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Abstract

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic
(SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-
criteria group decision making (MCGDM). Firstly, a type of SVN covering-based rough set model is proposed. Based
on this rough set model, three types of multigranulation SVN covering-based rough set models under the concept
of multigranulation SVN β-covering approximation space are proposed, where β is a SVN number. Moreover, the
connections among these four models are investigated. Secondly, some conditions under which different multigranulation
SVN β-covering approximation spaces induced the same multigranulation SVN covering approximation operators are
presented. Finally, three novel methods are presented to MCGDM problems under the multigranulation SVN covering-
based rough set models. Furthermore, the proposed MCGDM methods are compared with other methods through a
problem about paper defect diagnosis.

Keywords: Covering-based rough set, single valued neutrosophic set, multigranulation, multi-criterion decision making,
paper defect diagnosis.

1 Introduction

Covering-based rough sets (CBRSs) [3, 4, 38] were presented to deal with the type of covering data, and have enriched
Pawlak’s rough sets [13] in many ways. In theoretical terms, covering approximation models [27] have been established,
covering reduction problems [8] have been solved, and covering axiomatic systems [33] have been constructed. In
application, CBRSs have been applied to knowledge reduction [25], decision rule synthesis [16], and other fields [14,
20, 29, 37]. In theory, covering-based rough set (CBRS) theory has been connected with matroid theory [23], lattice
theory [32] and fuzzy set theory [7, 24].

For fuzzy CBRSs, some researchers presented different fuzzy CBRS models and studied some issues in fuzzy CBRSs,
such as Ma [11] and D’eer et al. [5]. All these results were presented by only considering a fuzzy covering. Then, Zhan et
al. [31] considered multigranulation in fuzzy CBRSs and presented multigranulation fuzzy rough covering models. As an
extension of fuzzy set theory, intuitionistic fuzzy (IF) set theory [2] has attracted increasing attention to combine with
rough set theory, such us IF relation rough sets [1] and IF CBRSs. Especially for IF CBRSs, Huang et al. [6] presented
a type of IF CBRS model and a type of IF graded CBRS model. Moreover, Zhang et al. [34] proposed covering-based
general multigranulation IF rough set models.

Single valued neutrosophic (SVN) sets [17, 19] can be regarded as an intuitively straightforward extension of IF
sets. SVN sets and rough sets are both capable of dealing with uncertainty and partial information. Recently, some
researchers combined them by SVN relations. For example, Mondal and Pramanik [12, 15] applied rough neutrosophic
sets in multi-attribute decision making based on grey relational analysis and medical diagnosis; Yang et al. [26] presented
a SVN relation-based rough set model under a SVN relation-based approximation space. On the other hand, SVN
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coverings have attracted more attention. Wang and Zhang [21] proposed the first type of SVN CBRS model under
a SVN β-covering approximation space. Further, Wang and Zhang [22] proposed the second type of SVN CBRS
model under a new SVN β-covering approximation space, which based on a new inclusion relation. In [22], they also
presented the relationship between these two SVN CBRS models, as well as the connection between these SVN CBRS
models and SVN relation-based rough set models. All these work are investigated in a corresponding SVN β-covering
approximation space, which contains one and only one SVN β-covering. But there will be a new covering approximation
space when we consider a family of SVN β-coverings. We call it as a multigranulation SVN β-covering approximation
space in this paper. Hence, a SVN β-covering approximation space is a special case of a multigranulation SVN β-
covering approximation space. When a SVN β-covering approximation space is generalized to a multigranulation SVN
β-covering approximation space, we consider the following statements: 1) whether some characteristics of the SVN
β-covering approximation space will hold in the multigranulation SVN β-covering approximation space; 2) whether
there are some new rough set models in the multigranulation SVN β-covering approximation space; 3) whether there
exist some relationships among these new rough set models. Therefore, the investigation of the multigranulation SVN
β-covering approximation space and some corresponding rough set models is very important. It not only can combine
CBRSs with SVN sets from the viewpoint of multigranulation, but also can broaden the practical application. This is
our motivation for studying this research.

In this paper, three types of multigranulation SVN CBRS models are presented and applied to the problem of multi-
criteria group decision making (MCGDM). On the one hand, a new type of SVN CBRS model is proposed in SVN
β-covering approximation space. Based on this rough set model, three types of multigranulation SVN CBRS models
under the concept of n-SVN β-covering approximation space are proposed. Moreover, the relationships among these
multigranulation SVN CBRS models are proposed. Then, we present some conditions under which different n-SVN
β-coverings can induce the same multigranulation SVN covering approximation of any SVN subset. On the other hand,
many researchers have applied (fuzzy or IF) rough set models in decision making (DM) problems [18, 26, 30]. By the
characterizations of the problem of MCGDM, we present three novel methods to deal with MCGDM problems under
three types of multigranulation SVN CBRS models proposed in this paper. Moreover, the proposed MCGDM methods
are compared with the methods which are presented by Liu [10] and Li et al. [9] respectively.

The rest of this paper is arranged as follows. Section 2 recalls some basic definitions about SVN sets and SVN
β-covering approximation spaces. In Section 3, the concept of n-SVN β-covering approximation space is presented. In
Section 4, three types of multigranulation SVN CBRS models under the concept of n-SVN β-covering approximation
space are proposed. In Section 5, we present some conditions under which different n-SVN β-coverings can induce the
same multigranulation SVN covering approximation of any SVN subset. In Section 6, we present three novel approaches
to the paper defect diagnosis problem of MCGDM under different multigranulation SVN CBRS models. Moreover, the
proposed MCGDM methods are compared with other methods. Section 7 gives the main conclusions and further
research topics.

2 Basic definitions

In this section, we review some basic definitions about SVN sets and SVN β-covering approximation spaces. A finite
and nonempty set is called as a universe.

Definition 2.1. [19] Let U be a universe. A SVN set A in U is defined as an object of the following form:

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},

where TA(x) : U → [0, 1] is a truth-membership function, IA(x) : U → [0, 1] is an indeterminacy-membership function
and FA(x) : U → [0, 1] is a falsity-membership function for any x ∈ U . They satisfy 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3
for all x ∈ U . The family of all SVN sets in U is denoted by SV N(U), called as the SVN power set. For convenience,
a SVN number is represented by β = 〈a, b, c〉, where a, b, c ∈ [0, 1] and a+ b+ c ≤ 3.

Specially, for two SVN numbers α = 〈a, b, c〉 and β = 〈d, e, f〉 , α ≤ β ⇔ a ≤ d, b ≥ e and c ≥ f . Some basic
operations on SV N(U) are shown as follows [2, 26]: A,B ∈ SV N(U),
(1) A ⊆ B iff TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U ;

(2) A = B iff A ⊆ B and B ⊆ A;
(3) A ∩B = {〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)〉 : x ∈ U};
(4) A ∪B = {〈x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)〉 : x ∈ U};
(5) A′ = {〈x, FA(x), 1− IA(x), TA(x)〉 : x ∈ U};
(6) A⊕B = {〈x, TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)〉 : x ∈ U}.
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To combine CBRSs with SVN sets, Wang and Zhang [21] presented the concept of SVN β-covering approximation
space.

Definition 2.2. [21] Let U be a universe. For a SVN number β, we call Ĉ = {C1, C2, · · · , Cl}, with Ci ∈ SV N(U)(i =

1, 2, ..., l), as a SVN β-covering of U , if for all x ∈ U , there exists Ci ∈ Ĉ such that Ci(x) ≥ β. We also call (U, Ĉ) as
a SVN β-covering approximation space.

Definition 2.3. [21] Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cl}. For each x ∈ U , the SVN β-

neighborhood Ñβ
Ĉ(x)

of x about Ĉ can be defined as: Ñβ
Ĉ(x)

= ∩{Ci ∈ Ĉ : Ci(x) ≥ β}.

Proposition 2.4. [21] Let Ĉ be a SVN β-covering of U . For any x, y ∈ U , Ñβ
Ĉ(x)

(y) ≥ β if and only if Ñβ
Ĉ(y)
⊆ Ñβ

Ĉ(x)
.

3 Multigranulation SVN β-covering approximation spaces

We present the notion of multigranulation SVN β-covering approximation space and some characteristics of it in this
section. Based on Definition 2.2, the concept of n-SVN β-covering is given in the following definition.

Definition 3.1. Let Ĉk (k = 1, 2, ..., n) be SVN β-coverings of U . Then we call Γβ as a n-SVN β-covering of U , where

Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}.

The pair (U,Γβ) is called as a n-SVN β-covering approximation space. We also call (U,Γβ) as a multigranulation
SVN β-covering approximation space. Then the notion of SVN β-neighborhood in a SVN β-covering can be extended
to a new notion in a n-SVN β-covering.

Definition 3.2. Let (U,Γβ) be a n-SVN β-covering approximation space. For any x ∈ U , ÑΓβ(x) =
⋂
{Ñβ

Ĉ(x)
∈

Cov(Ĉ) : Ĉ ∈ Γβ} is called as the SVN β-neighborhood of x about Γβ, where Cov(Ĉ) = {Ñβ
Ĉ(x)

: x ∈ U}.

Example 3.3. Let (U,Γβ) be a 2-SVN β-coverings approximation space, where U = {x1, x2, x3, x4, x5}, Γβ = {Ĉ1, Ĉ2}
and β = 〈0.6, 0.3, 0.7〉. Ĉ1 and Ĉ2 are shown in Tables 1 and 2, respectively.

Table 1: Ĉ1.

U C11 C12 C13 C14

x1 〈0.7, 0.3, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.5, 0.2, 0.5〉 〈0.2, 0.5, 0.6〉
x2 〈0.6, 0.3, 0.4〉 〈0.5, 0.3, 0.8〉 〈0.4, 0.5, 0.4〉 〈0.6, 0.2, 0.7〉
x3 〈0.4, 0.6, 0.3〉 〈0.7, 0.3, 0.6〉 〈0.5, 0.3, 0.6〉 〈0.6, 0.3, 0.4〉
x4 〈0.6, 0.2, 0.7〉 〈0.5, 0.5, 0.6〉 〈0.3, 0.6, 0.5〉 〈0.5, 0.6, 0.2〉
x5 〈0.3, 0.3, 0.7〉 〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.3, 0.2〉

Table 2: Ĉ2.

U C21 C22 C23 C24

x1 〈0.8, 0.2, 0.5〉 〈0.6, 0.2, 0.4〉 〈0.8, 0.2, 0.4〉 〈0.3, 0.5, 0.8〉
x2 〈0.6, 0.3, 0.3〉 〈0.5, 0.3, 0.8〉 〈0.4, 0.6, 0.7〉 〈0.7, 0.2, 0.5〉
x3 〈0.9, 0.6, 0.4〉 〈0.7, 0.3, 0.6〉 〈0.5, 0.3, 0.7〉 〈0.8, 0.2, 0.4〉
x4 〈0.6, 0.2, 0.5〉 〈0.8, 0.2, 0.6〉 〈0.4, 0.6, 0.3〉 〈0.5, 0.6, 0.7〉
x5 〈0.4, 0.5, 0.9〉 〈0.7, 0.3, 0.4〉 〈0.6, 0.3, 0.6〉 〈0.8, 0.2, 0.3〉

Then Ñβ
Ĉ1(x1)

= C11 ∩ C12, Ñβ
Ĉ1(x2)

= C11 ∩ C14, Ñβ
Ĉ1(x3)

= C12 ∩ C14, Ñβ
Ĉ1(x4)

= C11, Ñβ
Ĉ1(x5)

= C12 ∩ C13 ∩ C14,

Ñβ
Ĉ2(x1)

= C21 ∩ C22 ∩ C23, Ñβ
Ĉ2(x2)

= C21 ∩ C24, Ñβ
Ĉ2(x3)

= C22 ∩ C24, Ñβ
Ĉ2(x4)

= C21 ∩ C22, Ñβ
Ĉ2(x5)

= C22 ∩ C23 ∩ C24.

Hence, all SVN β-neighborhoods induced by Ĉ1 and Ĉ2 are shown in Tables 3 and 4, respectively.

Table 3: Ñβ
Ĉ1(xi)

(i = 1, 2, 3, 4, 5).

Ñβ
Ĉ1(xi)

x1 x2 x3 x4 x5

Ñβ
Ĉ1(x1)

〈0.6, 0.3, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.4, 0.6, 0.6〉 〈0.5, 0.5, 0.7〉 〈0.3, 0.3, 0.7〉
Ñβ

Ĉ1(x2)
〈0.2, 0.5, 0.6〉 〈0.6, 0.3, 0.7〉 〈0.4, 0.6, 0.4〉 〈0.5, 0.6, 0.7〉 〈0.3, 0.3, 0.7〉

Ñβ
Ĉ1(x3)

〈0.2, 0.5, 0.6〉 〈0.5, 0.3, 0.8〉 〈0.6, 0.3, 0.6〉 〈0.5, 0.6, 0.6〉 〈0.7, 0.3, 0.5〉
Ñβ

Ĉ1(x4)
〈0.7, 0.3, 0.5〉 〈0.6, 0.3, 0.4〉 〈0.4, 0.6, 0.3〉 〈0.6, 0.2, 0.7〉 〈0.3, 0.3, 0.7〉

Ñβ
Ĉ1(x5)

〈0.2, 0.5, 0.6〉 〈0.4, 0.5, 0.8〉 〈0.5, 0.3, 0.6〉 〈0.3, 0.6, 0.6〉 〈0.6, 0.3, 0.5〉

Table 4: Ñβ
Ĉ2(xi)

(i = 1, 2, 3, 4, 5).

Ñβ
Ĉ2(xi)

x1 x2 x3 x4 x5

Ñβ
Ĉ2(x1)

〈0.6, 0.2, 0.5〉 〈0.4, 0.6, 0.8〉 〈0.5, 0.6, 0.7〉 〈0.4, 0.6, 0.6〉 〈0.4, 0.5, 0.9〉
Ñβ

Ĉ2(x2)
〈0.3, 0.5, 0.8〉 〈0.6, 0.3, 0.5〉 〈0.8, 0.6, 0.4〉 〈0.5, 0.6, 0.7〉 〈0.4, 0.5, 0.9〉

Ñβ
Ĉ2(x3)

〈0.3, 0.5, 0.8〉 〈0.5, 0.3, 0.8〉 〈0.7, 0.3, 0.6〉 〈0.5, 0.6, 0.7〉 〈0.7, 0.3, 0.4〉
Ñβ

Ĉ2(x4)
〈0.6, 0.2, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.7, 0.6, 0.6〉 〈0.6, 0.2, 0.6〉 〈0.4, 0.5, 0.9〉

Ñβ
Ĉ2(x5)

〈0.3, 0.5, 0.8〉 〈0.4, 0.6, 0.8〉 〈0.5, 0.3, 0.7〉 〈0.4, 0.6, 0.7〉 〈0.6, 0.3, 0.6〉

Based on Tables 3 and 4, all SVN β-neighborhoods induced by Γβ are shown in Table 5.
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Table 5: ÑΓβ(xi) (i = 1, 2, 3, 4, 5).

ÑΓβ(xi) x1 x2 x3 x4 x5

ÑΓβ(x1) 〈0.6, 0.3, 0.5〉 〈0.4, 0.6, 0.8〉 〈0.4, 0.6, 0.7〉 〈0.4, 0.6, 0.7〉 〈0.3, 0.5, 0.9〉
ÑΓβ(x2) 〈0.2, 0.5, 0.8〉 〈0.6, 0.3, 0.7〉 〈0.4, 0.6, 0.4〉 〈0.5, 0.6, 0.7〉 〈0.3, 0.5, 0.9〉
ÑΓβ(x3) 〈0.2, 0.5, 0.8〉 〈0.5, 0.3, 0.8〉 〈0.6, 0.3, 0.6〉 〈0.5, 0.6, 0.7〉 〈0.7, 0.3, 0.5〉
ÑΓβ(x4) 〈0.6, 0.3, 0.5〉 〈0.5, 0.3, 0.8〉 〈0.4, 0.6, 0.6〉 〈0.4, 0.2, 0.7〉 〈0.3, 0.5, 0.9〉
ÑΓβ(x5) 〈0.2, 0.5, 0.8〉 〈0.4, 0.6, 0.8〉 〈0.5, 0.3, 0.7〉 〈0.3, 0.6, 0.7〉 〈0.6, 0.3, 0.6〉

Then some properties of the SVN β-neighborhood of x about Γβ are presented.

Proposition 3.4. Let (U,Γβ) be a n-SVN β-covering approximation space. Then the following statements hold:

(1) ∀x ∈ U , ÑΓβ(x)(x) ≥ β;

(2) ∀x, y, z ∈ U , if ÑΓβ(x)(y) ≥ β, ÑΓβ(y)(z) ≥ β, then ÑΓβ(x)(z) ≥ β;

(3) For two SVN numbers β1 and β2, if β1 ≤ β2 ≤ β, then ÑΓβ1
(x) ⊆ ÑΓβ2

(x) for all x ∈ U ;

(4) ∀x, y ∈ U , ÑΓβ(x)(y) ≥ β if and only if ÑΓβ(y) ⊆ ÑΓβ(x).

According to Propositions 3.5 and 3.7, it is easily seen that ÑΓβ(x) is a SVN β-neighborhood of x about the β-covering
Cov(Γβ). Hence, Proposition 3.4 follows immediately from Section 3 in [21]. So, its proof can be omitted.

In Definition 3.2, Cov(Ĉ) is also a SVN β-covering of U for any Ĉ ∈ Γβ . And another SVN β-covering of U can be
induced by Γβ .

Proposition 3.5. Let (U,Γβ) be a n-SVN β-covering approximation space and Cov(Γβ) = {ÑΓβ(x) : x ∈ U}. Then
Cov(Γβ) is a SVN β-covering of U . We call Cov(Γβ) as the induced SVN β-covering of Γβ.

Proof. By (1) in Proposition 3.4, for all x ∈ U , there exists ÑΓβ(x) ∈ Cov(Γβ) such that ÑΓβ(x)(x) ≥ β. Hence, Cov(Γβ)
is a SVN β-covering of U .

Example 3.6. (Continued from Example 3.3) All SVN β-neighborhoods induced by Γβ are shown in Table 5 in Exam-
ple 3.3. By Table 5, we know Cov(Γβ) is a SVN β-covering of U .

Finally, the SVN β-neighborhood of x about Γβ can be represented by the SVN β-neighborhood of x about Cov(Γβ).

Proposition 3.7. Let (U,Γβ) be a n-SVN β-covering approximation space and Cov(Γβ) be the induced SVN β-covering

of Γβ. Then for any x ∈ U , Ñβ(Cov(Γβ))(x) = ÑΓβ(x).

Proof. Since Cov(Γβ) = {ÑΓβ(x) : x ∈ U} is the induced SVN β-covering of Γβ , Ñβ(Cov(Γβ))(x) =
⋂
{ÑΓβ(x′ ) ∈ Cov(Γβ) :

x′ ∈ U ∧ ÑΓβ(x′)(x) ≥ β}. By (1) in Proposition 3.4, for all x ∈ U , ÑΓβ(x)(x) ≥ β. Hence, Ñβ(Cov(Γβ))(x) ⊆ ÑΓβ(x).

According to (4) in Proposition 3.4, for any x′ ∈ U − {x}, if ÑΓβ(x′)(x) ≥ β, then ÑΓβ(x) ⊆ ÑΓβ(x′). Therefore, for any

x ∈ U , Ñβ(Cov(Γβ))(x) = ÑΓβ(x).

4 Multigranulation SVN CBRSs

In this section, we present three types of multigranulation SVN CBRS models based on the concept of n-SVN β-covering
approximation space. Firstly, a new type of SVN CBRS model based on the concept of SVN β-covering approximation
space is proposed and some characterizations of it are investigated. Secondly, inspired by this new rough set model,
three types of multigranulation SVN CBRS models are presented in the n-SVN β-covering approximation space. Finally,
some properties of them and some relationships among them are investigated.

4.1 A type of SVN CBRS model

A new type of rough set model based on the concept of SVN β-covering approximation space is presented for any SVN
subset.
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Definition 4.1. Let (U, Ĉ) be a SVN β-covering approximation space with U = {x1, x2, · · · , xm}. For each A ∈
SV N(U), where A = {〈xi, TA(xi), IA(xi), FA(xi)〉 : 1 ≤ i ≤ m}, we define the SVN covering upper approximation C(A)
and lower approximation C(A) of A as

C(A) = {〈xi, TC(A)(xi), IC(A)(xi), TC(A)(xi)〉 : 1 ≤ i ≤ m}, C(A) = {〈xi, TC(A)(xi), IC(A)(xi), TC(A)(xi)〉 : 1 ≤ i ≤ m},
where

TC(A)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ TA(xj)], TC(A)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ TA(xj)] (1 ≤ i ≤ m),

IC(A)(xi) =
m∧
j=1

[IÑβ
Ĉ(xi)

(xj) ∨ IA(xj)], IC(A)(xi) =
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ IA(xj)] (1 ≤ i ≤ m),

FC(A)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ FA(xj)], FC(A)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ FA(xj)] (1 ≤ i ≤ m).

If C(A) 6= C(A), then A is called as a SVN CBRS. C and C are called as SVN covering upper and lower approximation

operators about Ĉ.

Example 4.2. (Continued from Example 3.3) Ĉ1 is a SVN β-covering of U in Example 3.3, where β = 〈0.6, 0.3, 0.7〉.
Table 1 gives Ĉ1, and all SVN β-neighborhoods induced by Ĉ1 are shown in Table 3 in Example 3.3. Suppose A =
{〈x1, 0.7, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.2〉, 〈x3, 0.3, 0.2, 0.6〉, 〈x4, 0.6, 0.5, 0.4〉, 〈x5, 0.7, 0.3, 0.2〉}. Then

C1(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.5, 0.3, 0.6〉, 〈x3, 0.7, 0.3, 0.5〉, 〈x4, 0.7, 0.3, 0.4〉, 〈x5, 0.6, 0.3, 0.5〉},
C1(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.4, 0.4, 0.4〉, 〈x3, 0.6, 0.4, 0.6〉, 〈x4, 0.3, 0.5, 0.5〉, 〈x5, 0.6, 0.4, 0.5〉},

where C1 and C1 are SVN covering upper and lower approximation operators about Ĉ1.

Let the SVN universe set be U = {〈x, 1, 0, 0〉 : x ∈ U} and the SVN empty set be ∅ = {〈x, 0, 1, 1〉 : x ∈ U}. Some
basic properties of the SVN covering upper and lower approximation operators are given in the following proposition.

Proposition 4.3. Let Ĉ be a SVN β-covering of U = {x1, x2, · · · , xm}. Then for any A,B ∈ SV N(U), the following
statements hold:

(1) C(∅) = ∅; C(U) = U ;
(2) C(A′) = (C(A))′, C(A′) = (C(A))′;
(3) If A ⊆ B, then C(A) ⊆ C(B), C(A) ⊆ C(B);
(4) C(A

⋃
B) = C(A)

⋃
C(B), C(A

⋂
B) = C(A)

⋂
C(B);

(5) C(A
⋂
B) ⊆ C(A)

⋂
C(B), C(A

⋃
B) ⊇ C(A)

⋃
C(B).

Proof. Since (3) and (5) are following immediately from Definition 4.1, we only prove (1), (2) and (4).
(1) Since the SVN universe set is U = {〈xi, 1, 0, 0〉 : 1 ≤ i ≤ m} and the SVN empty set is ∅ = {〈xi, 0, 1, 1〉 : 1 ≤ i ≤ m},
for any i (1 ≤ i ≤ m),

TC(U)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ TU (xj)] =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ 1] = 1,

IC(U)(xi) =
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ IU (xj)] =
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ 0] = 0,

FC(U)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ FU (xj)] =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ 0] = 0,

TC(∅)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ T∅(xj)] =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ 0] = 0,

IC(∅)(xi) =
m∧
j=1

[IÑβ
Ĉ(xi)

(xj) ∨ I∅(xj)] =
m∧
j=1

[IÑβ
Ĉ(xi)

(xj) ∨ 1] = 1,

FC(∅)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ F∅(xj)] =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ 1] = 1.

Hence, C(U) = U and C(∅) = ∅;
(2) Let A = {〈xi, TA(xi), IA(xi), FA(xi)〉 : 1 ≤ i ≤ m}. Then A′ = {〈xi, FA(xi), 1 − IA(xi), TA(xi)〉 : 1 ≤ i ≤ m}. For
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any i (1 ≤ i ≤ m),

TC(A′)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ TA′(xj)] =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ FA(xj)] = FC(A)(xi),

IC(A′)(xi) =
m∧
j=1

[IÑβ
Ĉ(xi)

(xj) ∨ IA′(xj)] = 1−
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ IA(xj)] = 1− IC(A)(xi),

FC(A′)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ FA′(xj)] =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ TA(xj)] = TC(A)(xi),

TC(A′)(xi) =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ TA′(xj)] =
m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ FA(xj)] = FC(A)(xi),

IC(A′)(xi) =
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ IA′(xj)] =
m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ (1− IA(xj))] = 1− IC(A)(xi),

FC(A′)(xi) =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ FA′(xj)] =
m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ TA(xj)] = TC(A)(xi).

Hence,

C(A′) = {〈TC(A′)(xi), IC(A′)(xi), FC(A′)(xi)〉 : 1 ≤ i ≤ m} = {〈FC(A)(xi), 1− IC(A)(xi), TC(A)(xi)〉 : 1 ≤ i ≤ m}
= {〈T(C(A))′(xi), I(C(A))′(xi), F(C(A))′(xi)〉 : 1 ≤ i ≤ m} = (C(A))′,

C(A′) = {〈TC(A′)(xi), IC(A′)(xi), FC(A′)(xi)〉 : 1 ≤ i ≤ m} = {〈FC(A)(xi), 1− IC(A)(xi), FC(A)(xi)〉 : 1 ≤ i ≤ m}
= {〈T(C(A))′(xi), I(C(A))′(xi), F(C(A))′(xi)〉 : 1 ≤ i ≤ m} = (C(A))′;

(4) Since

TC(A
⋂
B)(xi) =

m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ TA⋂
B(xj)] =

m∧
j=1

[FÑβ
Ĉ(xi)

(xj) ∨ (TA(xj) ∧ TB(xj))]

=
m∧
j=1

[(FÑβ
Ĉ(xi)

(xj) ∨ TA(xj)) ∧ (FÑβ
Ĉ(xi)

(xj) ∨ TB(xj))]

= [
m∧
j=1

(FÑβ
Ĉ(xi)

(xj) ∨ TA(xj))] ∧ [
m∧
j=1

(FÑβ
Ĉ(xi)

(xj) ∨ TB(xj))] = TC(A)(xi) ∧ TC(B)(xi),

IC(A
⋂
B)(xi) =

m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ IA⋂
B(xj)] =

m∨
j=1

[(1− IÑβ
Ĉ(xi)

(xj)) ∧ (IA(xj) ∨ IB(xj))]

= [
m∨
j=1

(1− IÑβ
Ĉ(xi)

(xj)) ∧ IA(xj)] ∨ [
m∨
j=1

(1− IÑβ
Ĉ(xi)

(xj)) ∧ IB(xj)] = IC(A)(xi) ∨ IC(B)(xi),

FC(A
⋂
B)(xi) =

m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ FA⋂
B(xj)] =

m∨
j=1

[TÑβ
Ĉ(xi)

(xj) ∧ (FA(xj) ∨ FB(xj))]

= [
m∨
j=1

TÑβ
Ĉ(xi)

(xj) ∧ FA(xj)] ∨ [
m∨
j=1

TÑβ
Ĉ(xi)

(xj) ∧ FB(xj)] = FC(A)(xi) ∨ FC(B)(xi).

Hence, C(A
⋂
B) = C(A)

⋂
C(B). Similarly, we can obtain C(A

⋃
B) = C(A)

⋃
C(B).

4.2 Three types of multigranulation SVN CBRS models

In this subsection, three types of (philosophical, optimistic and pessimistic) multigranulation SVN CBRS models are
presented. Firstly, the type of philosophical multigranulation SVN CBRS model is shown.

Definition 4.4. Let (U,Γβ) be a n-SVN β-covering approximation space with U = {x1, x2, · · · , xm}. For each
A ∈ SV N(U), where A = {〈xi, TA(xi), IA(xi), FA(xi)〉 : 1 ≤ i ≤ m}, the philosophical multigranulation SVN cov-
ering upper approximation NΓβ (A) and lower approximation NΓβ (A) of A are defined as:

NΓβ (A) = {〈xi, TNΓβ
(A)(xi), INΓβ

(A)(xi), FNΓβ
(A)(xi)〉 : 1 ≤ i ≤ m},

NΓβ (A) = {〈xi, TNΓβ
(A)(xi), INΓβ

(A)(xi), FNΓβ
(A)(xi), 〉 : 1 ≤ i ≤ m},
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where

TNΓβ
(A)(xi) =

m∨
j=1

[TÑΓβ(xi)
(xj) ∧ TA(xj)], TNΓβ

(A)(xi) =
m∧
j=1

[FÑΓβ(xi)
(xj) ∨ TA(xj)] (1 ≤ i ≤ m),

INΓβ
(A)(xi) =

m∧
j=1

[IÑΓβ(xi)
(xj) ∨ IA(xj)], INΓβ

(A)(xi) =
m∨
j=1

[(1− IÑΓβ(xi)
(xj)) ∧ IA(xj)] (1 ≤ i ≤ m),

FNΓβ
(A)(xi) =

m∧
j=1

[FÑΓβ(xi)
(xj) ∨ FA(xj)], FNΓβ

(A)(xi) =
m∨
j=1

[TÑΓβ(xi)
(xj) ∧ FA(xj)] (1 ≤ i ≤ m).

If NΓβ (A) 6= NΓβ (A), then A is called as a philosophical multigranulation SVN CBRS.

Example 4.5. (Continued from Example 3.3) All SVN β-neighborhoods induced by Γβ are shown in Table 5 in Exam-
ple 3.3. For A = {〈x1, 0.7, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.2〉, 〈x3, 0.3, 0.2, 0.6〉, 〈x4, 0.6, 0.5, 0.4〉, 〈x5, 0.7, 0.3, 0.2〉}, the philosoph-
ical multigranulation SVN covering upper approximation NΓβ (A) and lower approximation NΓβ (A) of A are calculated

as follows:

NΓβ (A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.6〉, 〈x3, 0.7, 0.3, 0.5〉, 〈x4, 0.6, 0.3, 0.5〉, 〈x5, 0.6, 0.3, 0.6〉},
NΓβ (A) = {〈x1, 0.7, 0.4, 0.5〉, 〈x2, 0.4, 0.4, 0.4〉, 〈x3, 0.6, 0.4, 0.6〉, 〈x4, 0.6, 0.5, 0.5〉, 〈x5, 0.7, 0.4, 0.5〉}.

The philosophical multigranulation SVN covering approximation operators in Definition 4.4 can be represented by
the SVN covering approximation operators in Definition 4.1.

Proposition 4.6. Let (U,Γβ) be a n-SVN β-covering approximation space. Then for each A ∈ SV N(U),

NΓβ (A) = Cov(Γβ)(A), NΓβ (A) = Cov(Γβ)(A),

where Cov(Γβ) and Cov(Γβ) are SVN covering upper and lower approximation operators about Cov(Γβ).

Proof. By Proposition 3.5, Cov(Γβ) = {ÑΓβ(x) : x ∈ U} is the induced SVN β-covering of Γβ . According to Proposi-

tion 3.7, for any x ∈ U , Ñβ(Cov(Γβ))(x) = ÑΓβ(x). Hence, NΓβ (A) = Cov(Γβ)(A) and NΓβ (A) = Cov(Γβ)(A).

Some basic properties of the philosophical multigranulation SVN covering upper and lower approximation operators
are given in the following proposition.

Proposition 4.7. Let (U,Γβ) be a n-SVN β-covering approximation space. Then for all A,B ∈ SV N(U), the following
statements hold:

(1) NΓβ (U) = U , NΓβ (∅) = ∅;
(2) NΓβ (A′) = (NΓβ (A))′, NΓβ (A′) = (NΓβ (A))′;

(3) If A ⊆ B, then NΓβ (A) ⊆ NΓβ (B), NΓβ (A) ⊆ NΓβ (B);

(4) NΓβ (A
⋂
B) = NΓβ (A)

⋂
NΓβ (B), NΓβ (A

⋃
B) = NΓβ (A)

⋃
NΓβ (B);

(5) NΓβ (A
⋃
B) ⊇ NΓβ (A)

⋃
NΓβ (B), NΓβ (A

⋂
B) ⊆ NΓβ (A)

⋂
NΓβ (B).

Proof. According to the proof of Proposition 4.6, it is straightforward.

Then a type of optimistic multigranulation SVN CBRS model is proposed.

Definition 4.8. Let (U,Γβ) be a n-SVN β-covering approximation space with U = {x1, x2, · · · , xm} and Γβ =

{Ĉ1, Ĉ2, · · · , Ĉn}. For each A ∈ SV N(U), where A = {〈xi, TA(xi), IA(xi), FA(xi)〉 : 1 ≤ i ≤ m}, the optimistic

multigranulation SVN covering upper approximation NΓβ

(o)
(A) and lower approximation NΓβ

(o)(A) of A are defined
as:

NΓβ

(o)
(A) = {〈xi, TNΓβ

(o)
(A)

(xi), INΓβ

(o)
(A)

(xi), FNΓβ

(o)
(A)

(xi)〉 : 1 ≤ i ≤ m},

NΓβ
(o)(A) = {〈xi, TNΓβ

(o)(A)(xi), INΓβ
(o)(A)(xi), FNΓβ

(o)(A)(xi), 〉 : 1 ≤ i ≤ m},

where

T
NΓβ

(o)
(A)

(xi) =
n∧
k=1

m∨
j=1

[TÑβ
Ĉk(xi)

(xj) ∧ TA(xj)], TNΓβ
(o)(A)(xi) =

n∨
k=1

m∧
j=1

[FÑβ
Ĉk(xi)

(xj) ∨ TA(xj)] (1 ≤ i ≤ m),

I
NΓβ

(o)
(A)

(xi) =
n∨
k=1

m∧
j=1

[IÑβ
Ĉk(xi)

(xj) ∨ IA(xj)], INΓβ
(o)(A)(xi) =

n∧
k=1

m∨
j=1

[(1− IÑβ
Ĉk(xi)

(xj)) ∧ IA(xj)] (1 ≤ i ≤ m),

F
NΓβ

(o)
(A)

(xi) =
n∨
k=1

m∧
j=1

[FÑβ
Ĉk(xi)

(xj) ∨ FA(xj)], FNΓβ
(o)(A)(xi) =

n∧
k=1

m∨
j=1

[TÑβ
Ĉk(xi)

(xj) ∧ FA(xj)] (1 ≤ i ≤ m).
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If NΓβ

(o)
(A) 6= NΓβ

(o)(A), then A is called as an optimistic multigranulation SVN CBRS.

Example 4.9. (Continued from Example 3.3) Suppose A = {〈x1, 0.7, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.2〉, 〈x3, 0.3, 0.2, 0.6〉, 〈x4, 0.6,
0.5, 0.4〉, 〈x5, 0.7, 0.3, 0.2〉}. Then based on Tables 3 and 4, the optimistic multigranulation SVN covering upper approx-

imation NΓβ

(o)
(A) and lower approximation NΓβ

(o)(A) of A defined in Definition 4.8 are calculated as follows:

NΓβ

(o)
(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.6〉, 〈x3, 0.7, 0.3, 0.5〉, 〈x4, 0.6, 0.3, 0.5〉, 〈x5, 0.6, 0.3, 0.6〉},

NΓβ
(o)(A) = {〈x1, 0.6, 0.4, 0.5〉, 〈x2, 0.4, 0.4, 0.4〉, 〈x3, 0.6, 0.4, 0.6〉, 〈x4, 0.6, 0.5, 0.5〉, 〈x5, 0.7, 0.4, 0.5〉}.

The optimistic multigranulation SVN covering approximation operators in Definition 4.8 can be represented by the
SVN covering approximation operators in Definition 4.1.

Proposition 4.10. Let (U,Γβ) be a n-SVN β-covering approximation space with U = {x1, x2, · · · , xm} and Γβ =

{Ĉ1, Ĉ2, · · · , Ĉn}. Then for each A ∈ SV N(U), NΓβ

(o)
(A) =

n⋂
k=1

Ck(A) and NΓβ
(o)(A) =

n⋃
k=1

Ck(A), where Ck and

Ck are SVN covering upper and lower approximation operators about Ĉk (1 ≤ k ≤ n).

Proof. By Definitions 4.1 and 4.8, it is straightforward.

Some basic properties of the optimistic multigranulation SVN covering upper and lower approximation operators
are given in the following proposition.

Proposition 4.11. Let (U,Γβ) be a n-SVN β-covering approximation space with U = {x1, x2, · · · , xm} and Γβ =

{Ĉ1, Ĉ2, · · · , Ĉn}. Then the optimistic multigranulation SVN covering approximation operators in Definition 4.8
satisfy the following properties: for all A,B ∈ SV N(U),

(1) NΓβ

(o)
(A′) = (NΓβ

(o)(A))′, NΓβ
(o)(A′) = (NΓβ

(o)
(A))′;

(2) If A ⊆ B, then NΓβ

(o)
(A) ⊆ NΓβ

(o)
(B), NΓβ

(o)(A) ⊆ NΓβ
(o)(B);

(3) NΓβ

(o)
(A

⋃
B) = NΓβ

(o)
(A)

⋃
NΓβ

(o)
(B), NΓβ

(o)(A
⋂
B) = NΓβ

(o)(A)
⋂
NΓβ

(o)(B);

(4) NΓβ

(o)
(A

⋂
B) ⊆ NΓβ

(o)
(A)

⋂
NΓβ

(o)
(B), NΓβ

(o)(A
⋃
B) ⊇ NΓβ

(o)(A)
⋃
NΓβ

(o)(B).

Proof. By Propositions 4.3 and 4.10, it is straightforward.

Finally, a type of pessimistic multigranulation SVN CBRS model is proposed.

Definition 4.12. Let (U,Γβ) be a n-SVN β-covering approximation space with U = {x1, x2, · · · , xm} and Γβ =

{Ĉ1, Ĉ2, · · · , Ĉn}. For each A ∈ SV N(U), where A = {〈xi, TA(xi), IA(xi), FA(xi)〉 : 1 ≤ i ≤ m}, the pessimistic

multigranulation SVN covering upper approximation NΓβ

(p)
(A) and lower approximation NΓβ

(p)(A) of A are defined
as:

NΓβ

(p)
(A) = {〈xi, TNΓβ

(p)
(A)

(xi), INΓβ

(p)
(A)

(xi), FNΓβ

(p)
(A)

(xi)〉 : 1 ≤ i ≤ m},

NΓβ
(p)(A) = {〈xi, TNΓβ

(p)(A)(xi), INΓβ
(p)(A)(xi), FNΓβ

(p)(A)(xi), 〉 : 1 ≤ i ≤ m},

where

T
NΓβ

(p)
(A)

(xi) =
n∨
k=1

m∨
j=1

[TÑβ
Ĉk(xi)

(xj) ∧ TA(xj)], TNΓβ
(p)(A)(xi) =

n∧
k=1

m∧
j=1

[FÑβ
Ĉk(xi)

(xj) ∨ TA(xj)] (1 ≤ i ≤ m),

I
NΓβ

(p)
(A)

(xi) =
n∧
k=1

m∧
j=1

[IÑβ
Ĉk(xi)

(xj) ∨ IA(xj)], INΓβ
(p)(A)(xi) =

n∨
k=1

m∨
j=1

[(1− IÑβ
Ĉk(xi)

(xj)) ∧ IA(xj)] (1 ≤ i ≤ m),

F
NΓβ

(p)
(A)

(xi) =
n∧
k=1

m∧
j=1

[FÑβ
Ĉk(xi)

(xj) ∨ FA(xj)], FNΓβ
(p)(A)(xi) =

n∨
k=1

m∨
j=1

[TÑβ
Ĉk(xi)

(xj) ∧ FA(xj)] (1 ≤ i ≤ m).

If NΓβ

(p)
(A) 6= NΓβ

(p)(A), then A is called as a pessimistic multigranulation SVN CBRS.

Example 4.13. (Continued from Example 4.9) Based on Tables 3 and 4, the pessimistic multigranulation SVN cov-

ering upper approximation NΓβ

(p)
(A) and lower approximation NΓβ

(p)(A) of A defined in Definition 4.12 are calculated

as follows:

NΓβ

(p)
(A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.5, 0.3, 0.5〉, 〈x3, 0.7, 0.3, 0.4〉, 〈x4, 0.7, 0.3, 0.4〉, 〈x5, 0.6, 0.3, 0.5〉},

NΓβ
(p)(A) = {〈x1, 0.6, 0.5, 0.5〉, 〈x2, 0.4, 0.4, 0.6〉, 〈x3, 0.6, 0.4, 0.6〉, 〈x4, 0.3, 0.5, 0.6〉, 〈x5, 0.6, 0.4, 0.5〉}.
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Inspired by Proposition 4.10, the pessimistic multigranulation SVN covering approximation operators in Defini-
tion 4.12 can be represented by SVN covering approximation operators in Definition 4.1.

Proposition 4.14. Let U = {x1, x2, · · · , xm} be a universe and (U,Γβ) be a n-SVN β-covering approximation space

with Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. Then for each A ∈ SV N(U), NΓβ

(p)
(A) =

n⋃
k=1

Ck(A) and NΓβ
(p)(A) =

n⋂
k=1

Ck(A).

Proof. By Definitions 4.1 and 4.12, it is straightforward.

Some basic properties of the pessimistic multigranulation SVN covering approximation operators are given in the
following proposition.

Proposition 4.15. Let U = {x1, x2, · · · , xm} be a universe and (U,Γβ) be a n-SVN β-covering approximation space

with Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. Then the pessimistic multigranulation SVN covering approximation operators in Defini-
tion 4.12 satisfy the following properties: for all A,B ∈ SV N(U),

(1) NΓβ

(p)
(A′) = (NΓβ

(p)(A))′, NΓβ
(p)(A′) = (NΓβ

(p)
(A))′;

(2) If A ⊆ B, then NΓβ

(p)
(A) ⊆ NΓβ

(p)
(B), NΓβ

(p)(A) ⊆ Γβ
(p)(B);

(3) NΓβ

(p)
(A

⋃
B) = NΓβ

(p)
(A)

⋃
NΓβ

(p)
(B), NΓβ

(p)(A
⋂
B) = NΓβ

(p)(A)
⋂

NΓβ
(p)(B);

(4) NΓβ

(p)
(A

⋂
B) ⊆ NΓβ

(p)
(A)

⋂
NΓβ

(p)
(B), NΓβ

(p)(A
⋃
B) ⊇ NΓβ

(p)(A)
⋃

NΓβ
(p)(B).

Proof. By Propositions 4.3 and 4.14, it is straightforward.

For these three multigranulation SVN covering upper approximation operators, we find that the philosophical
multigranulation SVN covering upper approximation operator and the optimistic multigranulation SVN covering upper
approximation operator are same.

Proposition 4.16. Let U = {x1, x2, · · · , xm} be a universe and (U,Γβ) be a n-SVN β-covering approximation space

with Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. Then for each A ∈ SV N(U), NΓβ (A) = NΓβ

(o)
(A).

Proof. For any xi ∈ U ,

TNΓβ
(A)(xi) =

m∨
j=1

[TÑΓβ(xi)
(xj) ∧ TA(xj)] =

m∨
j=1

[(
n∧
k=1

TÑβ
Ĉk(xi)

(xj)) ∧ TA(xj)]

=
m∨
j=1

[
n∧
k=1

(TÑβ
Ĉk(xi)

(xj) ∧ TA(xj))] =
m∨
j=1

n∧
k=1

[TÑβ
Ĉk(xi)

(xj) ∧ TA(xj)]

=
n∧
k=1

m∨
j=1

[TÑβ
Ĉk(xi)

(xj) ∧ TA(xj)] = T
NΓβ

(o)
(A)

(xi),

INΓβ
(A)(xi) =

m∧
j=1

[IÑΓβ(xi)
(xj) ∨ IA(xj)] =

m∧
j=1

[(
n∨
k=1

IÑβ
Ĉk(xi)

(xj)) ∨ IA(xj)]

=
m∧
j=1

n∨
k=1

[IÑβ
Ĉk(xi)

(xj) ∨ IA(xj)] =
n∨
k=1

m∧
j=1

[IÑβ
Ĉk(xi)

(xj) ∨ IA(xj)] = I
NΓβ

(o)
(A)

(xi),

FNΓβ
(A)(xi) =

m∧
j=1

[FÑΓβ(xi)
(xj) ∨ FA(xj)] =

m∧
j=1

[(
n∨
k=1

FÑβ
Ĉk(xi)

(xj)) ∨ FA(xj)]

=
m∧
j=1

n∨
k=1

[FÑβ
Ĉk(xi)

(xj) ∨ FA(xj)] =
n∨
k=1

m∧
j=1

[FÑβ
Ĉk(xi)

(xj) ∨ FA(xj)] = F
NΓβ

(o)
(A)

(xi).

According to Propositions 4.6, 4.10, 4.14 and 4.16, we can show all relationships among SVN covering approximation
operators in Figure 1. It shows that multigranulation SVN CBRS models are extended from a SVN CBRS model after
generalizing a SVN β-covering approximation space to a multigranulation SVN β-covering approximation space.
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Figure 1: The relationships among SVN covering approximation operators.

5 Conditions for different n-SVN β-coverings produce the same multi-
granulation SVN covering approximation operators

There are three pairs of multigranulation SVN covering approximation operators in Section 4. In this section, we
present some conditions under which different n-SVN β-coverings can induce the same multigranulation SVN covering
approximation of any SVN subset. Because multigranulation SVN CBRS models are presented based on SVN CBRS
model, we find conditions under which different SVN β-coverings can induce the same SVN covering approximation
firstly. Then these conditions are generalized to the statement of multigranulation SVN covering approximation of any
SVN subset.

Proposition 5.1. Let Ĉ1, Ĉ2 be two SVN β-coverings of U . If Ñβ
Ĉ1(x)

= Ñβ
Ĉ2(x)

for any x ∈ U , then

C1(A) = C2(A) and C1(A) = C2(A) for any A ∈ SV N(U).

Proof. According to Definition 4.1, it is straightforward.

Inspired by Proposition 5.1, we generalize the notion of SVN β-neighborhood to SVN β-neighborhood system.

Definition 5.2. Let Ĉ be a SVN β-covering of U and Ĉ = {C1, C2, . . . , Cl}. For each x ∈ U , the SVN β-neighborhood

system N̂
β

Ĉ(x) of x about Ĉ can be defined as:

N̂
β

Ĉ(x) = {Ci ∈ Ĉ : Ci(x) ≥ β}.

According to Definition 2.3, we know Ñβ
Ĉ(x)

= ∩N̂
β

Ĉ(x) for each x ∈ U . Hence, another condition can be shown as

follows.

Proposition 5.3. Let Ĉ1, Ĉ2 be two SVN β-coverings of U . If N̂
β

Ĉ1
(x) = N̂

β

Ĉ2
(x) for any x ∈ U , then

C1(A) = C2(A) and C1(A) = C2(A) for any A ∈ SV N(U).

Proof. According to Proposition 5.1 and Definition 5.2, it is straightforward.

Let Ĉ1, Ĉ2 be two SVN β-coverings of U . If Ñ
β

Ĉ1
(x) = Ñ

β

Ĉ2
(x) for each x ∈ U , then Ĉ1 is not necessarily equal to

Ĉ2. The following example is presented to illustrate it.
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Example 5.4. (Continued from Example 3.3) Suppose Ĉ3 = Ĉ1 ∪ {C15}, where C15 = (0.2,0.7,0.5)
x1

+ (0.7,0.4,0.8)
x2

+
(0.3,0.7,0.8)

x3
+ (0.6,0.8,0.9)

x4
+ (0.4,0.9,1)

x5
. Then we have

N̂
β

Ĉ1
(x1) = {C11, C12}, N̂

β

Ĉ1
(x2) = {C11, C14}, N̂

β

Ĉ1
(x3) = {C12, C14}, N̂

β

Ĉ1
(x4) = {C11}, N̂

β

Ĉ1
(x5) = {C12, C13, C14},

N̂
β

Ĉ3
(x1) = {C11, C12}, N̂

β

Ĉ3
(x2) = {C11, C14}, N̂

β

Ĉ3
(x3) = {C12, C14}, N̂

β

Ĉ3
(x4) = {C11}, N̂

β

Ĉ3
(x5) = {C12, C13, C14}.

Hence, N̂
β

Ĉ1
(xi) = N̂

β

Ĉ3
(xi) for any i ∈ {1, 2, 3, 4, 5}, but Ĉ1 6= Ĉ3.

Inspired by Example 5.4, we shall consider under what conditions two SVN β-coverings can induce the same β-
neighborhood system for each element in the universe.

Definition 5.5. Let Ĉ be a SVN β-covering of U and C ∈ Ĉ. We call C as a SVN β-relevant element of Ĉ, if there
exists x ∈ U such that C(x) ≥ β; otherwise, we call C as a SVN β-irrelevant element of Ĉ. If all elements in Ĉ are

SVN β-relevant elements, then Ĉ is SVN β-relevant; otherwise, Ĉ is SVN β-irrelevant.

Example 5.6. (Continued from Example 5.4) Let β = 〈0.6, 0.3, 0.7〉. Since C15 is a SVN β-irrelevant element of Ĉ3

and C1j (j ∈ {1, 2, 3, 4}) are SVN β-relevant elements of Ĉ3, Ĉ3 is SVN β-irrelevant and Ĉ1 is SVN β-relevant.

Then two properties of SVN β-irrelevant elements are given in the following two propositions.

Proposition 5.7. Let Ĉ be a SVN β-covering of U and C ∈ Ĉ. If C is a SVN β-irrelevant element of Ĉ, then Ĉ−{C}
is still a SVN β-covering of U .

Proof. By Definition 5.5, it is straightforward.

Proposition 5.8. Let Ĉ be a SVN β-covering of U , C be a SVN β-irrelevant element of Ĉ and C1 ∈ Ĉ− {C}. Then

C1 is a SVN β-irrelevant element of Ĉ if and only if C1 is a SVN β-irrelevant element of Ĉ− {C}.

Proof. By Definition 5.5 and Proposition 5.8, it is straightforward.

After deleting all SVN β-irrelevant elements of a SVN β-covering, we call the new SVN β-covering as SVN β-base.

Definition 5.9. Let Ĉ be a SVN β-covering of U and B̂ ⊆ Ĉ. If Ĉ− B̂ is the family of all SVN β-irrelevant elements
of Ĉ, then we call B̂ as the SVN β-base of Ĉ, which is denoted by Λβ(Ĉ).

A SVN β-covering and its SVN β-base have the same SVN β-neighborhood system for any x ∈ U .

Proposition 5.10. Let Ĉ be a SVN β-covering of U . For any x ∈ U , N̂
β

Ĉ(x) = N̂
β

Λβ(Ĉ)(x).

Proof. It is straightforward.

According to Propositions 5.3 and 5.10, another condition under which different SVN β-coverings can induce the
same SVN covering approximation is presented.

Proposition 5.11. Let Ĉ1, Ĉ2 be two SVN β-coverings of U . If Λβ(Ĉ1) = Λβ(Ĉ2), then

C1(A) = C2(A) and C1(A) = C2(A) for any A ∈ SV N(U).

Proof. According to Proposition 5.10, we have

Λβ(Ĉ1) = Λβ(Ĉ2)⇒ N̂
β

Λβ(Ĉ1)
(x) = N̂

β

Λβ(Ĉ2)
(x)⇒ N̂

β

Ĉ1
(x) = N̂

β

Ĉ2
(x) for any x ∈ U .

Then by Proposition 5.3, we know C1(A) = C2(A) and C1(A) = C2(A) for any A ∈ SV N(U).

To find conditions under which different SVN β-coverings can induce the same multigranulation SVN covering
approximation, these above conditions are generalized. Let (U,Γβ) be a n-SVN β-covering approximation space with

Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}. Then we denote ÑΓβ (x) and ÑΛ(Γβ)(x) by:

ÑΓβ (x) = {Ñβ
Ĉi(x)

: 1 ≤ i ≤ n} and ÑΛ(Γβ)(x) = {Ñβ
Λβ(Ĉi)(x)

: 1 ≤ i ≤ n}.
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Proposition 5.12. Let Γ1
β and Γ2

β be two n-SVN β-coverings of U . If ÑΓ1
β
(x) = ÑΓ2

β
(x) for any x ∈ U , then for any

A ∈ SV N(U),
NΓ1

β
(A) = NΓ2

β
(A), NΓ1

β
(A) = NΓ2

β
(A),

NΓ1
β

(o)
(A) = NΓ2

β

(o)
(A), NΓ1

β

(o)(A) = NΓ2
β

(o)(A),

NΓ1
β

(p)
(A) = NΓ2

β

(p)
(A), NΓ1

β

(p)(A) = NΓ2
β

(p)(A).

Proof. According to Propositions 4.10, 4.14 and 5.1, it is straightforward.

Proposition 5.13. Let Γ1
β and Γ2

β be two n-SVN β-coverings of U . If ÑΛ(Γ1
β)(x) = ÑΛ(Γ2

β)(x) for any x ∈ U , then

NΓ1
β
(A) = NΓ2

β
(A), NΓ1

β
(A) = NΓ2

β
(A),

NΓ1
β

(o)
(A) = NΓ2

β

(o)
(A), NΓ1

β

(o)(A) = NΓ2
β

(o)(A),

NΓ1
β

(p)
(A) = NΓ2

β

(p)
(A), NΓ1

β

(p)(A) = NΓ2
β

(p)(A).

Proof. According to Propositions 4.10, 4.14 and 5.11, it is straightforward.

6 Applications to the problem of MCGDM

In this section, we present three approaches to the problem of MCGDM under the (philosophical, optimistic and
pessimistic) multigranulation SVN CBRS models which are presented in Section 4. Then, a comparative study with
other methods is shown.

6.1 The Problem of MCGDM

In the paper production process, there are many on-line detection systems for paper defects. But when the printers
buy the paper, they have to judge whether the paper has any paper defects and whether these paper defects affect the
printing. At this time, it can only be detected manually. In this subsection, we will introduce this issue.

Let U = {xi : i = 1, 2, · · · ,m} be the set of some papers and V = {yj |j = 1, 2, · · · , l} be the l main symptoms
(such as spot, steak and so on) for a paper defect B. Suppose that the printer X invites experts Rk (k = 1, 2, · · · , n)
to evaluate every paper xi (i = 1, 2, · · · ,m).

Suppose that every expert Rk (k = 1, 2, · · · , n) believes the paper xi ∈ U (i = 1, 2, · · · ,m) has a symptom value
Ckj (j = 1, 2, · · · , l), denoted by Ckj(xi) = 〈TCkj (xi), ICkj (xi, FCkj (xi)〉, where TCkj (xi) ∈ [0, 1] is the degree that
expert Rk confirms paper xi has symptom yj , ICkj (xi) ∈ [0, 1] is the degree that expert Rk is not sure paper xi
has symptom yj , FCkj (xi) ∈ [0, 1] is the degree that expert Rk confirms paper xi does not have symptom yj , and
TCkj (xi) + ICkj (xi) + FCkj (xi) ≤ 3.

Let β = 〈a, b, c〉 be the critical value. If for any paper xi ∈ U , there exists at least one symptom yj ∈ V such

that the symptom value Ckj for paper xi is not less than β, respectively, then Γβ = {Ĉ1, Ĉ2, · · · , Ĉn}, where Ĉk =
{Ck1, Ck2, · · · , Ckl}, for all 1 ≤ k ≤ n, is a n-SVN β-covering of U for some SVN value β.

If d is a possible degree, e is an indeterminacy degree and f is an impossible degree of the paper defect B of every
paper xi ∈ U that is diagnosed by the printer X, denoted by A(xk) = 〈d, e, f〉, then the decision maker (the printer X)
for the MCGDM problem needs to know how to evaluate whether or not the papers xi ∈ U has the paper defect B.

Remark 6.1. Let Γ = {Ĉ1, Ĉ2, · · · , Ĉn}, where Ĉk ⊆ SV N(U). It is an important problem to determine the critical
value β such that Γ is a n-SVN β-covering of U . We can use the following method to find the range of β. Firstly, we

suppose a SVN number α =<
|Γ|∧
k=1

(
|Ĉk|∧
j=1

|U |∨
i=1

TCkj (xi)),
|Γ|∨
k=1

(
|Ĉk|∨
j=1

|U |∧
i=1

ICkj (xi)),
|Γ|∨
k=1

(
|Ĉk|∨
j=1

|U |∧
i=1

FCkj (xi)) >. Secondly, if Γ is a n-

SVN α-covering of U , then Γ is a n-SVN β-covering of U for any β (β ≤ α). Finally, if Γ is not a n-SVN α-covering of
U , then we should change some numbers of α with the minimal step, denoted by α1, such that it is a n-SVN α1-covering
of U . Hence, Γ is a n-SVN β-covering of U for any β (β ≤ α1). In Example 3.3, we suppose α =< 0.6, 0.2, 0.4 >
according to this method. But Γ is not a n-SVN α-covering of U . After changing α as α1 =< 0.6, 0.3, 0.5 > with the
step 0.1, we find Γ is a n-SVN α1-covering of U . Hence, for any β ≤ α1, Γ is a n-SVN β-covering of U .
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6.2 MCGDM Algorithms

In this subsection, we present the Algorithm 1 of MCGDM under the framework of the philosophical multigranulation
SVN CBRS model.

Algorithm 1 The MCGDM algorithm based on the philosophical multigranulation SVN CBRS model.

Input: SVN decision information system (U, β,Γβ , A).
Output: The score ordering for all alternatives.

1: Compute SVN β-neighborhood Ñβ
Ĉk(x)

of x about Ĉ,

for all x ∈ U and k = 1, 2, · · · , n, according to Defini-
tion 2.3;

2: Compute SVN β-neighborhood ÑΓβ(x) of x about Γβ ,
for any x ∈ U , according to Definition 3.2;

3: Compute the philosophical multigranulation SVN cov-
ering upper approximation NΓβ (A) and lower approx-

imation NΓβ (A) of A, according to Definition 4.4;

4: Compute RA = NΓβ (A)⊕NΓβ (A) according to (6) in

the basic operations on SV N(U);
5: For each alternative x, compute

s(x) =
TR̃A

(x)√
(TR̃A

(x))2+(IR̃A
(x))2+(FR̃A

(x))2
;

6: Rank all s(x) and select the paper which is more likely
to have the paper defect B.

In Step 5, s(x) is the cosine similarity measure between R̃A(x) and the ideal solution (1, 0, 0), which was proposed
by Ye [28]. In Step 6, we rank all s(x) by the principle of numerical size. Inspired by Algorithm 1, we present the
Algorithm 2 of MCGDM under the framework of the optimistic multigranulation SVN CBRS model.

Algorithm 2 The MCGDM algorithm based on the optimistic multigranulation SVN CBRS model.

Input: SVN decision information system (U, β,Γβ , A).
Output: The score ordering for all alternatives.

1: Compute SVN β-neighborhood Ñβ
Ĉk(x)

of x about Ĉ,

for all x ∈ U and k = 1, 2, · · · , n, according to Defini-
tion 2.3;

2: Compute the optimistic multigranulation SVN cover-

ing upper approximation NΓβ

(o)
(A) and lower approx-

imation NΓβ
(o)(A) of A, according to Definition 4.8;

3: Compute R
(o)

A = NΓβ

(o)
(A) ⊕ NΓβ

(o)(A) according to

(6) in the basic operations on SV N(U);
4: For each alternative x, compute

s(x) =
T
R̃

(o)
A

(x)√
(T
R̃

(o)
A

(x))2+(I
R̃

(o)
A

(x))2+(F
R̃

(o)
A

(x))2
;

5: Rank all s(x) and select the paper which is more likely
to have the paper defect B.

Algorithm 2 is presented based on the optimistic multigranulation SVN CBRS model. If Steps 2, 3, 4 in Algorithm 2

are replaced by the pessimistic multigranulation SVN covering upper approximation NΓβ

(p)
(A) and lower approximation

NΓβ
(p)(A), then Algorithm 3 is presented.

Algorithm 3 The MCGDM algorithm based on the pessimistic multigranulation SVN CBRS model.

Input: SVN decision information system (U, β,Γβ , A).
Output: The score ordering for all alternatives.

1: Compute SVN β-neighborhood Ñβ
Ĉk(x)

of x about Ĉ,

for all x ∈ U and k = 1, 2, · · · , n, according to Defini-
tion 2.3;

2: Compute the pessimistic multigranulation SVN cover-

ing upper approximation NΓβ

(p)
(A) and lower approx-

imation NΓβ
(p)(A) of A, according to Definition 4.12;

3: Compute R
(p)

A = NΓβ

(p)
(A) ⊕NΓβ

(p)(A) according to

(6) in the basic operations on SV N(U);
4: For each alternative x, compute

s(x) =
T
R̃

(p)
A

(x)√
(T
R̃

(p)
A

(x))2+(I
R̃

(p)
A

(x))2+(F
R̃

(p)
A

(x))2
;

5: Rank all s(x) and select the paper which is more likely
to have the paper defect B.
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6.3 An applied example

Example 6.2. Assume that U = {x1, x2, x3, x4, x5} is a set of papers. By the paper defect’s symptoms, we write
V = {y1, y2, y3, y4} to be four main symptoms (spot, steak, crater and fracture) for a paper defect B. Suppose that the
printer X invites two experts Rk (k = 1, 2) to evaluate every paper xi (i = 1, 2, · · · , 5) as in Tables 1 and 2.

Let β = 〈0.6, 0.3, 0.7〉 be the critical value. Then, Γβ = {Ĉ1, Ĉ2}, where Ĉk = {Ck1, Ck2, Ck3, Ck4}, for all k = 1, 2,

is a 2-SVN β-coverings of U . Assume that the printer X diagnosed the value A = (0.6,0.3,0.5)
x1

+ (0.4,0.5,0.1)
x2

+ (0.3,0.2,0.6)
x3

+
(0.5,0.3,0.4)

x4
+ (0.7,0.2,0.3)

x5
of the paper defect B of every paper. Algorithm 1 is first used for Example 6.2.

Step 1: All Ñβ
Ĉk(xi)

(k = 1, 2) for any 1 ≤ i ≤ 5 are shown in Tables 3 and 4.

Step 2: All ÑΓβ(xi) for any 1 ≤ i ≤ 5 are shown in Table 5.
Step 3:

NΓβ (A) = {〈x1, 0.6, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.6〉, 〈x3, 0.7, 0.3, 0.5〉, 〈x4, 0.6, 0.3, 0.5〉, 〈x5, 0.6, 0.3, 0.6〉},
NΓβ (A) = {〈x1, 0.7, 0.4, 0.5〉, 〈x2, 0.4, 0.4, 0.4〉, 〈x3, 0.6, 0.4, 0.6〉, 〈x4, 0.6, 0.5, 0.5〉, 〈x5, 0.7, 0.4, 0.5〉}.

Step 4:

R̃A = NΓβ (A)⊕NΓβ (A)

= {〈x1, 0.88, 0.12, 0.25〉, 〈x2, 0.70, 0.16, 0.24〉, 〈x3, 0.88, 0.12, 0.30〉, 〈x4, 0.84, 0.15, 0.25〉, 〈x5, 0.88, 0.12, 0.30〉}.

Step 5: We can obtain s(xi) (i = 1, 2, · · · , 5) as follows:

s(x1) = 0.954, s(x2) = 0.925, s(x3) = 0.939, s(x4) = 0.945, s(x5) = 0.939.

Step 6: According to the order of s(xi) (i = 1, 2, · · · , 5), we have:

x2 < x3 ≈ x5 < x4 < x1.

Therefore, the printer X diagnoses that the paper x1 is more likely to have the paper defect B.
Then, Algorithm 2 is used for Example 6.2. We can obtain s(xi) (i = 1, 2, · · · , 5) by Algorithm 2.

s(x
1
) = 0.950, s(x

2
) = 0.925, s(x

3
) = 0.939, s(x

4
)0.945, s(x

5
) = 0.939.

According to the order of s(xi) (i = 1, 2, · · · , 5), we have:

x2 < x3 ≈ x5 < x4 < x1.

Therefore, the printer X diagnoses that the paper x1 is more likely to have the paper defect B.
Or Algorithm 3 is also used for Example 6.2. We can obtain s(xi) (i = 1, 2, · · · , 5) by Algorithm 3.

s(x
1
) = 0.945, s(x

2
) = 0.908, s(x

3
) = 0.957, s(x

4
)0.941, s(x

5
) = 0.950.

According to the order of s(xi) (i = 1, 2, · · · , 5), we have:

x2 < x4 < x1 < x5 < x3.

Therefore, the printer X diagnoses that the paper x3 is more likely to have the paper defect B.

6.4 A comparison analysis

In order to validate the feasibility of the proposed decision making method, a comparative study was conducted with
other methods. These methods which were introduced in Liu [10] and Li et al. [9] are compared with the proposed
approach using SVN information system.

Liu’s method can be used for Example 6.2. Tables 1 and 2 are SVN decision matrices D1 and D2, respectively. We
suppose the weight vector ω = (0.3, 0, 2, 0.4, 0.1) and δ = (0.6, 0.4). We get

s(n1) = 0.768, s(n2) = 0.565, s(n3) = 0.707, s(n4) = 0.623, s(n5) = 0.679.

According to the cosine similarity degrees s(ni) (i = 1, 2, · · · , 5), we obtain x2 < x4 < x5 < x3 < x1. Hence, paper x1

is more likely to have the paper defect B.
Li’s method can be used for Example 6.2. Tables 1 and 2 are SVN decision matrices D1 and D2, respectively. We

suppose the weight vectors ω = (0.3, 0, 2, 0.4, 0.1), δ = (0.6, 0.4) and p = q = 1. We get
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s(n1) = 0.054, s(n2) = 0.017, s(n3) = 0.040, s(n4) = 0.016, s(n5) = 0.031.

According to the cosine similarity degrees s(ni) (i = 1, 2, · · · , 5), we obtain x4 < x2 < x5 < x3 < x1. Therefore, paper
x1 is more likely to have the paper defect B.

All results are shown in Table 6 and Figure 2. It can be seen from Table 6 and Figure 2 that the decision making
result of our proposed methods (Algorithms 1 and 2), Lius method and Li’s method is consistent, that is, x1 is most
sick with the paper defect B. This phenomenon illustrates the effectiveness of our proposed method. At the same time,
we can see that graphs of our methods (Algorithms 1, 2 and 3) are above the other methods from Figure 2. The graphs
for Algorithms 1 and 2 are very close.

Table 6: The results utilizing the different methods of Example 6.2

Methods The final ranking The paper is most sick with the paper defect B

Liu [10] x2 < x4 < x5 < x3 < x1 x1

Li et al. [9] x4 < x2 < x5 < x3 < x1 x1

Algorithm 1 x2 < x3 ≈ x5 < x4 < x1 x1

Algorithm 2 x2 < x3 ≈ x5 < x4 < x1 x1

Algorithm 3 x2 < x4 < x1 < x5 < x3 x3

x1

0.2

0.4

0.6

0.8

1.0

x2 x3 x4 x5 U

y
Liu Algorithm 1Li et al. Algorithm 3Algorithm 2

Figure 2: The chat of different values of papers in utilizing different methods in Example 6.2.

Liu [10] and Li et al. [9] presented the methods by SVN theory. In their methods, the results will be different by
different ω and δ. In Example 6.2, we set w = (0.3, 0.2, 0.4, 0.1) and δ = (0.6, 0.4). Then, Liu’s method [10] is based on
the Hammer SVN number aggregation (HSVNNWA) operator. Using Liu’s method, we obtain x2 < x4 < x5 < x3 < x1.
That is to say, paper x1 is more likely to be sick with the paper defect B. The method developed by Li et al. [9] is
based on the SVN number improved generalized weighted Heronian mean (NNIGWHM) operator. Then, we find that
paper x1 is more likely to be sick with the paper defect B by using Li’s method.

We use three types of (philosophical, optimistic and pessimistic) multigranulation SVN CBRS models to MCGDM
problems, respectively. Hence, there are three methods for MCGDM problems, which used corresponding multigran-
ulation SVN covering approximation operators. In Algorithms 1, 2 and 3, the cosine similarity measure is the main
operation. The contributions of our proposed methods are summarized as follows:

(1) This is the first time to use multigranulation SVN covering rough sets in the MCGDM problems. According to
Algorithm 3, we obtain that paper x3 is more likely to be sick with the paper defect B. This is different from
other methods. Maybe this is our new choice. Hence, our proposed methods complement the existing methods.
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(2) There are two uncertainties which are w and δ in Liu’s method, and four uncertainties which are w, δ, p and q.
But there is only one uncertainty β in our methods. In many cases, the smaller the number of uncertainties, the
more accurate the decision.

(3) It is a new viewpoint to use multigranulation SVN covering rough sets in paper defect diagnosis.

By the analysis of our three algorithms, we can readily verify that the time complexity of them are bothO(|U ||Γβ |2|V |).
Hence, it is up to the user to select a suitable decision-making method from three methods for the MCGDM problem.
Moreover, the obtained results may be different when the user select different methods. In order to achieve the most
accurate results, the further diagnosis is necessary in combination with other hybrid methods.

7 Conclusions

This paper is a bridge linking CBRSs, SVN sets and multigranulation rough sets. By introducing the definition of SVN
β-covering approximation space, we present a new type of SVN CBRS model. Then the concept of n-SVN β-covering
approximation space is presented, and three types of multigranulation SVN CBRS models under this new approximation
space are proposed. Moreover, the (paper defect diagnosis) problem of MCGDM is managed under the multigranulation
SVN CBRS models. The main conclusions of this paper are listed as follows:

1. Three types of (philosophical, optimistic and pessimistic) multigranulation SVN CBRS models are firstly pre-
sented.

2. Some conditions under which different n-SVN β-coverings induced the same (philosophical, optimistic and pes-
simistic) multigranulation SVN covering approximation operators are presented. By these conditions, one can
recognize the new rough set models further.

3. We propose three novel methodologies to the MCGDM problem about paper defect diagnosis under (philosophical,
optimistic and pessimistic) multigranulation SVN CBRS models. The comparison analysis is very interesting to
show the difference between the proposed methods and other methods.

In the future, the following research topics will be deserved. We will find a way to select a suitable decision-making
method from different methods. Some issues in SVN covering information systems will be solved, such as reductions
and the method of data compression. The relationship between SVN covering information systems and SVN covering
approximation spaces will be presented. The combination of some algebraic structures [36, 35] with the main content
of this paper will be investigated.
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