
symmetryS S

Article

Multi-Attribute Decision Making Method Based on
Aggregated Neutrosophic Set

Wen Jiang * , Zihan Zhang and Xinyang Deng

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
zhangzihanwpu@126.com (Z.Z.); xinyang.deng@nwpu.edu.cn (X.D.)
* Correspondence: jiangwen@nwpu.edu.cn; Tel.: +86-29-8843-1267

Received: 30 December 2018; Accepted: 17 February 2019; Published: 20 February 2019
����������
�������

Abstract: Multi-attribute decision-making refers to the decision-making problem of selecting the
optimal alternative or sorting the scheme when considering multiple attributes, which is widely used
in engineering design, economy, management and military, etc. But in real application, the attribute
information of many objects is often inaccurate or uncertain, so it is very important for us to find a
useful and efficient method to solve the problem. Neutrosophic set is proposed from philosophical
point of view to handle inaccurate information efficiently, and a single-valued neutrosophic set
(SVNS) is a special case of neutrosophic set, which is widely used in actual application fields. In this
paper, a new method based on single-valued neutrosophic sets aggregation to solve multi-attribute
decision making problem is proposed. Firstly, the neutrosophic decision matrix is obtained by expert
assessment, a score function of single-valued neutrosophic sets (SVNSs) is defined to obtain the
positive ideal solution (PIS) and the negative ideal solution (NIS). Then all alternatives are aggregated
based on TOPSIS method to make decision. Finally numerical examples are given to verify the
feasibility and rationality of the method.
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1. Introduction

With the rapid development of human society, the social environment has become more and more
complex, which makes us have difficulties in making actual decision [1–9]. Therefore, in recent years,
more and more attention has been paid to multi-attribute decision making [10–16]. In the real world, the
attribute information of many objects is often inaccurate or uncertain [17–23], which makes the decision
progress difficult. In view of this problem, Zadeh put forward the concept of fuzzy set (FS) in 1965 [24],
which made up for the lack of flexibility of classical set theory to some extent. But the traditional FS can
not describe the decision information well in some conditions, Atanassov proposed the intuitionistic
fuzzy set (IFS) [25] on the basis of FS. An IFS is given by A = {〈x, µA(x), νA(x)〉}where µA(x), νA(x) ∈
[0, 1] denote the degree of membership and non-membership of x to A respectively. For instance, A is
an IFS in X = {1, 2, 3}, A = (0.6, 0.3)/1 + (0.7, 0.1)/2 + (0.5, 0.4)/3. Because IFSs take into account
the information of membership, non-membership and hesitation simultaneously, compared with FSs,
IFSs can describe the fuzzy nature [26–29] of the objective world more precisely. IFS attracted attention
of many scholars, rich achievements were made in the study of intuitionistic fuzzy sets [30–33].
Torra [34] proposed another generalized form of the fuzzy set, named the hesitant fuzzy set (HFS) in
2009. HFS allowed the membership of each element in the domain to belong to a certain set which
was combined by a number of different values. The element of the HFS is named as the hesitant
fuzzy element (HFE) by Xia et al. [35], the mathematical symbol of HFS is expressed by Xia as
A = {〈x, hA(x)〉|x ∈ X} where hA(x) is set of some values in [0, 1], denoting the possible membership
degrees of element x ∈ X to the set A. hA(x) is called a HFE. For example, B is a HFS in X = {1, 2, 3}
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and B = {0.6, 07, 0.8}/1 + {0.2}/2 + {0.3, 0.9}/3. The addition and multiplication operations on the
hesitant fuzzy element are also given by Xia. The hesitant intuitionistic fuzzy sets (HIFSs) is proposed
by Zhou et al. [36]. Zhou proposed that the HIFSs here were the generalization of the IFSs. The group
decision-making method under the condition of the uncertain intuitionistic fuzzy priority relation
matrix and aggregation operator was also given by Zhou in that paper.

The IFS considers both the truth-membership TA(x) and the falsity membership FA(x) with
TA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x) + FA(x) ≤ 1. For IFSs, the indeterminacy is 1− TA(x)− FA(x) by
default. The IFS can handle incomplete information but can hardly process inaccurate information.

In order to better describe uncertain information, Smarandache introduced Neutrosophy in
1995 [37,38]. Neutrosophy is a kind of philosophy which studies the nature, scope, and origin of
neutralities, as well as their joint parts with different ideational spectra [37]. Neutrosophic set (NS)
was also propose by Smarandache. NS is a very powerful tool which generalizes the concept of
the classic set, fuzzy set, interval-valued fuzzy set, IFS, interval-valued intuitionistic fuzzy set [39],
dialetheist set, paraconsistent set, and tautological set [37]. A NS A is defined on a universe of
discourse u. An element x in set A is expressed as x = x(t, i, f ) ∈ A, where t is a truth-membership
function, i is an indeterminacy-membership function, and f is a falsity-membership function, t, i, and
f are the real standard or non-standard subsets of ]0−, 1+[. For a NS, the indeterminacy is denoted
explicitly in contrast of that of IFSs. The indeterminacy can be divided into more parts so as to better
express the inaccurate information [37]. However neutrosophic sets are hard to use in actual occasions.
So Wang et al. [40] proposed the concept of single-valued neutrosophic sets (SVNSs). For instance,
C = (0.7, 0.5, 0.2) is a SVNS, in which the truth-membership t = 0.7, the indeterminacy i = 0.5 and
the falsity-membership f = 0.2. Because SVNS are easy to express the inaccurate information, SVNSs
are widely used in actual situations, such as in medicine [41], image processing [42], multi-criteria
decision-making [43–47], fault diagnosis [41,48,49], etc.

Neutrosophic set has many advantages in handling uncertain information. A lot of researches are
conducted on it. In [50], SVNS is used to express the decision information, weighted average operator,
TOPSIS method is adopted to propose the multi-criteria decision making method. Peng introduced
relevant concepts about the interval neutrosophic set [51], and the multi-criteria decision making
problem is also analyzed by combining the ranking method. Jiang proposed a new method to measure
the similarity between SVNSs using Dempster-Shafer evidence theory [52]. Ye proposed a method
to make decision based on the weighted correlation coefficient of SVNSs in [44], and proposed
another method to make decision in multi-criteria environment based on single valued neutrosophic
cross-entropy in [45]. Ye utilized cross entropy between the ideal solution and an alternative to get
the rank of all alternatives according to the values of cross entropy and to choose the most suitable
one(s). A decision method for the interval neutrosophic set is proposed based on cross entropy
by Tian et al. [53]. Deli applied bipolar neutrosophic sets to multi-criteria decision situations [54].
The TOPSIS method can be effectively combined with SVNSs to accomplish multi-attribute decision
making problems. By the way, the key point of TOPSIS is that the ideal alternative should have the
shortest distance from the PIS and the farthest distance from the NIS. The standard TOPSIS to new
multi-attribute decision-making called simplified-TOPSIS is proposed by Elhassouny [55], which
simplifies the process of the classical TOPSIS and get the same result.

This paper mainly introduces a new multi-attribute decision-making method based on SVNSs.
First, based on the given decision matrix, use score function to get the PIS and the NIS. Second,
aggregate all alternatives to get aggregated neutrosophic set. Last, use TOPSIS method to rank all
alternatives to make decision.

The paper is organized as follow. In Section 2, we present some preliminaries. Section 3 will focus
on the proposed multi-criteria decision method based on aggregated neutrosophic set. Afterwards,
two illustrative examples are introduced in Section 4. In the final section, conclusions are drawn.
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2. Preliminaries

A brief review of some preliminaries will be given in the following part.

2.1. Neutrosophic Sets

Neutrosophic set is an efficient tool to deal with the uncertain information. In [37], Smarandache
gave the definitions about a NS as follow:

Definition 1. Y is a universal space of point (objects) with a generic element of Y denoted by y. A neutrosophic
set N ⊂ Y is consist of a truth-membership function TN(y), an indeterminacy-membership function IN(y) and
a falsity-membership function FN(y). TA(y), These three components are real standard or real nonstandard
subset of [0−, 1+]. So that all three components

TN(y)→ [0−, 1+]

IN(y)→ [0−, 1+]

FN(y)→ [0−, 1+]

TN(y), IN(y) and FN(y) are related as follow:

0− ≤ sup TN(y) + sup IN(y) + sup FN(y) ≤ 3+.

Definition 2. A neutrosophic set N has its’ complement which is characterized by Nc and is characterized as

Tc
N(y) = 1+ − TN(y)

Ic
N(y) = 1+ − IN(y)

Fc
N(y) = 1+ − FN(y)

for every y in Y.

2.2. SVNS

For NS is difficult to be used in practical occasions, Wang [40] proposed the concept of
single-valued neutrosophic sets (SVNSs), which can be easily used in actual situations. The definition
of SVNSs are introduced as follow:

Definition 3. Let Y be a space of points (objects) which generic elements in Y denoted by y. A SVNS
N is characterized by a truth-membership function TN , an indeterminacy-membership function IN , and a
falsity-membership function FN with TN , IN , FN ∈ [0, 1].

When Y is continuous, an SVNS N can be expressed as:

N =
∫

X
〈TN(y), IN(y), FN(y)〉|y, y ∈ Y. (1)

When Y is discrete, an SVNS N can be characterized as:

N = ∑
y
〈TN(y), IN(y), FN(y)〉|y, y ∈ Y (2)

For convenience, a SVNS is usually denoted by its’ simplified symbol N = 〈TN(Y), IN(Y), FN(Y)〉 for
all y ∈ Y.
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Definition 4. A SVNS N has its’ complement Nc which is characterized as

Tc
N(y) = FN(y)

Ic
N(y) = 1− IN(y)

Fc
N(y) = TN(y)

for all y in Y.

Definition 5. A SVNS N is contained in the other SVNS M, N ⊆ M, if and only if

TN(y) ≤ TM(y)

IN(y) ≥ IM(y)

FN(y) ≥ FM(y)

for all y in Y.

Definition 6. Two SVNSs N and M are equal, written as N = M, if and only if N ⊆ M and N ⊆ M.

2.3. Score Function

Definition 7. Assume A = (TA, IA, FA) be a single valued neutrosophic number, then the score function [56]
is defined as

S(A) =
TA − IA − FA

3
. (3)

Score function is a very useful tool to illustrate which neutrosophic number is better. For example,
A1 = (0.5, 0.3, 0.4), A2 = (0.6, 0.4, 0.5), use the score function and get S(A1) = − 2

15 , S(A2) = − 1
6 ,

S(A1) > S(A2), this result is in line with intuition, in this case, A1 is better than A2.

2.4. Distance between Two Neutrosophic Sets

Assume that there two NSs, shows as follow:

M = 〈tM(xi), iM(xi), fM(xi)〉 i = 1, 2, . . . , n (4)

N = 〈tN(xi), iN(xi), fN(xi)〉 i = 1, 2, . . . , n (5)

Then the Hamming distance between M and N is defined as follow:

d1(M, N) =
n

∑
i=1
{|tM(xi)− tN(xi)|+ |iM(xi)− iN(xi)|+ | fM(xi)− fN(xi)|} (6)

the standard Hamming distance between M and N is defined as follow:

d2(M, N) =
1

3n

n

∑
i=1
{|tM(xi)− tN(xi)|+ |iM(xi)− iN(xi)|+ | fM(xi)− fN(xi)|} (7)

the Euclid distance between M and N is defined as follow:

d3(M, N) =

√
n

∑
i=1
{(tM(xi)− tN(xi))2 + (iM(xi)− iN(xi))2 + ( fM(xi)− fN(xi))2} (8)
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the standard Euclid distance between M and N is defined as follow:

d4(M, N) =

√
1

3n

n

∑
i=1
{(tM(xi)− tN(xi))2 + (iM(xi)− iN(xi))2 + ( fM(xi)− fN(xi))2} (9)

3. An Improved Multi-Criteria Decision Making Method

Multi-criteria decision making often faces complex environments. At present, multi-criteria
decision making methods mostly handle multiple attributes of an alternative separately for decision
making. Few studies try to aggregate all neutrosophic sets of one alternative before decision making to
simplify the decision progress. Based on the idea of information fusion, the NSs can be aggregated
before using TOPSIS method to make a decision. In this way, decision progress can be simplified.
A multi-attribute decision making method based on aggregated SVNSs is introduced in this part.

step1: Construct neutrosophic decision matrix.
The single-valued neutrosophic decision matrix is constructed based on expert assessments.

For instance, when an expert is asked the opinion of an alternative A1 with respect to a criterion C1,
the expert may say that possibility in which the alternative is good is 0.5 and false degree is 0.4 and the
expert is not sure is 0.2. For the NS, it can be expressed as d11 = 〈0.5, 0.2, 0.4〉.

Assume there are m alternatives and n criteria. The neutrosophic decision matrix D is expressed
as follow: 

d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dm1 dm2 . . . dmn


where dij = (Tij, Iij, Fij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, Tij, Iij, Fij are the truth-membership degree, the
indeterminacy-membership degree, the falsity-membership degree of alternative Ai with respect to
criterion j.

step2: Determine the PIS and the NIS.
In this step, score function mentioned above is utilized to get the PIS A∗ and the NIS A−∗.
Assume A∗ = (d∗1 , d∗2 , . . . , d∗n), among them S(d∗j ) = max

i
{S(dij)}, j = 1, 2, . . . , n, and A−∗ =

(d−∗1 , d−∗2 , . . . , d−∗n ) among them S(d−∗j ) = min
i
{S(dij)}, j = 1, 2, . . . , n, the score function can be used

to illustrate that how good or bad a neutrosophic set is. A simple example is given as follow:

Example 1. Assume there is a decision matrix which is obtained from expert assessments showing as follow:(0.4, 0.2, 0.3) (0.4, 0.2, 0.4) (0.5, 0.2, 0.2)
(0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.2, 0.2, 0.5)
(0.7, 0.1, 0.1) (0.5, 0.3, 0.3) (0.4, 0.3, 0.2)


Specifically, let us consider the neutrosophic set (0.4, 0.2, 0.3), T11 = 0.4, I11 = 0.2, F11 = 0.3,

use Equation (3) to obtain the score function as follows:

S(d11) =
0.4− 0.2− 0.3

3
= − 1

30

In this way, scores of all neutrosophic sets can be obtained, neutrosophic sets which have the highest or the lowest
scores will be choose to constitute the PIS(A∗) and the NIS(A−∗). For example, in the first column of the matrix:

S(d11) = −
1

30
, S(d21) =

1
10

, S(d31) =
1
6
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In this case, d31 and d11 are chosen to constitute the first column of A∗ and A−∗ respectively. A∗ and A−∗ can
be obtained as follow:

A∗ = ((0.7, 0.1, 0.1), (0.6, 0.1, 0.2), (0.5, 0.2, 0.2))

A−∗ = ((0.4, 0.2, 0.3), (0.4, 0.2, 0.4), (0.2, 0.2, 0.5))

step3: Aggregate the SVNSs.
In this step, all the attributes of a neutrosophic set are aggregated. Arithmetic average method

is used to combine neutrosophic set. Aa
j = (ta

j , ia
j , f a

j ) is the aggregated neutrosophic set, 1 ≤ j ≤ m,
where

ta
j =

tj1 + tj2 + . . . + tjn

n

ia
j =

ij1 + ij2 + . . . + ijn

n

f a
j =

f j1 + f j2 + . . . + f jn

n
n is the number of attributes.

This method is used to aggregate all the alternatives, the PIS and the NIS. So Aa
j = (ta

j , ia
j , f a

j ), 1 ≤
j ≤ m, A∗a = (t∗a, i∗a, f ∗a) and A−∗a = (t−∗a, i−∗a, f−∗a) are obtained.

step4: Multi-criteria decision making based on TOPSIS method
In this step, TOPSIS method is utilized to finish a multi-attribute neutrosophic decision making.

In step 3, the aggregated SVNSs, the aggregated PIS and NIS are obtained. Then the distance for each
aggregated SVNS between A∗a and between A−∗a can be calculated by Euclid distance Equation (8).
The distance between Aa

j and A∗a is calculated as follows:

D∗j =
√
(ta

j − t∗a)2 + (ia
j − i∗a)2 + ( f a

j − f ∗a)2 j = 1, 2, . . . , m (10)

The distance between Aa
j and A−∗a is got as follows:

D−∗j =
√
(ta

j − t−∗a)2 + (ia
j − i−∗a)2 + ( f a

j − f−∗a)2 j = 1, 2, . . . , m (11)

The relative closeness Tj based on TOPSIS is got as follows:

Tj =
D−∗j

(D−∗j + D∗j )
j = 1, 2, . . . , m (12)

Obviously, the bigger the value of Tj is, the farther the alternative is from the NIS, and the closer the
alternative is to the PIS, and vice versa. The ranked of all the alternatives is obtained in the descending
order of the value of Tj.

4. Illustrative Example

In this section, two examples are used to demonstrate the application of the proposed method.

Example 2. Let us consider the decision-making problem originated from [56]. There is an investment
company which wants to invest some money in a schools. There are four possible schools to invest the money:
{A1, A2, A3, A4}. The investment company is going to choose one school to invest with respect to the following
four criteria: {C1, C2, C3, C4}.

Step1: Experts evaluate all the four possible schools according to the four attributes. According to the
evaluation results, the following SVNS decision matrix is shown in Table 1:
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Table 1. Solution matrix for SVNS.

C1 C2 C3 C4

A1 (0.6, 0.3, 0.5) (0.5, 0.7, 0.6) (0.7, 0.6, 0.5) (0.5, 0.5, 0.6)
A2 (0.6, 0.4, 0.5) (0.4, 0.5, 0.6) (0.3, 0.5, 0.6) (0.4, 0.5, 0.6)
A3 (0.5, 0.6, 0.7) (0.7, 0.2, 0.8) (0.7, 0.6, 0.3) (0.4, 0.4, 0.5)
A4 (0.4, 0.3, 0.2) (0.5, 0.4, 0.3) (0.6, 0.7, 0.2) (0.4, 0.3, 0.2)

Step2: Then the score function is utilized to get A∗ and A−∗. The calculation results are expressed
in Table 2:

Table 2. Scores matrix for SVNS.

C1 C2 C3 C4

A1 − 1
15 − 4

15 − 2
15 − 1

5
A2 − 1

10 − 7
30 − 4

15 − 7
30

A3 − 4
15 − 1

10 − 1
15 − 1

6
A4 − 1

30 − 1
15 − 1

10 − 1
30

From Table 2, S(d41) = − 1
30 is the maximum in the first column, S(d42), S(d33), S(d44) is the maximum

in column 2, 3, 4 respectively. The neutrosophic PIS A∗ is composed of d41, d42, d33, d44. Similarly, the dij which
has the minimum score in each column is chosen to constitute the neutrosophic NIS A−∗. The PIS A∗ and the
NIS A−∗ can be obtained as follow:

A∗ = ((0.4, 0.3, 0.2), (0.5, 0.4, 0.3), (0.7, 0.6, 0.3), (0.4, 0.3, 0.2))

A−∗ = ((0.5, 0.6, 0.7), (0.5, 0.7, 0.6), (0.3, 0.5, 0.6), (0.4, 0.5, 0.6))

Step3: Aggregate all the alternatives, A∗ and A−∗. For example:

A∗ = ((0.4, 0.3, 0.2), (0.5, 0.4, 0.3), (0.7, 0.6, 0.3), (0.4, 0.3, 0.2))

The TA∗ , IA∗ , FA∗ of A∗c can be obtained as follow:

TA∗ =
0.4 + 0.5 + 0.7 + 0.4

4
= 0.500

IA∗ =
0.3 + 0.4 + 0.6 + 0.3

4
= 0.400

FA∗ =
0.2 + 0.3 + 0.3 + 0.2

4
= 0.250

A∗c = (TA∗ , IA∗ , FA∗) = (0.500, 0.400, 0.250)

All aggregated neutrosophic sets are obtained in the same way and shown as follow:

A1c = (0.575, 0.525, 0.550)

A2c = (0.425, 0.475, 0.575)

A3c = (0.575, 0.450, 0.575)

A4c = (0.475, 0.425, 0.225)

A∗c = (0.500, 0.400, 0.250)

A−∗c = (0.425, 0.575, 0.625)
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Step4: All alternatives are ranked by the TOPSIS method. Euclid distances between alternatives and the
PIS are calculated as follow:

d(A1c, A∗c ) =
√
(TA1c − TA∗c )

2 + (IA1c − IA∗c )
2 + (FA1c − FA∗c )

2 = 0.334

d(A2c, A∗c ) =
√
(TA2c − TA∗c )

2 + (IA2c − IA∗c )
2 + (FA2c − FA∗c )

2 = 0.342

d(A3c, A∗c ) =
√
(TA3c − TA∗c )

2 + (IA3c − IA∗c )
2 + (FA3c − FA∗c )

2 = 0.337

d(A4c, A∗c ) =
√
(TA4c − TA∗c )

2 + (IA4c − IA∗c )
2 + (FA4c − FA∗c )

2 = 0.043

Euclid distances between alternatives and the NIS are calculated as follow:

d(A1c, A−∗c ) =
√
(TA1c − TA−∗c

)2 + (IA1c − IA−∗c
)2 + (FA1c − FA−∗c

)2 = 0.175

d(A2c, A−∗c ) =
√
(TA2c − TA−∗c

)2 + (IA2c − IA−∗c
)2 + (FA2c − FA−∗c

)2 = 0.112

d(A3c, A−∗c ) =
√
(TA3c − TA−∗c

)2 + (IA3c − IA−∗c
)2 + (FA3c − FA−∗c

)2 = 0.202

d(A4c, A−∗c ) =
√
(TA4c − TA−∗c

)2 + (IA4c − IA−∗c
)2 + (FA4c − FA−∗c

)2 = 0.430

The relative closeness are calculated as follow:

T1 =
d(A1c, A−∗c )

d(A1c, A−∗c ) + d(A1c, A∗c )
= 0.344

T2 =
d(A2c, A−∗c )

d(A2c, A−∗c ) + d(A2c, A∗c )
= 0.247

T3 =
d(A3c, A−∗c )

d(A3c, A−∗c ) + d(A3c, A∗c )
= 0.375

T4 =
d(A4c, A−∗c )

d(A4c, A−∗c ) + d(A4c, A∗c )
= 0.909

Rank the Ti, i = 1, 2, 3, 4 in descending order, and get T4 > T3 > T1 > T2. In this case, A4 is chosen as the
ideal solution. This example shows that by using the proposed method decision results can be easily obtained.

Example 3. For a further understanding and comparison of our approach, another problem is considered.
The data in this example originated from [57]. Let us suppose that decision makers intend to select the most
suitable tablet from the four chosen tablets (A1, A2, A3, A4) by considering six attributes namely: Features C1,
Hardware C2, Display C3, Communication C4, Affordable Price C5, Customer care C6. By using the presented
method, the problem is handled by the following steps.

Step1: Assume that Ai(A1, A2, A3, A4) are alternatives with respect to six criteria
(C1, C2, C3, C4, C5, C6). Neutrosophic decision matrix are shown in Table 3:
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Table 3. Neutrosophic decision matrix.

C1 C2 C3
A1 (0.864, 0.136, 0.081) (0.853, 0.147, 0.092) (0.800, 0.200, 0.150)
A2 (0.667, 0.333, 0.277) (0.727, 0.273, 0.219) (0.667, 0.333, 0.277)
A3 (0.880, 0.120, 0.067) (0.887, 0.113, 0.064) (0.834, 0.166, 0.112)
A4 (0.667, 0.333, 0.277) (0.735, 0.265, 0.195) (0.768, 0.232, 0.180)

C4 C5 C6
A1 (0.704, 0.296, 0.241) (0.823, 0.177, 0.123) (0.864, 0.136, 0.081)
A2 (0.744, 0.256, 0.204) (0.652, 0.348, 0.293) (0.608, 0.392, 0.336)
A3 (0.779, 0.256, 0.204) (0.811, 0.189, 0.109) (0.850, 0.150, 0.092)
A4 (0.727, 0.273, 0.221) (0.791, 0.209, 0.148) (0.808, 0.192, 0.127)

Step2: Score function are used to calculate and get the score matrix in Table 4.

Table 4. Score matrix.

C1 C2 C3 C4 C5 C6

A1 0.216 0.205 0.150 0.056 0.174 0.216
A2 0.019 0.078 0.019 0.095 0.004 -0.040
A3 0.231 0.237 0.185 0.106 0.171 0.203
A4 0.019 0.092 0.119 0.078 0.145 0.163

From Table 4, the neutrosophic PIS can be got as follow:

A∗ = ((0.880, 0.120, 0.067), (0.887, 0.113, 0.064), (0.834, 0.166, 0.112),

(0.779, 0.256, 0.204), (0.823, 0.177, 0.123), (0.864, 0.136, 0.081))

and the neutrosophic NIS is shown as follow:

A−∗ = ((0.667, 0.333, 0.277), (0.727, 0.273, 0.219), (0.667, 0.333, 0.277),

(0.704, 0.296, 0.241), (0.652, 0.348, 0.293), (0.608, 0.392, 0.336)).

Step3: Neutrosophic sets aggregation is done in this step. After calculation, results are shown as follows:

A1c = (0.818, 0.182, 0.128)

A2c = (0.677, 0.323, 0.268)

A3c = (0.840, 0.166, 0.108)

A4c = (0.749, 0.251, 0.191)

A∗c = (0.844, 0.161, 0.109)

A−∗c = (0.671, 0.329, 0.274)

Step4: In the last step, Euclid distances between Aic, i = 1, 2, 3, 4 and A∗c and between Aic, i = 1, 2, 3, 4
and A−∗c are obtained, and the relative closeness of each alternative Ti(i = 1, 2, 3, 4) is obtained. Euclid distances
between alternatives and the neutrosophic PIS are as follow:

d(A1c, A∗c ) = 0.038 d(A2c, A∗c ) = 0.282

d(A3c, A∗c ) = 0.007 d(A4c, A∗c ) = 0.154
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Euclid distances between alternatives and the neutrosophic NIS are below:

d(A1c, A−∗) = 0.254 d(A2c, A−∗) = 0.011

d(A3c, A−∗) = 0.288 d(A4c, A−∗) = 0.138

So the relative closeness of each alternative to the ideal solution can be easily obtained as follow:

T1 = 0.870 T2 = 0.038

T3 = 0.976 T4 = 0.473

the rank of them can be obtained: T3 > T1 > T4 > T2. Obviously, A3 is the best solution.
According to the results, method which uses aggregated SVNSs in this paper is more simplified than that

proposed by Pramanik [57]. Additionally, the Pramanik’s results are shown as follow:

T1 = 0.8190 T2 = 0, 1158

T3 = 0.8605 T4 = 0.4801

The same rank of alternatives are got, but in our approach the difference between the data is greater and the results
are clearer than that in Pramanik’s. The presented method is different with Pramanik’s method in handling
the attributes. In Pramanik’s method, attribute weight is used to revise the neutrosophic set. In the presented
method neutrosophic sets of different attributes are aggregated to one neutrosophic set, which simplifies the
decision-making process and makes the process more efficient. In this way, multi-criteria decision making can be
easily made.

To verify the rationality and usefulness of the presented method, correlation coefficient method [44] and
cross-entropy method [45] are used to calculate the same decision problem in Table 3. In Table 3, Bi refers to the
correlation between alternative Ai and the PIS A∗, and Ei refers to the distance between Ai and the PIS A∗. The
comparison of presented method with these three methods are shown in Table 5.

Table 5. Comparison with other methods.

Methods Indexes for Decision Making Rank of Indexes The Chosen Alternative

Elhassouny’s [57] T1 = 0.8190, T2 = 0, 1158, T3 = 0.8605, T4 = 0.4801 T3 > T1 > T4 > T2 A3
correlation coefficient [44] B1 = 0.959, B2 = 0.846, B3 = 0.970, B4 = 0.917 B3 > B1 > B4 > B2 A3

cross-entropy [45] E1 = 0.530, E2 = 0.966, E3 = 0.466, E4 = 0.763 E3 < E1 < E4 < E2 A3
Presented method T1 = 0.870, T2 = 0.038, T3 = 0.976, T4 = 0.473 T3 > T1 > T4 > T2 A3

5. Conclusions

In this paper, a multi-attribute decision method used aggregated neutrosophic set and TOPSIS
is proposed. In our method, arithmetic average method is used to aggregate neutrosophic sets, and
aggregated sets can be used by TOPSIS method to get a final rank. The proposed approach could
reduce the computation since it firstly aggregate the neutrosophic sets before ranking, so it is useful in
real application with high requirements of real-time. Two examples have demonstrated the rationality
and feasibility of our approach. However, this method also has some limitations, averaging the validity
of the criteria may lead to the loss of some criteria information. If the criteria information is especially
emphasized in the decision process, this presented method may be not so appropriate to be used.
In the future, more work will be done on the score function to make the decision making process
more accurate, and the geometric average method is also need to be checked. Continuous work in the
application of complex decision-making problems such as group decision-making problems and other
domains such as fuzzy system is also need to be done.

Author Contributions: W.J. and X.D. proposed the method; W.J., Z.Z. and X.D. analyzed the results of experiment;
Z.Z. wrote the paper; W.J. and X.D. revised and improved the paper.
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