14] For any C; = (A, F)), where A; = {(t;; Air (1), Ay (), Aip(D)t € Y}, F; = {(ty; Fip (1), Fy (1),
Fir())|t € Y} for i € k, then

P-union: Up C; = (Ujer Ar, Viex Fi),
iek

P-intersection: Np C; = (Njek A, Aiex Fi),
iek

R-union: Ug C; = (Ujex A1, Ajex Fi),
iek
R-intersection: Ng C; = (Njex Ai, Viex Fi)-
ick

Definition 2.12 [16] ANCS R = (R, At r) of X is called a NCNID of X if it fulfills following axioms:
N3. Ry pr(0) = Rypp(f * o) and App(0) < Appp(t* o),
N4. Ry pp(t* o) = rmin{Ry (4 * @) * (& * ), Ry p(t * B},
NS Appe(t* o) < max{Ar;p(t* o) * (6% B)), Arp(b* B)}L, V£ Xand o, B € [0,1].

Let R = {Ry 1 A g} be a NCS X then it is called NCCNID of X if it fulfills N4, N5 and N6: Ry (0 *
(t*0)) = Ryyp(t* o) and Appp(0 * (5% 0)) < Appp(t* @),V £ € Xand a € [0,1].

Definition 2.13 [16] Let R = (Ryp, At r) and B = (Byjp, Ur p) are two NCSs of X and Y respectively. The
Cartesian product R XB = (X X Y, RT,I,F X BT,],F’ )\T,I,F X UT,I,F) is defined by (RT,I,F X BT,I,F) (!: * 0,0 * B) =

rmin{Ryp(t* o), B p(t * B)} and (App X vrp)(E* b+ B) = max{Ar;p(f * o ), v p(t * B))}, where Ry X
Brir | XX Y = D[0,1] and Apyp X upip | XX Y > [0,1] ¥ (4,£) € XX Yand a, B € [0,1].
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Definition 2.14 [16] A neutrosophic cubic subset RX F = (X X Y,Ry g X Fr g Arp X pr1r) is called a NCNID if
satisfies these conditions:

L. (Rppr X Frpp)(0,0) = (Rypp X Frpp)((B* ), (0% B)) and (Appp X prr)(0,0) < (Arir X b p) (5 * ), (B *
BV (t) EXXYanda,B € [0,1].

2. RrpXFrp)@*at;*B)  =rmin{(Rypp X Frpp) (5 * o, by % B) * (5 * o, 8 * B)), Ryp X Frpp) (52 *
o, by * B}

3.(Arr X ur ) (b * By % B) < max{(Arpp X prp) (B * 0, by * B8z * B2 * B)), (App X pry ) (52 * @, Bp *
B)}and RXF is closed normal ideal if it satisfies 2, 3, and 4. (Ryyp X Fpip)((0,0) * (1 * o, &, * B)) =

Ry X Frpp) (F* o, £+ B) and (Arpp X prpp)((0,0) * (o8 % B)) < (App X pryp) G * b+ B) V' (§1,4;) and
(t,,t,) € XX Yand o, B € [0,1].

Definition 2.15 [9] Let F, = (A¢; Ae;) be a neutrosophic soft cubic set, where Y is subalgebra. Then Fy is
NSCMSU under binary operation * where t,,t, € Y and a, § € [0,1] if it fulfills these conditions:

AG((t * @) * (t; * B)) = rmin{Ag, (t; * o), AZ, (tz * B)} and A, ((ty * ) * (ty * B)) < max{Ag, (t; * ), Ag, (t, *
B)}.

3. ¥-Multiplication of Neutrosophic Cubic Normal Ideal and Closed Normal Ideal

Definition 3.1. Let o = (Hp g, Ar1 ) be a NCS of X and ¥ € [0,1]. An object of the form FoM = (MHY, ¢, MA¥ () is
called neutrosophic cubic ¥ multiplication of Hu X if it fulfills following axioms:

THY () = ¥ HP (%), TAT () =% AP (%),
TH () = HP (), TG =% AP (),
NHE () =¥ HP' (0, T () =% 24P ().

For convinience we use MHY ;= ¥ HPY p(x) and MAP ¢ = %A% (%).
Theorem 3.1 A y-multilplication of NCCNID of B-algebra X is also a y-multilplication of NCMSU of X.

Proof. Suppose Ho = {Hp g Ar;p} be a NCCNID of X, then for any t € X, we have MHpp(0* (*a)) =
¥ Hppp(0* (5% @) = % Hypp(f+ o) and MAp p(0 * (5% @) = 5. A7 (0 * (¢t * @) < %.Ap p(f * ). Now by N4,
N6, and through proposition 3.3 of article M subalgebra, we know that %HT‘LF((‘; * o) * (b*B)) = Hyppp((f* ) *
(& B)) = w.rmin{Hr; g (((f * &) * (5% B)) * (0 * (5 * B))), Hy g (0 * (£ * B))} = ». rmin{Hry ;g (f * &), Hy p(0 *

(& * B)} = w. rmin{Hy g (t * ), Hyy p(b * B)}=rmin{x. Hyp(t * o), . Hyy p (5 * B)} = rmin{"jHy 5 (t *

), SHrpp(t* B}  and  MAppp((t* o) * (6% B)) = w. A0 p((5 * @) * (& * B)) < w.max{Ar p(((§* @) * (& * B)) *
(0% (&% B))), Arp(0 * (B * B))} = ¥ max{Arp(f * ), Arp(0 = (8% B))} < w.max{Arp(t* ), App(t *
B)}= max{x. A gt * ), v Arp(t * B)} = max{MAr  p(t * ), MAr (£ % B)}. Hence, YMNCCNID is YMNCMSU
of X.
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Proposition 3.1 Every y-multiplication of NCCNID is a ¥-multiplication NCNID but the converse is not true in

general.

Theorem 3.2 The R-intersection of any set of YMNCNIDs of X is also a YMNCNID of X.

Proof. Let Hy; = {HiT‘LF,?\iT,LF}, where i € k, be a YMNCNID of X and t,t € X. Then

and

now

(n l\gH”il‘,I,F)(O) = rinf ]\frHiT,I,F(O) = rinf H'iI‘,l,F(O)-X

I\

rinfHL ;g (5 * o). = rinf MHY | (f * o)

(N MHL ) (8 * o)

= (N MHL p)(0) = (N MHE p) (5 * )

(Vl\g}‘:lI‘,I,F)(O) = SUPI\@\%‘,I,F(O) = Sup}\'iI‘,I,F(O) -
< supAbpp(t * o) .3 = supMAh e (f * @)
= (VMM ) (8 * )

= (V¥ (0) < (VA p) (5 + ),

(N MHL DG * o) = rinf¥HE e (5 0)=rinf HE (5 * o) .
> rinf{rmin{Hy p((§ * ) * (& * B)), Hrp (6 % B)}} .

= rmin{rinfH; p((f * @) * (& * B)). ¥, rinfHL ¢ (£ * B). ¥}
= rmin{rinfyHy; ¢ (( * @) * (& * B)), rinfSH  p (5 * B}

= rmin{(N ¥Hyp) (5 * ) * (& * B)), (N MHi ) (6 B} = (N YHL PG * o) =

rmin{(N "Hr ) (5 * ) * (& B)), (N FHY p) (6 * B)}

and

(VAR (5 % @) = sup’Ap g (f * o) = supd p((t* @) ¥
< sup{max{Xr; p((t * @) * (6 * ), Aryp(t * B)}} >

= max{supi; ((t * @) * ( * B))., supAi g (t * B). ¥}

= max{sup'iAr (5 * 0) * (£ B)), sup'Ap (6 * B}

= max{(V A p) (¢ * @) * (&% B)), (VAL ) (6 * B}

= (VIALR) G * 0 < max (VA p) (8 x ) * (6% B)), (VAT LR (6 + B},
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which show that R-intersection is a YMNCNID of X.
Theorem 3.3. The R-intersection of any set of s MNCCNIDs of X is also a ¥-multiplication of NCCNID of X.
Proof. We can prove this theorem as Theorem 3.2.

Theorem 3.4. Let Ho = {Hr g, Ar;p} be a NCS of X. Then ¥MNCNID of H is a NCNID of X iff MH7 ¢, ¥H{ | ¢ and
M1 1 r are fuzzy ideals of X.

Proof. Suppose that t,t €X. Since MH7;r(0) = H7 r(0).w = Hrp(t* @).v =MHrp(t* ), MH{ p(0) =
HY p(0).% = Hip(f * 0).% = THy p(f * @), therefore, Hyp(0) = Hyyp(t* ), also N p(0) = A p(0).% <
Arpp(t* ). =MAr;p(t * ). Suppose that MHy g, MH  and M\ p are y-multiplication of fuzzy ideals of X.
Then “Hp p(t* )= Hrppp(b*).v= {Hypp(* ), Hp(t* 00} % = [min {Hyp((t* @) * (6 * B)), Hyp((t *
B} min {H; (5 * ) * (6% B)), Hip(t * B} =rmin{[Hz,; ¢((t * @) * (& * B)), Hi g (( * @) * (& *
B)], (Hi e (G * B)), Hi g6 * B)]}. 5 =rmin{Hz ;¢ (( * o) * (& * B)), Hyye(t * B)}.w = rmin{Hr, g ((5 * ) *

(& * B)). %, Hy p (b * B). %} = rmin{"Hy p((t * @) * (b * B)), YHr, s (b * B)} and Az p(t* @) < max{Arp((t *
o) * (b * B)), MAr r(t * B)}. Therefore sMNCNID of H is a NCNID of X.

Conversely, assume that YMNCNID H is a NCNID of X. For any t,t € X, we have {®Hyp(t * @), ¥H{ (1 * @)} =
{H7 (8 * 00.% HE p(t * 0). %} = {Hyp(t * 00, HE  p(t * 00} w=Hr (4 * 0).% = SHrp p(f * o) = rmin
{MHrpe((t* @) * (5% B)), ¥Hypp(t * B)}=  rmin{[MHrp((* o) * (& B)), MHE g (( * @) * (& * B))], [MHT (b
B), SHT r(t*B)]} = [min {Hyp((t* o) * (&% B)). % Hypr(t * B). v}, min{H{ p(( * o) * (£ % B)). % Hi p(t *
B). ¥} = [min{"{H7r((f * ) * (& * B)), SH (b * B)}, min {HT, £ ((4 * @) * (& = B)), YHE, p (b * B)}]. Thus,
SHTp(* o) = min {’H7p((* @) * (& * B)), YHT p (6 * B}, SHE (5 * @) = min{"HF (¢ * o) * (b
B)), WHT p(E * B)} and MAp;p(t* o) < max{MArr((5* &) * (& * B)), SAr,p(k * B)}. Hence, WHyr, YHT ¢ and
M\r 1 r are fuzzy ideals of X.

Theorem 3.5. For a NCNID Fo = {Hr, Ar; g} of X, the following statements are valid:

LIf (g*a)*(b*B) <zxy, then “Hppp(t*a) = rmin{"Hy;p(t * B), WHy p(z*y)} and “Apip(t*a) <
max{" Az r (6 * B), YAz p(Z * )},

2. If (4*xo) < (6*PB), then MHp p(t*a)=MHpp(b*B) and MAp;p(t* o) < MApp(6*B) V t1,z€
Xandq, B,y € [0,1].

Proof. 1. Assume that t,1,z € X such that (t * a) * (£t * ) < (z *y). Then ((t * &) * (£t * B)) * (z*y) = 0 and thus
MHpe(t* @) = Hppe(t* 0w = rmin{Hpe((* o) * (& B)), Hrpp(h * B)} .3 = rmin{rmin{He r (((§ * o) *
(t*B) *(z*y), Hy pz* VL HypE*B)Yy =  rmin {rmin{Hp;p(0), Hp(z * v)}, H g (B % B)} . v =
rmin{Hy; (6 * B). %, Hy p(z * v). 3} = rmin{"Hy; r (t * B), WHy r(z * )} and g p(t* o) = Appp(t* o). <
max{Arp((§* ) * (8% B)), A p(t * B)} .y < max{max{Ar;p(((§* ) * (£ B)) * (z* V), Arr(Z * V)} Arp(h *
B)}.x = max{max{Ar;r(0), A p(z * V)} A p(E * B)} . v = max{Arip(t * B). %, Ay r(z * V). 3} = max{" Ay (t *
B, ]\:p\T,I,F (z*y)}

2. Again, take t,t € X and a, B € [0,1], such that (t * @) < (£ * ). Then (t * @) * (t * f) = 0 and thus MH; ;- (t
a) = Hr;p(t* ).y =rmin{Hr; p((txa) * (& * ), Hr p(b* B)}.¥ = rmin{Hr;p(0),Hr p(b*B)} v =
Hr et *B).w = NHp p(b*PB),s0 MHr p(t* @) = YHy p(b%B)  and  MAr,p(t* @) = Agp(t* @)y <
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max{Ar p((t* @) * (5% B)), Ar (b * B)}. ¥ = max{dr;p(0),Ar;r(E*B)}.¥ = Appp(b*PB)w = MAp, (b *
B), 50 Mz r(t* ) < MAr p (b * B).

Theorem 3.6. Let Ho of o = {Hy; p, Az r} is a NCNID of X. V 1, £ € X and a, B € [0,1], then H is a NCMSU of
X.

Proof. Assume that MH) is a NCNID of X, V t,t € Xand a,f € [0,1]. Then ¥ Hy;p((t* @) * (t*B)) =
%HT,I,F((!: xa)* (b*f)) = rmin{%HT,I,F (@ *B) * ((F*a) * &+ p))), A;("HT,I,F(t’ *B)} =

rmin{"Hz,; p(0), SHr 1z (6 * B)} = rmin{"{Hy;p(§ * @), \Hy, p (b * )} = rmin{Hz,;p(§ * @).%, Hy, 1 p (b *
B).s}=rmin{Hr  p(§ * @), Hy g (b * )} = Hp g (5% @) * (8% B)) = rmin{Hr; p(§ * @), Hy p (b *

B} and % Ag (5 x @) * (8% B)) = NAr p((§ x @) * (8% B)) < max{fAr, p((£+ ) * ((§* a) * (£ *

BN), %AT,I,F (txp)} = max{%lr,l,zr (0), %AT,I,F (t*p)} < max{l‘;{AT,I,F (t*a), %AT,I,F (t*p)} = max{Ar, q(t*

a).w, AT,I,F (txp).¥}= max{/lT,I,F (t*a), AT,I,F Expry= AT,I,F((; *q)x (b*f)) < max{AT,I,F (=
a), Ar; (& * B))}. Hence, 0{Hy |z, A ¢} is a NCMSU of X.

4. x-MULTIPLICATION UNDER HOMOMORPHISM

Theorem 4.1. Suppose that I'|X — Y is a homomorphic mapping of PS-algebra. If MHo of Fo = (Hy;p, Az r) is @
NCNID of Y, then pre-image I' "1 (MH) = (' *(MHy 1 p), [ "*(MAz; ) of MH under I of X is a NCNID of X.

Proof. Forallt € X and a € [0,1], I "*(MHy; p)($ * @) = MHy p(F($ * @) = Hy p (P * @)).w < Hpy n(1(0)). ¥
=MNHr ,(F'0)) =T""("Hr;p)(0) and T '(NArp)G*a) =50, (TG * @) = Ag (M * @)% 2
Arpp(F(0)).% = YAz, p(I'(0)) = I' (A7, £)(0).

Let tteX, r_l(%HT,I,F) (txa) = A;("HT,I,F(F(; *a)) =Hp p(FG* ).y Zrmin{Hyp, s(I'($* ) * (L
B)), Hr g (I (b x B))}x = rmin{Hr  p(I'((§ * @) * (t * B))), Hr ;g (T (% B))}.¥ = rmin{F_l(HT,l,F((t * ) *
(& *B)).%), T (Hy (6% B). %)} = rmin{l = (Hy, p (4 + @) = (6% B)), T (5Hy, p (8 £))} and
r_l(%AT,I,F)(‘F *a) = %AT,I,F([‘(; *a)) = Ap p(C(E* ). w < max{Ag p (T * @) x Tt * B)), A p (I(E *
BN}¥ = max{Ar, p(F((4* @) * (b B))), Ap, p (P8 * B)} .3 = max{T ™ (Ag, p(( * @) * (b %

BY)- %), T (Ar,r (b B). %)} = max{T ™ (%Ar, r (4% @) * (6% B)), T %Az, r (5% B))}.  Hence, I'"*("fH0) =
(F_l(nfrHT‘,,F), F_l(“QT‘,'F)) is a NCNID of X.

Theorem 4.2. Let I'| X — Y be a homomorphic mapping of B-algebra. If M1, of H; = (H%‘,,F, AiT_,‘F) is a NCNID of
Y where i € k, then the pre-image F‘l(,ﬂk ML p) = (I’_l(ﬂk MHL  p), F‘l('ﬂk MAL r)) is a NCNID of X.
A5 AS AS

Proof. We can prove this theorem through Theorem 3.2 and Theorem 4.1.

Theorem 4.3. Let I'|X — Y is an epimorphic mapping of B-algebra.Then YH0 = (MHy; z, ™Ar, ) is a NCNID of Y,
if pre-image ' *(MH0) = (I *(MHy p), T (MA7; £)) of MF under I' of X is a NCNID of X

Proof. Forany t € Y, t € X and a, B € [0,1] such that (t * ) = I'(t * @). Then MHy; z(t * B) = MHy, o (I'(§ * @)
=TI '(NHy p)($*a) = T '(Hppp)(* ). s =T (Hp ) (0).% = Hyp p(I'(0)). % = Hyy (0).% = Y Hy,; z(0)
and  YAr p(E*B) = YA p (TG * @) =T FArp)Gxa) = T (A p)@*a).y ST 1A, p)(0).% =
A p(I(0)).% = A7, r(0).% = %AT,I,F (0).

Assume t,,t, €Y. Then I'(}; *a) =%, *f and I'(}, * @) =t, * B for some {;,{, € X and a, 8 € [0,1]. Thus
BHp p(by * B) = SHp p (D * @) =T (GHp )Gy * @) = T7H(Hyy ) (1 * @)% = rmin{l ™ (Hy  2) (5 *
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a) * (§, * @), F_l(%HT,I,F)@z *a)}y = rmin{%HT,I,F(r((tf—l *a) * (f * @), Hr g (F(§2 * @)} v =
rmin{Hr; g (I'($y * @) * T'(t2 * @), Hr 1 p (U ($2 * @)} = rmin{Hr,; p((b1 * B) * (b2 * B)), Hr 1 p (b2 * B)}. ¥ =
rmin{Hr,;z((t, * B) * (b2 * £)).%, Hy 1 p (b2 * £). %} = rmin{"{Hp ; r (b1 * B) * (b3 * B)), Hr,1 ¢ (b2 * B)} and
M (br * B) = Mg g (PG * @) = T Ar )G x @) = T g p) (8 * @)% < max{l (NAr, ) (5 *
a) * (t, * @), r_l(%lT,I,F) o)}y = max{AzAT,I,F(r((tl *a) * (5 * ), Ar p(F (G, x @)}y =
max{Ar;p(I' (81 * @) * T'(§; * @), A p (I (82 * @)} = max{Ar g ((by * B) * (b2 * B)), Ar (b2 * B} ¥ =
max{Ar; p((by * B) * (b * B)). %, Ar 1 p (b2 * B)- ¥} = max {7, p (61 * B) * (b2 * B)), A1 r (B2 * )}
Hence,"H0 = (MHy; p, MAs; r) is aNCNID of Y.

5. x-MULTIPLICATION OF CARTESIAN PRODUCT

Theorem 5.1. Let MH0 = (MHy ) o, A7, ) and MF = (MF;; p, Mur ;) are NCNIDs of X and Y respectively. Then
MRy x MF is a neutrosophic cubic normal ideal of X X Y.

Proof. For any (1,t) € X xY and a,p € [0,1]. We have (MHp;p X MF.;:)(0,0) = ¥.(Hr;p X Fr;)(0,0) =
¥.rmin{Hr, ; 7(0), Fr, p(0)} = ¥.rmin{Hy  p(t * @), Fr p (& * B)} = rmin{Hr,; p (¢ * @). %, Fr (b % B). %} =
rmin{"SHr  p ( * @), 5Fr, (6% B)} = (SHrpp X 5Frp)(§ * @b+ B) and (31 p X Bpir, £)(0,0) =
¥. (A, p X pir1p)(0,0) = v.max{Ar,; £ (0), pir; r(0)} < w.max{Ar, r(t * @), pir 1 p (£ * B)} = max{Ar  p(§ *

a). ¥, iy p (b B). ¥} = max{A;AT,I,F@ * ), %#T,I,F(t’ *B)} = (%AT,I,F X %HT,I,F) (t*a,tx*p).

Let (§1,1),(82,82) €XxYanda,p €[0,1]. Then (%Hr;p X %Fr;p)(by* ety *B) =¥ (Hypp X Frp)(f *
@,y * B) = w.rmin{Hy (4, * @), Frpp(by * B)} = w.rmin{rmin{Hr; (5 * @) * (52 * @)), Hr, £ (8 *

a)b, rmin{Fr; p((by * B) * (b2 % B)), Frip (G2 * B)Y}=  wormin{rmin{Hy; p((4; * @) * (4, * @), Frp (5, * B) *
(b2 * B} rmin{Hy g (8, * @), Fr p (52 * B)}} = w.rmin{(Hrp X Fr p)((4 * @) * (52 * @), (5 * B) * (52 *
B)), (Hrpp X Frpp) (82 * @), (b2 * B))} = rmin{(Hrp X Fr p) (4 * @, 8y % B) * (12 * @, b5 * B)). %, (Hr p X
Frpp) G2 * oty * B).%} = rmin{("Rrp X 5Fr p) (G * a6y % B) * (2 * a8z * B)), (WRr 1 p X Fr p) (82 *
a,ty * B} and (Arpe X Bprp ) G * @ty % B) =% (A X g p) (1 * @by * B) = v.max{Ar, p (31 *
a), prpp(by * B} < w.max{max{Ar  p((41 * @) * (52 * @), Ar, (82 * @)}, max{pr  p((by * B) * (b2 *

B)), Frie(b2 * B)}} = v.max{max{Ar p((4; * @) * (t2 * @), pir 1 p (b1 * B) * (b2 * B))}, max{Ar ; p(§2 *
a ), brr(bz * B3} =v.max{(Ar;r X Urp) (G2 * @) * (2 * @), (g * B) * (b2 * B)), (Ar,1p X pir ) (B2 *
a), (b2 * B} = max{(Arr X prp) (1 * a8y % B) * (52 * @, b5 % B)).%, (App X g p) (2 * @, 8y % B). %} =
max{(Ar,p X Sur,e) (1 * @by * B) * (5 * @, b * B)), 5z, p X g, p) (2 * @, by % B)}. Hence, H x F is
a neutrosophic cubic normal ideal of X X Y.

Theorem 5.2. Let MHo = (MHy; p, MAr; p) and MF = (MFp, 5, Mur, p) are two y-multiplications of neutrosophic
cubic closed normal ideals of X and Y respectively. Then F x MF is a NCCNID of X X Y.

Proof. By Proposition 3.1 and Theorem 5.1, ¥H x MF is NCNID. Now, (MHy; p X MFp.; :)((0,0) * (t * a, t * B)) =
(Hrpp X Frp)((0,0) * G+ o, % B)).w = (Hypp X Frpp) (0% (b x @), 0 (6% B)).¥ = w.rmin{Hp (0 * (§ *
), Frpp(0 * (6% B))} = w.rmin{Hr g (¢ * ), Fpp(t * B)} = rmin{Hr g (f * ). %, Frpp(t * B). 5} =
rmin{"fHr, 5 (¢ * @), YWFpp(t* B)} = (GHpp X YFrp) G+ ot B)  and  (NAppe X g p)((0,0) * (4 * ot
B)) = (Arpe X Hrpe)((0,0) * (t* o, &% B)).w = (A p X Wrpp) (0 * (5 ), 0 (5 B)). v = w.max{Ar;p(0 * (§ *
@), by (0 * (6% B))} < v max{Ar,p(t * o), prp(t * B} = max{Ar p(h * 0., prp(E * B). ¥} = max{Ar p(§ *
o), Mur et * B} = (MApp X Mpur ) (5 * o £ % B). Hence, MH X MF is a neutrosophic cubic closed normal ideal of
XxY.

6. Conclusion
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In this paper, the notion of y-multiplication of neutrosophic cubic set was introduced and ¥-multiplication was
studies by several useful results. This study will provide the base for further work like t-neutrosophic soft cubic and
intuitionistic soft cubic set etc
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