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Abstract: Linguistic neutrosophic numbers (LNNs) are a powerful tool for describing fuzzy
information with three independent linguistic variables (LVs), which express the degrees of truth,
uncertainty, and falsity, respectively. However, existing LNNs cannot depict the hesitancy of the
decision-maker (DM). To solve this issue, this paper first defines a hesitant linguistic neutrosophic
number (HLNN), which consists of a few LNNs regarding an evaluated object due to DMs’ hesitancy
to represent their hesitant and uncertain information in the decision-making process. Then, based on
the least common multiple cardinality (LCMC), we present generalized distance and similarity
measures of HLNNs, and then develop a similarity measure-based multiple-attribute decision-making
(MADM) method to handle the MADM problem in the HLNN setting. Finally, the feasibility of the
proposed approach is verified by an investment decision case.

Keywords: hesitant linguistic neutrosophic number (HLNN); decision-making; similarity measure;
distance measure; least common multiple cardinality (LCMC)

1. Introduction

In the real world, the linguistic expression is well-suited for the thinking and expressing patterns
of human beings. Due to the vagueness of languages and the complexity of decision-making
environments, the linguistic fuzzy theory has been well developed in the past decades and shows
irreplaceable advantages in the fuzzy decision-making field. Linguistic variables (LVs) were defined
for fuzzy reasoning and decision-making [1–4]. Linguistic uncertain variables [5,6] (interval-valued
linguistic variables) were then defined to depict uncertain linguistic information in decision-making
problems [7,8]. After that, a linguistic intuitionistic fuzzy number (LIFN) [9], which contains two
independent LVs to describe the degrees of truth and falsity, respectively, was presented to handle
the uncertainty and incompleteness in linguistic decision-making environments [10]. Furthermore,
with the wide application of the neutrosophic theory in decision-making [11–13], Fang and Ye [14]
proposed a linguistic neutrosophic number (LNN) by adding a new LV to the LIFN for representing
the indeterminacy degree to do with the indeterminate and inconsistent linguistic information [15].
Although there exist some research works on LNNs [14,15], existing LNNs cannot depict the hesitancy
of decision-makers (DMs) in the linguistic assessment of alternatives.

Concerning the handling of the human hesitant cognition in decision-making environments,
many works have been published so far. Torra and Narukawa [16] and Torra [17] originally introduced
hesitant fuzzy sets (HFSs) to express the hesitancy by allowing the membership to contain several
possible values. Then, for linguistic decision-making problems, the expression of a hesitant fuzzy
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linguistic set (HFLS) [18] was obtained based on combining a linguistic term (LT) set with a HFS so as
to satisfy the hesitant linguistic evaluation requirements [19,20] of DMs. After that, an interval-valued
HFLS [21] was presented as an extension form by combining an interval-valued LT set with a HFS.
Recently, Ye [22] proposed the hesitant neutrosophic linguistic number (HNLN) to carry out hesitant
decision-making problems with the neutrosophic linguistic number that contains partial determinacy
and partial indeterminacy. However, there is no definition or decision-making method for the hesitant
sets of LNNs in the existing literature. Additionally, in the hesitant linguistic expressions of DMs,
the components between two hesitant sets generally have difference in their length sizes, and thus it is
difficult to directly perform measure calculations between hesitant sets. Thus, several researchers have
proposed some extension methods to extend the shorter items in the two hesitant sets by adding the
minimum values, maximum values, or any values [23,24] to reach their identical length. However,
these extension methods depend too much on the subjective preferences and interests of the DMs.
To solve this problem, we have already introduced the least common multiple cardinality (LCMC)
to extend the hesitant fuzzy elements in our previous research works [22,25], which become more
objective for the decision-making calculation of HFSs.

As aforementioned, there is a gap of hesitant LNNs in existing studies. For instance, suppose that
we hesitate between two single-valued LNNs, <h7, h3, h4> and <h5, h3, h1>, from the given LT set
H = {hs|s ∈ [0, 8]} regarding an evaluated object. However, it is difficult to express the hesitation
information and the LNN information of the DMs simultaneously by a unique LNN or a unique HFS.
Therefore, for the purposes of satisfying the demand of hesitant decision-making with LNNs and
ensuring the objectivity of the measure calculation, this paper aims to (i) define the concept of HLNNs
by combining HFSs with LNNs, (ii) present the LCMC-based generalized distance and similarity
measures of HLNNs for more objective measure calculation of HLNN information, and (iii) to propose
a novel multiple-attribute decision-making (MADM) method based on the proposed LCMC-based
similarity measure in the HLNN setting.

In order to do so, Section 2 briefly reviews LNNs. Section 3 defines a HLNN and a HLNN
set. Then, in Section 4, the LCMC-based generalized distance and similarity measures of HLNNs
are presented. In Section 5, a new MADM method was developed by using the proposed similarity
measure of HLNNs. In Section 6, the feasibility of the proposed approach is demonstrated by an
investment case. The conclusions and future research of HLNNs are discussed in the last section.

2. Linguistic Neutrosophic Numbers (LNNs)

Fang and Ye [14] originally presented the following definition of the LNN:

Definition 1 ([14]). Let H = {h0, h1, ..., hτ} be a LT set, where τ + 1 is an odd cardinality. A LNN can be
defined as ϑ = < hT, hU, hF> for hT, hU, hF ∈ H and T, U, F ∈ [0, τ], where hT, hU, hF represent the degrees of
truth, indeterminacy, and falsity, respectively.

For the comparison of LNNs, the score and accuracy functions of LNNs are defined as follows [14]:

Definition 2 ([14]). Let ϑ = <hT, hU, hF> be a LNN in H. Then its score function can be given by:

S(ϑ) = (2τ + T −U − F)/3τ for S(ϑ) ∈ [0, 1], (1)

and its accuracy function can be expressed as

V(ϑ) = (T − F)/τ for V(ϑ) ∈ [−1, 1]. (2)

Definition 3 ([14]). Let ϑα =< hTα , hUα , hFα > and ϑβ =< hTβ
, hUβ

, hFβ
> be two LNNs in H. There exist

the following relations:
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(1) If S(ϑα) < S(ϑβ), then ϑα < ϑβ;
(2) If S(ϑα) > S(ϑβ), then ϑα > ϑβ;
(3) If S(ϑα) = S(ϑβ) and V(ϑα) < V(ϑβ), then ϑα < ϑβ;
(4) If S(ϑα) = S(ϑβ) and V(ϑα) > V(ϑβ), then ϑα > ϑβ;
(5) If S(ϑα) = S(ϑβ) and V(ϑα) = V(ϑβ), then ϑα = ϑβ.

3. Hesitant Linguistic Neutrosophic Numbers (HLNNs) and HLNN Set

Torra and Narukawa [16] and Torra [17] first defined the HFS as follows:

Definition 4 ([16,17]). Assume S is a universe set, then a HFS N on S can be given by

N = {< s, E(s) >|s ∈ S},

where E(s) is a hesitant component of N containing a set of some values in [0, 1], which represents all possible
membership degrees of s.

By integrating HFS with LNN, we define a HLNN set as follows:

Definition 5. Set a universe of discourse S = {s1, s2, . . . , sq} and a finite LT set H = {h0, h1, . . . , hτ}, and then
a HLNN set Nl on S can be expressed as

Nl =
{
< sj, El(sj) >

∣∣sj ∈ S, j = 1, 2, · · · , q
}

where El(sj) is a set of mj LNNs, denoted by a HLNN El(sj) = {< hTk
j
, hUk

j
, hFk

j
> hTk

j
∈ H, hUk

j
∈ H, hFk

j
∈

H, k = 1, 2, · · · , mj} for sj ∈ S.

4. LCMC-Based Distance and Similarity Measures of HLNNs

In most situations, the cardinal numbers (the number of LNNs) of HLNNs evaluated for the same
object are usually different. Thus, it is necessary to make the cardinal numbers of the two HLNNs the
same to satisfy the distance and similarity measures between them.

We assume that p HLNNs on S = {s1, s2, . . . , sq} are El1(sj), El2(sj), · · · , Elp(sj) for sj ∈ S (j = 1, 2,
..., q). Then, the HLNNs Eli (sj) for i = 1, 2, . . . , p can be given by

El1(sj) = {< hT1
1j

, hU1
1j

, hF1
1j
>,< hT2

1j
, hU2

1j
, hF2

1j
>, · · · ,< h

T
m1j
1j

, h
U

m1j
1j

, h
F

m1j
1j

>},

El2(sj) = {< hT1
2j

, hU1
2j

, hF1
2j
>,< hT2

2j
, hU2

2j
, hF2

2j
>, · · · ,< h

T
m2j
2j

, h
U

m2j
2j

, h
F

m2j
2j

>},

· · · ,
Elp(sj) = {< hT1

pj
, hU1

pj
, hF1

pj
>,< hT2

pj
, hU2

pj
, hF2

pj
>, · · · ,< h

T
mpj
pj

, h
U

mpj
pj

, h
F

mpj
pj

>},

where mij is the cardinal number of Eli (sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q).
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Provided that the LCMC of mij (i = 1, 2, ..., p and j = 1, 2, ..., q) is cj (j = 1, 2, . . . , q), by increasing
the number of LNNs < hTk

ij
, hUk

ij
, hFk

ij
> (k = 1, 2, ..., mij) in Eli (sj) depending on cj (j = 1, 2, . . . , q),

the extended HLNN Eo
li
(sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q) will be obtained by the extension forms:

Eo
l1
(sj) =


cj︷ ︸︸ ︷

< hT1
1j

, hU1
1j

, hF1
1j
>, · · ·︸ ︷︷ ︸

R1j

,< hT2
1j

, hU2
1j

, hF2
1j
>, · · ·︸ ︷︷ ︸

R1j

, · · · ,< h
T

m1j
1j

, h
U

m1j
1j

, h
F

m1j
1j

>, · · ·︸ ︷︷ ︸
R1j

,

Eo
l2
(sj) =


cj︷ ︸︸ ︷

< hT1
2j

, hU1
2j

, hF1
2j
>, · · ·︸ ︷︷ ︸

R2j

,< hT2
2j

, hU2
2j

, hF2
2j
>, · · ·︸ ︷︷ ︸

R2j

, · · · ,< h
T

m2j
2j

, h
U

m2j
2j

, h
F

m2j
2j

>, · · ·︸ ︷︷ ︸
R2j

,

· · · ,

Eo
lp
(xj) =


cj︷ ︸︸ ︷

< hT1
pj

, hU1
pj

, hF1
pj
>, · · ·︸ ︷︷ ︸

Rpj

,< hT2
pj

, hU2
pj

, hF2
pj
>, · · ·︸ ︷︷ ︸

Rpj

, · · · ,< h
T

mpj
pj

, h
U

mpj
pj

, h
F

mpj
pj

>, · · ·︸ ︷︷ ︸
Rpj

,

where Rij is the number of LNNs < hTk
ij
, hUk

ij
, hFk

ij
> (k = 1, 2, ..., mij) in Eo

li
(xj) (i = 1, 2, . . . , p and j = 1, 2,

. . . , q), calculated by:

Rij =
cj

mij
. (3)

Additionally, the elements ϑ
σ(k)
ij =< h

Tσ(k)
ij

, h
Uσ(k)

ij
, h

Fσ(k)
ij

> (k = 1, 2, . . . , cj) in Eo
li
(xj) are arranged

in an ascending order, denoted as Eo
li
(xj) = {ϑ

σ(1)
ij , ϑ

σ(2)
ij , · · · , ϑ

σ(cj)

ij } (i = 1, 2, . . . , p and j = 1, 2, . . . , q),

where σ : (1, 2, . . . , cj)→ (1, 2, . . . , cj) is a permutation satisfying ϑ
σ(k)
ij ≤ ϑ

σ(k+1)
ij (k = 1, 2, . . . , cj).

Definition 6. Let Nl1 =
{

El1(s1), El1(s2), · · · , El1(sq)
}

and Nl2 =
{

El2(s1), El2(s2), · · · , El2(sq)
}

be two
HLNN sets on S = {s1, s2, ..., sq}, where El1(sj) and El2(sj) (j = 1, 2, . . . , q) are HLNNs in a LT set H = {h0,
h1, ..., hτ} for hj ∈ H. Let f(hj) = j/τ be a linguistic scale function. Then, the normalized generalized distance
between Nl1 and Nl2 can be represented as:

d(Nl1 , Nl2) =

{
1
q

q
∑

j=1

[
1

3cj

cj

∑
k=1

(| f (h
Tσ(k)

1j
)− f (h

Tσ(k)
2j

)|ρ + | f (h
Uσ(k)

1j
)− f (h

Uσ(k)
2j

)|ρ + | f (h
Fσ(k)

1j
)− f (h

Fσ(k)
2j

)|ρ)
]}1/ρ

=

{
1
q

q
∑

j=1

[
1

3cjτ
ρ

cj

∑
k=1

(|Tσ(k)
1j − Tσ(k)

2j |
ρ + |Uσ(k)

1j −Uσ(k)
2j |

ρ + |Fσ(k)
1j − Fσ(k)

2j |
ρ)

]}1/ρ

f or ρ > 0.

(4)

Obviously, d(Nl1 , Nl2) degenerates to the normalized generalized distance of Hamming for ρ = 1
and to the normalized generalized distance of Euclidean for ρ = 2.

For the generalized distance d(Nl1 , Nl2), there is a proposition as follows:

Proposition 1. For any two HLNN sets Nl1 =
{

El1(s1), El1(s2), · · · , El1(sq)
}

and Nl2 ={
El2(s1), El2(s2), · · · , El2(sq)

}
, the generalized distance d(Nl1 , Nl2) between Nl1 and Nl2 for ρ > 0 contains

the following properties:

(HP1) 0 ≤ d(Nl1 , Nl2) ≤ 1;
(HP2) d(Nl1 , Nl2) = 0 if and only if Nl1 = Nl2 ;
(HP3) d(Nl1 , Nl2) = d(Nl2 , Nl1);
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(HP4) Let Nl3 =
{

El3(s1), El3(s2), · · · , El3(sq)
}

be a HLNN set, then d(Nl1 , Nl2) ≤ d(Nl1 , Nl3) and
d(Nl2 , Nl3) ≤ d(Nl1 , Nl3) if Nl1 ⊆ Nl2 ⊆ Nl3 .

Proof. It is obvious that the properties (HP1)–(HP3) are satisfied for d(Nl1 , Nl2). Thus, we only need to
prove the property (HP4).

Since there is Nl1 ⊆ Nl2 ⊆ Nl3 , there exists E0
l1
(sj) ≤ E0

l2
(sj) ≤ E0

l3
(sj) for sj ∈ S (j = 1, 2, ..., q),

which implies Tσ(k)
3j ≥ Tσ(k)

2j ≥ Tσ(k)
1j , Uσ(k)

3j ≤ Uσ(k)
2j ≤ Uσ(k)

1j , Fσ(k)
3j ≤ Fσ(k)

2j ≤ Fσ(k)
1j for k = 1, 2, ..., cj.

It follows that ∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ,
∣∣∣Tσ(k)

2j − Tσ(k)
3j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ,∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ ≤∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ ,
∣∣∣Uσ(k)

2j −Uσ(k)
3j

∣∣∣ρ ≤∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ,∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ ≤∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ ,
∣∣∣Fσ(k)

2j − Fσ(k)
3j

∣∣∣ρ ≤∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ.

Then there are the following inequalities:∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ,∣∣∣Tσ(k)
2j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
2j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
2j − Fσ(k)

3j

∣∣∣ρ ≤∣∣∣Tσ(k)
1j − Tσ(k)

3j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

3j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

3j

∣∣∣ρ.

Thus, the following relations can be further obtained:

1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

2j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

2j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

2j )|ρ)
]

≤ 1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

3j )|ρ)
]

,

1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
2j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
2j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
2j )− (Fσ(k)

3j )|ρ)
]

≤ 1
3cjτ

ρ

[
cj

∑
k=1

(|(Tσ(k)
1j )− (Tσ(k)

3j )|ρ + |(Uσ(k)
1j )− (Uσ(k)

3j )|ρ + |(Fσ(k)
1j )− (Fσ(k)

3j )|ρ)
]

.

By Equation (4), there are d(Nl1 , Nl2) ≤ d(Nl1 , Nl3) and d(Nl2 , Nl3) ≤ d(Nl1 , Nl3) for ρ > 0.
Therefore, the property (HP4) can hold. �

If we consider the weight wj of an element sj ∈ S with wj ∈ [0, 1] and ∑
q
j=1 wj = 1, the generalized

weighted distance between Nl1 and Nl2 is

dw(Nl1 , Nl2) =

{
q
∑

j=1
wj

[
1

3cj

cj

∑
k=1

(
| f (h

Tσ(k)
1j

)− f (h
Tσ(k)

2j
)|ρ + | f (h

Uσ(k)
1j

)− f (h
Uσ(k)

2j
)|ρ + | f (h

Fσ(k)
1j

)− f (h
Fσ(k)

2j
)|ρ
)]}1/ρ

=

{
q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(
|Tσ(k)

1j − Tσ(k)
2j |

ρ + |Uσ(k)
1j −Uσ(k)

2j |
ρ + |Fσ(k)

1j − Fσ(k)
2j |

ρ
)]}1/ρ

f or ρ > 0.

(5)

Since the measures of similarity and distance are complementary with each other, the weighted
measure of similarity between Nl1 and Nl2 can be represented by

Sw(Nl1 , Nl2) = 1− dw(Nl1 , Nl2)

= 1−
{

q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(∣∣∣Tσ(k)
1j − Tσ(k)

2j

∣∣∣ρ+∣∣∣Uσ(k)
1j −Uσ(k)

2j

∣∣∣ρ+∣∣∣Fσ(k)
1j − Fσ(k)

2j

∣∣∣ρ)]}1/ρ

f or ρ > 0.
(6)

Similar to the properties (HP1)–(HP4) satisfied by the generalized distance measure in
Proposition 1, the similarity measure Sw(Nl1 , Nl2) also has the proposition as follows:
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Proposition 2. The similarity measure Sw(Nl1 , Nl2) for ρ > 0 contains the following properties:

(HP1) 0 ≤ Sw(Nl1 , Nl2) ≤ 1;
(HP2) Sw(Nl1 , Nl2) = 1 if and only if Nl1 = Nl2 ;
(HP3) Sw(Nl1 , Nl2) = Sw(Nl2 , Nl1);
(HP4) Let Nl3 be a HLNN set, then there are Sw(Nl1 , Nl2) ≥ Sw(Nl1 , Nl3) and Sw(Nl2 , Nl3) ≥ Sw(Nl1 , Nl3)

if Nl1 ⊆ Nl2 ⊆ Nl3 .

Proof. It is clear that Sw(Nl1 , Nl2) satisfies the properties (SP1)–(SP3). Thus, we only prove the property
(SP4) here.

According to the proved property (HP4) in Proposition 1, if Nl1 ⊆ Nl2 ⊆ Nl3 , there exists
the relations of dw(Nl1 , Nl2) ≤ dw(Nl1 , Nl3) and dw(Nl2 , Nl3) ≤ dw(Nl1 , Nl3) for ρ > 0. Since the
similarity measure is the complement of the distance measure, both Sw(Nl1 , Nl2) ≥ Sw(Nl1 , Nl3) and
Sw(Nl2 , Nl3) ≥ Sw(Nl1 , Nl3) can be easily obtained. Therefore, the property (SP4) can hold. �

5. MADM Method Using the Similarity Measure of HLNNs

For a MADM problem in the HLNN setting, some DMs need to evaluate p alternatives (denoted
by G = {g1, g2, . . . , gp}) over q attributes (denoted by S = {s1, s2, . . . , sq}) from the LT set H = {h0, h1, . . . ,
hτ}. Then, a weight vector W = (ω1, ω2, . . . , ωq), which is on the conditions of 0 ≤ ωj ≤ 1 (j = 1, 2, ..., q)
and ∑

q
j=1 ωj = 1, represents the importance of the attributes in S. Thus, the HLNN decision matrix M

can be expressed as:

M = (Eli (sj))p×q =

g1

g2
...

gp


El1(s1) El1(s2) · · · El1(xq)

El2(s1) El2(s2) · · · El2(sq)
...

...
. . .

...
Elp(s1) Elp(s2) · · · Elp(sq)

.

where Eli (sj) = {< hT1
ij
, hU1

ij
, hF1

ij
>,< hT2

ij
, hU2

ij
, hF2

ij
>, · · · ,< h

T
mij
ij

, h
U

mij
ij

, h
F

mij
ij

>} is a HLNN for sj ∈

S, and mij is the number of LNNs in Eli (sj) (i = 1, 2, . . . , p and j = 1, 2, . . . , q).
On the basis of the proposed similarity measure, a novel MADM method of HLNN is presented

by the following steps:
Step 1: For any HLNN Eli (sj) (j = 1, 2, . . . , q) in M, rank all elements ϑ

σ(k)
ij (k = 1, 2, . . . , mij) in each

HLNN Eli (sj) (j = 1, 2, . . . , q) in an ascending order according to their score and accuracy functions,
then yield the corresponding extended HLNN Eo

li
(sj) based on the LCMC cj and the occurrence number

Rij of every LNN in Eli (sj) obtained by Equation (3). Hence, the extended decision matrix M
◦

is

Mo = (Eo
li (sj))p×q

=

g1

g2
...

gp


Eo

l1
(s1) Eo

l1
(s2) · · · Eo

l1
(sq)

Eo
l2
(s1) Eo

l2
(s2) · · · Eo

l2
(sq)

...
...

. . .
...

Eo
lp
(s1) Eo

lp
(s2) · · · Eo

lp
(sq)

,

where Eo
li
(sj) = {ϑσ(1)

ij , ϑ
σ(2)
ij , · · · , ϑ

σ(cj)

ij } (i = 1, 2, . . . , p and j = 1, 2, . . . , q) satisfies ϑ
σ(k)
ij ≤ ϑ

σ(k+1)
ij

(k = 1, 2, . . . , cj).
Step 2: Specify an ideal HLNN set as g∗ = {Eo

l (s1), Eo
l (s2), . . . , Eo

l (sq)} =

{{ϑσ(1)
1 , ϑ

σ(2)
1 , . . . , ϑ

σ(c1)
1 }, {ϑσ(1)

2 , ϑ
σ(2)
2 , . . . , ϑ

σ(c2)
2 }, . . . , {ϑσ(1)

q , ϑ
σ(2)
q , . . . , ϑ

σ(cq)
q }} for all ϑ

σ(k)
j =<

hτ , h0, h0 > (k = 1, 2, ..., cj and j = 1, 2, ..., q).
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Hence, the similarity measure between gi (i = 1, 2, . . . , p) and g* can be calculated by

Sw(gi, g∗) = 1− dw(gi, g∗)

= 1−
{

q
∑

j=1
wj

[
1

3cj

cj

∑
k=1

(
| f (h

Tσ(k)
aij

)− f (hτ)|ρ + | f (hUσ(k)
aij

)− f (h0)|ρ + | f (hFσ(k)
aij

)− f (h0)|ρ
)]}1/ρ

= 1−
{

q
∑

j=1
wj

[
1

3cjτ
ρ

cj

∑
k=1

(
|Tσ(k)

aij − τ|ρ + |Uσ(k)
aij |

ρ + |Fσ(k)
aij |

ρ
)]}1/ρ

f or ρ > 0.

(7)

Step 3: According to the similarity measure results, rank the alternatives in G = {g1, g2, . . . , gm} in
a descending order and choose the best one.

Step 4: End.
HLNN is a hybrid form of a LNN and HFS, which inherits the advantages of both the LNN

and HFS, and expresses the decision-making information with a hesitant set of LNNs. The proposed
LCMC-based distance and similarity measures can deal with not only the HLNN information, but also
the LNN information, because the LNN is only a special case of the HLNN when the DMs have no
hesitation; while all existing aggregation operators of LNNs [14] cannot aggregate HLNN information
for the reason that the HLNN is a LNN set of any length. Furthermore, existing MADM methods
cannot deal with decision-making problems in the HLNN setting.

Moreover, to ensure the objectivity of the measure calculational results, the proposed LCMC-based
distance and similarity measures are based on the LCMC extension method in HLNNs rather than
by simply adding special components, such as the maximum or the minimum or the average values,
which heavily depend on the personal interests and preferences of DMs [23,24] so as to easily result in
subjective decision-making results. Thus, the novel MADM method of HLNN provides a more general
and objective decision-making process for decision-makers.

6. Actual Example

In this section, to verify whether the novel MADM approach with HLNNs is feasible and
reasonable in practical applications, an investment decision-making case adapted from [14] is
illustrated under a HLNN environment. In this case, the investment company makes an optimal
selection in a set of four possible manufacturers, G = {g1, g2, g3, g4}, for producing computers (g1),
cars (g2), food (g3), and clothing (g4), respectively. The four alternatives must satisfy a set of three
attributes, S = {s1, s2, s3}, including the risk (s1), the growth (s2), and the environmental impact (s3),
with the importance given by the weight vector W = (0.35, 0.25, 0.4). Now, some DMs are assigned to
assess the alternatives over the attributes by HLNN expressions from the given LT set H = {h0: none, h1:
lowest, h2: lower, h3: low, h4: moderate, h5: high, h6: higher, h7: highest, h8: perfect}. Then, the assessment
results regarding the four alternatives g1, g2, g3, and g4 on the three attributes s1, s2, and s3 can be
constructed as

M =

g1

g2

g3

g4


{< h6, h1, h2 >,< h6, h1, h2 >,< h7, h3, h4 >} {< h7, h2, h1 >,< h6, h1, h1 >,< h7, h3, h3 >} {< h6, h2, h2 >,< h4, h2, h3 >}
{< h7, h1, h1 >,< h7, h2, h3 >,< h6, h3, h4 >} {< h7, h3, h2 >,< h6, h1, h1 >} {< h7, h3, h2 >,< h6, h1, h1 >}

{< h6, h2, h2 >,< h5, h1, h2 >} {< h7, h1, h1 >,< h5, h1, h2 >} {< h6, h2, h2 >,< h5, h4, h2 >}
{< h7, h1, h2 >,< h6, h1, h1 >,< h7, h2, h3 >} {< h7, h2, h3 >,< h5, h1, h1 >} {< h7, h2, h1 >,< h5, h2, h3 >}

.

Thus, there are the following decision steps:
Step 1: According to the score and accuracy functions obtained by Equations (1) and (2), rank the

LNNs ϑ
σ(k)
ij (k = 1, 2, . . . , mij) in each HLNN Eli (sj) (i = 1, 2, 3, 4 and j = 1, 2, 3) in an ascending order,

and obtain the following matrix:

M′ =

g1

g2

g3

g4


{< h7, h3, h4 >,< h6, h1, h2 >,< h6, h1, h2 >} {< h7, h3, h3 >,< h6, h1, h1 >,< h7, h2, h1 >} {< h4, h2, h3 >,< h6, h2, h2 >}
{< h6, h3, h4 >,< h7, h2, h3 >,< h7, h1, h1 >} {< h7, h3, h2 >,< h6, h1, h1 >} {< h4, h2, h3 >,< h6, h2, h3 >,< h7, h2, h1 >}

{< h5, h1, h2 >,< h6, h2, h2 >} {< h5, h1, h2 >,< h7, h1, h1 >} {< h5, h4, h2 >,< h6, h2, h2 >}
{< h7, h2, h3 >,< h7, h1, h2 >,< h6, h1, h1 >} {< h7, h2, h3 >,< h5, h1, h1 >} {< h5, h2, h3 >,< h7, h2, h1 >}


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Then, according to the LCMC cj = 6 (j = 1, 2, 3) and the number of occurrences of LNNs Rij of
Eli (sj) (i = 1, 2, 3, 4 and j = 1, 2, 3) obtained by Equation (3), yield the following extended decision
matrix M

◦
:

Mo =

g1

g2

g3

g4


{< h7, h3, h4 >,< h7, h3, h4 >,< h6, h1, h2 >,< h6, h1, h2 >,< h6, h1, h2 >,< h6, h1, h2 >}
{< h6, h3, h4 >,< h6, h3, h4 >,< h7, h2, h3 >,< h7, h2, h3 >,< h7, h1, h1 >,< h7, h1, h1 >}
{< h5, h1, h2 >,< h5, h1, h2 >,< h5, h1, h2 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h7, h2, h3 >,< h7, h2, h3 >,< h7, h1, h2 >,< h7, h1, h2 >,< h6, h1, h1 >,< h6, h1, h1 >}
{< h7, h3, h3 >,< h7, h3, h3 >,< h6, h1, h1 >,< h6, h1, h1 >,< h7, h2, h1 >,< h7, h2, h1 >}
{< h7, h3, h2 >,< h7, h3, h2 >,< h7, h3, h2 >,< h6, h1, h1 >,< h6, h1, h1 >,< h6, h1, h1 >}
{< h5, h1, h2 >,< h5, h1, h2 >,< h5, h1, h2 >,< h7, h1, h1 >,< h7, h1, h1 >,< h7, h1, h1 >}
{< h7, h2, h3 >,< h7, h2, h3 >,< h7, h2, h3 >,< h5, h1, h1 >,< h5, h1, h1 >,< h5, h1, h1 >}
{< h4, h2, h3 >,< h4, h2, h3 >,< h4, h2, h3 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h4, h2, h3 >,< h4, h2, h3 >,< h6, h2, h3 >,< h6, h2, h3 >,< h7, h2, h1 >,< h7, h2, h1 >}
{< h5, h4, h2 >,< h5, h4, h2 >,< h5, h4, h2 >,< h6, h2, h2 >,< h6, h2, h2 >,< h6, h2, h2 >}
{< h5, h2, h3 >,< h5, h2, h3 >,< h5, h2, h3 >,< h7, h2, h1 >,< h7, h2, h1 >,< h7, h2, h1 >}

.

Step 2: Obtain the similarity measures between the alternatives g1, g2, g3, and g4 and the ideal
solution g* = {{<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>,
<8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}} by Equation (7) for ρ = 1 and 2:

Sw(g1, g∗) = 0.7354, Sw(g2, g∗) = 0.7493, Sw(g3, g∗) = 0.7406, Sw(g4, g∗) = 0.7747 for ρ = 1.
Sw(g1, g∗) = 0.7121, Sw(g2, g∗) = 0.7224, Sw(g3, g∗) = 0.7217, Sw(g4, g∗) = 0.7525 for ρ = 2.

Step 3: Due to Sw(g4, g*) > Sw(g2, g*) > Sw(g3, g*) > Sw(g1, g*) for ρ = 1 and 2, the ranking of the
four alternatives is g4 > g2 >g3 > g1; thus, the best choice is g4.

By following the above steps, the MADM calculations of ρ ∈ [3, 100] are further performed for this
example. The relative decision results, including the similarity measure, ranking order, average value
(AV), standard deviation (SD), and the best alternative, are shown in Table 1. Obviously, the ranking
order is g4 > g2 > g3 > g1 for ρ = 1 and 2, and then it becomes g4 > g3 > g2 > g1 for ρ > 2; while the best
alternative is always g4.

Table 1. Decision results of the proposed multiple-attribute decision-making (MADM) method for ρ ∈
[1, 100] and W = (0.35, 0.25, 0.4).

ρ 1 Sw(g1, g*), Sw(g2, g*), Sw(g3, g*), Sw(g4, g*) 2 Ranking Order AV 3 SD 4 Best
Alternative

1 0.7354, 0.7493, 0.7406, 0.7747 g4 > g2 > g3 > g1 0.7500 0.0151 g4
2 0.7121, 0.7224, 0.7217, 0.7525 g4 > g2 > g3 > g1 0.7272 0.0152 g4
3 0.6905, 0.6985, 0.7037, 0.7335 g4 > g3 > g2 > g1 0.7066 0.0163 g4
4 0.6710, 0.6781, 0.6867, 0.7182 g4 > g3 > g2 > g1 0.6885 0.018 g4
5 0.6539, 0.6608, 0.6710, 0.7061 g4 > g3 > g2 > g1 0.6730 0.0201 g4

10 0.5972, 0.6047, 0.6133, 0.6722 g4 > g3 > g2 > g1 0.6219 0.0296 g4
15 0.5690, 0.5754, 0.5817, 0.6575 g4 > g3 > g2 > g1 0.5959 0.0358 g4
20 0.5531, 0.5582, 0.5631, 0.6497 g4 > g3 > g2 > g1 0.5810 0.0398 g4
30 0.5361, 0.5397, 0.5432, 0.6417 g4 > g3 > g2 > g1 0.5652 0.0443 g4
40 0.5273, 0.5301, 0.5327, 0.6376 g4 > g3 > g2 > g1 0.5569 0.0466 g4
50 0.5220, 0.5242, 0.5264, 0.6351 g4 > g3 > g2 > g1 0.5519 0.048 g4

100 0.5111, 0.5123, 0.5134, 0.6301 g4 > g3 > g2 > g1 0.5417 0.051 g4

Notes: 1 ρ: parameter; 2 Sw(gi, g*): the similarity measures between the alternatives gi(i = 1, 2, 3, 4) and the ideal
solution g* = {{<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>,
<8,0,0>}, {<8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>, <8,0,0>}}; 3 AV: average value; 4 SD: standard deviation.
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7. Discussion and Analysis

In this section, further discussion and analysis are carried out for the resolution and the sensitivity
of the novel MADM method of HLNNs.

7.1. Resolution Analysis

According to Table 1, Figure 1 illustrates the SDs of the similarity measures for ρ ∈ [1, 100].
Clearly, the SD increases with increasing the value of ρ. Then, it reaches 0.051 for ρ = 100. Since the
SD can reflect the resolution/discrimination level of the MADM method, it is obvious that the
resolution/discrimination level will be enhanced with increasing the value of ρ so as to provide
effective decision information for decision-makers in the MADM process. However, considering that
the computational complexity of MADM increases with increasing the value of ρ, we recommend
selecting the MADM method with some suitable value of ρ under the condition that the resolution
degree meets some actual requirement and the DMs’ preference.
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7.2. Sensitivity Analysis of Weights

The average weight vector of W = (1/3, 1/3, 1/3) is applied to the actual example as a comparison
with W = (0.35, 0.25, 0.4) to illustrate the weight sensitivity of the MADM method. The decision results
with W = (1/3, 1/3, 1/3) are shown in Table 2. Then, the similarity measure values for W = (0.35, 0.25,
0.4) and W = (1/3, 1/3, 1/3) are further illustrated in Figure 2a,b.

From Figure 2, obviously, the similarity measure curves with W = (0.35, 0.25, 0.4) are very similar to
those with W = (1/3, 1/3, 1/3). By carefully comparing Tables 1 and 2, we find that the ranking orders
are identical except that of ρ = 2. For ρ = 2, the ranking orders of g4 > g2 > g3 > g1 for W = (0.35, 0.25, 0.4)
and g4 > g3 > g2 > g1 for W = (1/3, 1/3, 1/3) indicate a little difference. Then, the best alternatives
are the same within the entire range of ρ. Hence, the ranking orders in this example imply a little
sensitivity to the attribute weights.
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Table 2. Decision results of the proposed MADM method for ρ ∈ [1, 100] and W = (1/3, 1/3, 1/3).

ρ Sw(g1, g*), Sw(g2, g*), Sw(g3, g*), Sw(g4, g*) Ranking Order AV SD Best
Alternative

1 0.7431, 0.7546, 0.7500, 0.7755 g4 > g2 > g3 > g1 0.7558 0.0121 g4
2 0.7189, 0.7278, 0.7300, 0.7529 g4 > g3 > g2 > g1 0.7324 0.0125 g4
3 0.6968, 0.7039, 0.7112, 0.7336 g4 > g3 > g2 > g1 0.7114 0.0138 g4
4 0.6769, 0.6833, 0.6938, 0.7180 g4 > g3 > g2 > g1 0.693 0.0156 g4
5 0.6596, 0.6659, 0.6779, 0.7057 g4 > g3 > g2 > g1 0.6773 0.0177 g4

10 0.6019, 0.6088, 0.6193, 0.6717 g4 > g3 > g2 > g1 0.6254 0.0274 g4
15 0.5727, 0.5786, 0.5865, 0.6572 g4 > g3 > g2 > g1 0.5988 0.0341 g4
20 0.556, 0.5608, 0.5671, 0.6495 g4 > g3 > g2 > g1 0.5834 0.0384 g4
30 0.5381, 0.5415, 0.5459, 0.6415 g4 > g3 > g2 > g1 0.5668 0.0432 g4
40 0.5289, 0.5315, 0.5349, 0.6374 g4 > g3 > g2 > g1 0.5582 0.0458 g4
50 0.5232, 0.5254, 0.5281, 0.6350 g4 > g3 > g2 > g1 0.5529 0.0474 g4
100 0.5118, 0.5128, 0.5142, 0.6300 g4 > g3 > g2 > g1 0.5422 0.0507 g4
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8. Conclusions

This paper firstly defined the concept of HLNNs by integrating a HFS with a LNN. Then,
the normalized generalized distance and similarity measures of HLNNs were presented based on
the LCMC method. Next, a novel MADM method based on the proposed similarity measure was
presented under the HLNN environment. Finally, a MADM example of an investment problem was
illustrated to demonstrate that the developed method is feasible and applicable. Since the HLNN
combines the merits of the HFS and LNN, containing more information than the LNN, the MADM
method of HLNNs based on the LCMC method is more objective and more suitable for the practical
applications with HLNN information.

However, some advantages of the proposed HLNNs and MADM method based on the LCMC
method are listed as follows:

(1) The proposed HLNN provides a new effective way to express more decision information than
existing LNNs by considering the hesitancy of DMs.

(2) The proposed MADM method of HLNNs solves the MADM problems with HLNN information
for the first time, as well as the gap of existing linguistic decision-making methods.

(3) The proposed distance and similarity measures of HLNNs based on the LCMC extension method
for HLNNs are more objective and more reasonable than those reported in [23,24].

Future research on HLNNs will focus on the development of new aggregation operators and
correlation coefficients of HLNNs, and their applications in fault diagnosis, medical diagnosis,
decision-making, and so on in the HLNN setting.
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