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Abstract: Existing variance control charts are designed under the assumptions that no uncertain,
fuzzy and imprecise observations or parameters are in the population or the sample. Neutrosophic
statistics, which is the extension of classical statistics, has been widely used when there is uncertainty
in the data. In this paper, we will originally design S2 control chart under the neutrosophic interval
methods. The complete structure of the neutrosophic S2 control chart will be given. The necessary
measures of neutrosophic S2 will be given. The neutrosophic coefficient of S2 control chart will
be determined through the neutrosophic algorithm. Some tables are given for practical use. The
efficiency of the proposed control chart is shown over the S2 control chart designed under the classical
statistics in neutrosophic average run length (NARL). A real example is also added to illustrate the
proposed control chart. From the comparison in the simulation study and case study, it is concluded
that the proposed control chart performs better than the existing control chart under uncertainty.

Keywords: classical statistics; neutrosophic statistics; neutrosophic average run length;
fuzzy; uncertainty

1. Introduction

In this modern era, the customers demand high-quality products or services to fulfill their
needs. High quality in a product can be only achieved if the manufacturing process meets the given
specifications limits. To the manufacturer to produce the defect-free product, the variation in the
process should be controlled. Generally, the manufacturing process moves away from control limits
due to two types of variation, which are called the natural variation and special variation. Therefore,
to produce the high-quality product that meets the given standard the elimination of variation is
necessary. The control chart is one of the important tools that have been widely used in the industry
for the monitoring of the process. The control chart immediately informs the engineers if any problem
occurs that can shift the process from its target. According to Abbas et al. [1], “Dispersion charts
are used to monitor within samples variability while location charts are used to monitor between
samples variability. So, it is preferable to monitor the process dispersion before the location of the
process”. Among the control chart, the Shewhart [2] S2 control chart is easy to apply in the industry.
The Shewhart [2] S2 control chart has an upper control limit (UCL), a lower control limit (LCL)
and central limit (CL). There are many other signals, such as two points out of three points to be
out-of-control and four points out of five points to be out-of-control, which determine if the process is
“out-of-control” or not. A process is declared to be out-of-control if the plotting statistic lies beyond the
UCL or LCL. But, the first point to be out-of-control follows the geometric distribution. This criterion
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has been widely used to find the average run length to assess the performance of the control chart. The
S2 control charts under classical statistics have been studied by many authors, for example, Khoo [3]
proposed S2 control chart for the double sampling. Zhang et al. [4] presented the design of S2 control
chart. Khoo [5] studied the modified form of dispersion chart. Lee et al. [6] worked for this chart under
the interval sampling. Riaz [7] presented a dispersion chart based on Interquartile range. Guo and
Wang [8] studied the dispersion chart when the variance is estimated. Some details on the dispersion
control chart can be seen in references [1,9].

The fuzzy approach has been widely applied in the uncertainty environment, see Zadeh [10].
According to Senturk and Erginel [11] “observations include human judgments, and evaluations and
decisions, a continuous random variable of a production process should include the variability caused
by human subjectivity or measurement devices, or environmental conditions. These variability causes
create vagueness in the measurement system”. Therefore, the fuzzy control charts have been widely
applied in a situation when there is uncertainty. Several authors worked on the designing of control
chart using the fuzzy approach. The authors of [12,13] proposed fuzzy control charts for the Statistical
Process Control (SPC) zone rules. Senturk and Erginel [11] proposed fuzzy dispersion control charts.
Mojtaba et al. [14] proposed the fuzzy chart using triangle fuzzy random variable. Shu et al. [15]
proposed the fuzzy chart using data-adoptability approach. Afshari and Gildeh [16] designed a fuzzy
control chart using the multiple dependent state (MDS) sampling. Fadaei and Pooya [17] proposed
the fuzzy U control chart. More detail on the control charts using the fuzzy approach can be seen in
references [15,18].

The authors of [19] mentioned that fuzzy logic is the special case of the neutrosophic logic.
Smarandache [20] introduced some basic work in the neutrosophic statistics. According to [20],
the neutrosophic statistics can be applied when the observations or the parameters are imprecise,
indeterminate and fuzzy. Recently, the authors of [21,22] worked on rock study issues using the
neutrosophic statistics. References [23,24] introduced the neutrosophic sampling plan the first time.

A rich literature on control chart for the monitoring of the variation or shift in the dispersion
parameter is available under classical statistics. For the monitoring of the dispersion parameter, the
S2 control chart has been widely used in the industry. The existing literature of S2 control charts
is designed under the assumption that there is no uncertainty, indeterminacy, imprecise and fuzzy
observations/parameter in the data. In practice, due to the measurement process, it may not possible
to record data having all observations determined. So, when the observations are imprecise and
uncertain, the S2 control charts under the classical statistics cannot be applied. The neutrosophic
statistics, which is the generalization of the classical statistics, deal with the situations when the
observations or parameters are fuzzy. The neutrosophic statistics is used when the population or the
sample has some uncertain observations.

According to the best of our knowledge, there is no study on the design of S2 control chart using
the neutrosophic statistics. In this paper, our objective is to originally design a S2 control chart under
the neutrosophic interval methods. The efficiency of the proposed chart will be compared with the
chart under the classical statistics in terms of neutrosophic average run length. The design of the
proposed control chart is given in Section 2. In Section 3, the advantages of the proposed control
chart are discussed. A case study is given in Section 4 and some concluding remarks are given in the
last section.

2. Design of Proposed Control Chart

A random sample selected from such a population or the sample having indeterminacy in
observations is called a neutrosophic random sample. Suppose a neutrosophic random number
XNiε{XL, XU}; i = 1, 2, 3, . . . , nN , where XL is a determinate part and XU is an indeterminate

part. Let µN =
NN
∑

i=1
XN/NN ; µN ε{µL, µU} represent the mean of population having indeterminate

observations; where µL and µU are the means of determinate part and indeterminate parts, respectively
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and σ2
N =

nN
∑

i=1
(XN − µN)

2/NN − 1; σ2
N ε
{

σ2
L, σ2

L
}

represents the neutrosophic population variance,

where σ2
L and σ2

L are the variance of determinate part and indeterminate parts, respectively. Let XN =
nN
∑

i=1
XN/nN ; XN ε

{
XL, XU

}
and S2

N =
nN
∑

i=1

(
XN − XN

)2/nN − 1; S2
N ε
{

S2
L, S2

L
}

be the neutrosophic

sample mean and neutrosophic variance of XNiε{XL, XU}. More detail can be seen in [20]. In this
section, we will propose the following S2 control chart under the neutrosophic statistical interval
method. The proposed chart emphasized that variable inspection (measuring the quality of interest) is
used to monitor the variance of the process.

Step-1: Select a random sample of size nN from the production process and compute S2
N .

Step-2: Declare the process is in-control state if LCLN ≤ S2
N ≤ UCLN ; where

LCLN ε{LCLL, LCLU} and UCLN ε{UCLL, UCLU} are neutrosophic interval control limits.
The neutrosophic control limits LCLN ε{LCLL, LCLU} and UCLN ε{UCLL, UCLU} are given by

UCLN = σ2
N + kN

√
2
(
σ2

N
)2/(nN − 1); σ2

N ε
{

σ2
L, σ2

L

}
, kN ε {kL, kU} (1)

LCLN = σ2
N − kN

√
2
(
σ2

N
)2/(nN − 1); σ2

N ε
{

σ2
L, σ2

L

}
, kN ε {kL, kU} (2)

where kNε{kL, kU} is a neutrosophic control chart coefficient and will be determined through the
neutrosophic algorithm.

The proposed S2 control chart under the neutrosophic statistical interval method is the
generalization of S2 control chart under the classical statistics. The proposed chart becomes the
existing control chart under the classical statistics when kL = kU = k. The probability that the process
is declared to be out-of-control under the neutrosophic interval methods is derived as follows:

P(0)
outN = P

(
S2

N ≥ UCLN

)
+ P

(
S2

N ≤ LCLN

)
; S2

Nε
{

S2
L, S2

L

}
(3)

Note here that (nN − 1)S2
N/σ2

N ; S2
Nε
{

S2
L, S2

L
}

, σ2
N ε
{

σ2
L, σ2

L
}

follows the neutrosophic Chi-square
χ2

N ; χ2
N ε
{

χ2
L, χ2

U
}

distribution with neutrosophic degree of freedom nN − 1; nN ε{nL, nU} when
the process is in-control state. The hypothesis is that the process is in-control state at σ2

N ε
{

σ2
L, σ2

L
}

.
Suppose GN ε{GL, GU} be the neutrosophic distribution function of χ2

N ε
{

χ2
L, χ2

U
}

. Therefore, for the
in-control state,

P
(
S2

N ≥ UCLn
)
= 1− GN

(
(nN−1)UCLN

σ2
N

)
= 1− GN

(
(nN − 1)

(
1 + kN

√
2/(nN − 1)

))
;

nN ε {nL, nU}, kN ε {kL, kU}.
(4)

Similarly,

P
(
S2

N ≤ LCLn
)
= GN

(
(nN−1)UCLN

σ2
N

)
= GN

(
(nN − 1)

(
1− kN

√
2/(nN − 1)

))
;

nN ε {nL, nU}, kN ε {kL, kU}.
(5)

The probability of in-control process under the neutrosophic interval method is given by:

P(0)
outN = 1− GN

(
(nN − 1)

(
1 + kN

√
2/(nN − 1)

))
+ GN

(
(nN − 1)

(
1− kN

√
2/(nN − 1)

))
;

nN ε {nL, nU}, kN ε {kL, kU}
(6)

The average run length (ARL) under the classical statistics is an important measure used to assess
the performance of the control chart. The ARL indicates that when, on average, the process will be
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out-of-control and when it is actually an in-control state. The neutrosophic average run length (NARL)
under the neutrosophic interval method is defined by:

NARL0N =
1

P(0)
outN

; ARL0N ε {ARL0L, ARL0U} (7)

Now suppose that the variance of the process has shifted to new target value σ2
1N =

cσ2
N ;σ2

N ε
{

σ2
L, σ2

L
}

, where c denotes the shift constant. The alternative hypothesis for this study is
that the process has shifted to a new variance σ2

1N . Note here that (nN − 1)S2
N/cσ2

N ; S2
Nε
{

S2
L, S2

L
}

,
σ2

Nε
{

σ2
L, σ2

L
}

follows the neutrosophic Chi-square χ2
N ; χ2

Nε
{

χ2
L, χ2

U
}

distribution with neutrosophic
degree of freedom nN − 1; nNε{nL, nU} when the process is an out-of-control state.

The probability that the process is declared to be out-of-control for the shifted process under the
neutrosophic interval methods is derived as follows

P(1)
outN = P

(
S2

N ≥ UCLN

∣∣∣σ2
1N

)
+ P

(
S2

N ≤ LCLN

∣∣∣σ2
1N

)
; S2

N ε
{

S2
L, S2

L

}
(8)

Therefore, for the out-of-control state at σ2
1N is given by

P
(
S2

N ≥ UCLN
∣∣σ2

1N
)
= 1 + GN

(
nN−1

c

(
1− kN

√
2

nN−1

))
; nN ε {nL, nU}, kN ε {kL, kU}. (9)

Similarly,

P
(

S2
N ≤ LCLn

∣∣∣σ2
1N

)
= GN

(
nN − 1

c

(
1− kN

√
2

nN − 1

))
; nN ε {nL, nU}, kN ε {kL, kU}. (10)

The probability of an out-of-control process at σ2
1N under the neutrosophic interval method is

given by:

P(1)
outN = 1 + GN

(
nN−1

c

(
1− kN

√
2

nN−1

))
+ GN

(
nN−1

c

(
1− kN

√
2

nN−1

))
;

nN ε {nL, nU}, kN ε {kL, kU}
(11)

The NARL for the shifted process is given by:

NARL1N =
1

P(1)
outN

; ARL1N ε{ARL1L, ARL1U} (12)

Let r0N denote the specified values of NARL0N . The values of NARL for various subgroup size
nNε{nL, nU} and shift c are presented in Tables 1–3. In Table 1, the values of NARL are given when
nNε{3, 4} and r0N = 300 and 370. In Table 2, the values of NARL are given when nN ε{4, 6} and r0N =
300 and 370. In Table 3, the values of NARL are given when nN ε{3, 4} and r0N = 300 and 370. From
Tables 1–3, the following trends in NARL can be noted.

1. For the fixed values of nN ε{nL, nU} and c, the range in indeterminacy interval of NARL increases
as NARL0N decreases from 300 to 370.

2. For the fixed values of NARL0N and c, the range in indeterminacy interval of NARL decreases as
nN ε{nL, nU} increases.
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Table 1. The neutrosophic plan parameters when nN ε {3, 4} and r0N = 300,370.

Parameters r0N = 300 r0N = 370

nN [3,4] [3,4]
kN [4.716,4.784] [4.921,4.925]
c NARL1N
1 [303.571,482.268] [372.916,567.398]

1.1 [180.551,257.614] [217.685,298.395]
1.2 [117.098,153.218] [138.998,175.183]
1.3 [81.177,98.952] [95.096,111.902]
1.4 [59.298,68.163] [68.685,76.363]
1.5 [45.169,49.433] [51.809,54.931]
1.6 [35.597,37.374] [40.482,41.237]
1.7 [28.85,29.239] [32.562,32.06]
1.8 [23.935,23.534] [26.833,25.662]
1.9 [20.251,19.399] [22.567,21.048]
2 [17.423,16.317] [19.311,17.625]
3 [6.721,5.593] [7.198,5.874]
4 [4.174,3.353] [4.394,3.474]

Table 2. The neutrosophic plan parameters when nN ε {4, 6} and r0N = 300,370.

Parameters r0N = 300 r0N = 370

nN [4,6] [4,6]
kN [4.37095,4.38408] [4.56277,4.60236]
c NARL1N
1 [300.03049,490.72292] [373.89462,521.39944]

1.1 [167.75455,236.62553] [204.67051,261.86897]
1.2 [103.63777,130.01298] [124.23386,148.39858]
1.3 [69.11578,78.91434] [81.62574,92.2282]
1.4 [48.93744,51.76218] [57.06262,61.60346]
1.5 [36.34426,36.10675] [41.91335,43.57537]
1.6 [28.05528,26.46593] [32.04372,32.28357]
1.7 [22.35463,20.20032] [25.31664,24.84157]
1.8 [18.28768,15.94213] [20.55525,19.72459]
1.9 [15.29499,12.93761] [17.07608,16.07855]
2 [13.03379,10.74914] [14.46377,13.40067]
3 [4.84897,3.5816] [5.18032,4.44486]
4 [3.02663,2.21472] [3.17374,2.68331]

Table 3. The neutrosophic plan parameters when nN ε {9, 10} and r0N = 300,370.

Parameters r0N = 300 r0N = 370

nN [9,10] [9,10]
kN [3.77774,3.87857] [3.90143,3.92448]
c NARL1N
1 [310.11015,398.93766] [374.85685,429.14801]

1.1 [140.42988,169.87263] [166.07453,181.17044]
1.2 [73.89048,85.19126] [85.81325,90.2116]
1.3 [43.56058,48.35266] [49.82352,50.89613]
1.4 [28.04099,30.19755] [31.65868,31.6243]
1.5 [19.345,20.33186] [21.59801,21.19929]
1.6 [14.10561,14.53629] [15.59629,15.09889]
1.7 [10.75721,10.90994] [11.79341,11.29453]
1.8 [8.51099,8.52027] [9.26122,8.79481]
1.9 [6.94206,6.87633] [7.504,7.0795]
2 [5.80835,5.70385] [6.24147,5.85883]
3 [2.16011,2.05723] [2.24008,2.0842]
4 [1.48785,1.42243] [1.51913,1.43261]
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The following neutrosophic algorithm is applied to determine the indeterminacy interval of
kN ε{kL, kU}.

Step-1: Specify the indeterminacy interval of nNε{nL, nU} and c.
Step-2: Determine the indeterminacy interval of kNε{kL, kU} such that NARL0N ≥ r0N .
Step-3: Find indeterminacy interval of NARL1N using kN ε{kL, kU} selected in Step-2.

3. Comparison Studies

In this section, we will compare the efficiency of the proposed S2 control chart under the
neutrosophic interval method with S2 control chart under the classical statistics.

3.1. Comparison by NARL

We will present the comparison in NARL when nN ε {4, 6} and r0N = 300 in Table 4. According
to the authors of [22], a method which provides the parameters in indeterminacy interval rather
than the determined value under the uncertainty environment, is said to be more effective and
adequate. From Table 4, it can be noted that the proposed control chart under the neutrosophic
statistics has NARL in indeterminacy interval, while the existing chart under the classical statistics
provides the determined value. For example, when c = 1.1, the indeterminacy interval of the
proposed chart is ARL1N ε {167.75455, 236.62553} while ARL = 167 from the existing control chart.
From the comparison, it can be concluded that the existing control chart cannot be applied when
some observations/parameters are uncertain. Therefore, by following the theory proposed in [22],
the proposed control chart is more effective and adequate than control chart under classical statistics.

Table 4. Comparison when [4,6] and r0N = 300.

c
Proposed Chart Existing Chart

NARL1N

1 [300.03049,490.72292] 300.0044
1.1 [167.75455,236.62553] 167.7414
1.2 [103.63777,130.01298] 103.6304
1.3 [69.11578,78.91434] 69.11124
1.4 [48.93744,51.76218] 48.93448
1.5 [36.34426,36.10675] 36.34222
1.6 [28.05528,26.46593] 28.05381
1.7 [22.35463,20.20032] 22.35353
1.8 [18.28768,15.94213] 18.28684
1.9 [15.29499,12.93761] 15.29432
2 [13.03379,10.74914] 13.03325
3 [4.84897,3.5816] 4.84884
4 [3.02663,2.21472] 3.02657

3.2. Comparison by Simulation

We now compare the efficiency of the proposed control with the control chart under the classical
statistics by using the simulation data. The data is generated from the neutrosophic normal distribution
with µN ε {0, 0} and neutrosophic variance σ2

N ε {4, 6.25}. The first 20 neutrosophic observations are
generated from the in-control process and next 20 neutrosophic observations from the shifted process
with c = 1.8. For the simulation study, let nN ε {5, 5} and r0N = 370. We plotted the neutrosophic
statistic S2

N on Figure 1. It is expected that the proposed chart should detect a shift in the indeterminacy
interval ARL1N ε {20.55, 19.72}. From Figure 1, it can be noted that the proposed plan detect a shift in
the process at the 19th sample. The same values statistic S2 under the classical statistic is plotted in
Figure 2. Figure 2 indicates that the process is an in-control state. By comparing Figure 1 with Figure 2,
it is concluded that the proposed control chart has the ability to detect a shift in the process. Also, the
proposed control chart is more effective in the uncertainty environment.
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5 [73.992,73.992] [74.007,74.007] [74.015,74.015] [73.989,73.989] [74.014,73.998] [0.012219,0.010756] 
6 [74.009,74.009] [73.994,74.001] [73.997,73.997] [73.985,73.985] [73.993,73.993] [0.008706,0.008944] 
7 [73.995,73.998] [74.006,74.006] [73.994,73.994] [74,74] [74.005,74.005] [0.005523,0.00498] 
8 [73.985,73.985] [74.003,74.01] [73.993,73.993] [74.015,74.015] [73.988,73.988] [0.012256,0.01348] 
9 [74.008,74.005] [73.995,73.995] [74.009,74.009] [74.005,74.005] [74.004,74.004] [0.005541,0.005177] 
10 [73.998,73.998] [74,74] [73.99,73.99] [74.007,74.007] [73.995,73.995] [0.006285,0.006285] 
11 [73.994,73.998] [73.998,73.998] [73.994,73.994] [73.995,73.995] [73.99,74.001] [0.002864,0.002775] 
12 [74.004,74.004] [74,74.002] [74.007,74.005] [74,74.001] [73.996,73.996] [0.004219,0.003507] 
13 [73.983,73.993] [74.002,74.002] [73.998,73.998] [73.997,73.997] [74.012,74.005] [0.010455,0.004637] 
14 [74.006,74.006] [73.967,73.985] [73.994,73.994] [74,74] [73.984,73.996] [0.015304,0.007759] 
15 [74.012,74.012] [74.014,74.012] [73.998,73.998] [73.999,73.999] [74.007,74.007] [0.007314,0.006804] 
16 [74,74] [73.984,73.984] [74.005,74.005] [73.998,73.998] [73.996,73.996] [0.007797,0.007797] 
17 [73.994,73.994] [74.012,74.012] [73.986,73.986] [74.005,74.005] [74.007,74.007] [0.010569,0.010569] 
18 [74.006,74.006] [74.01,74.011] [74.018,74.018] [74.003,74.003] [74,74.001] [0.006986,0.006834] 
19 [73.984,73.984] [74.002,74.002] [74.003,74.003] [74.005,74.005] [73.997,73.997] [0.008468,0.008468] 
20 [74,74] [74.01,74.01] [74.013,74.009] [74.02,74.015] [74.003,74.003] [0.007981,0.005941] 
21 [73.982,73.982] [74.001,74.001] [74.015,74.015] [74.005,74.005] [73.996,73.996] [0.012153,0.012153] 
22 [74.004,74.004] [73.999,73.999] [73.99,73.99] [74.006,74.006] [74.009,74.002] [0.007436,0.006261] 
23 [74.01,74.01] [73.989,73.989] [73.99,73.99] [74.009,74.005] [74.014,74.011] [0.011929,0.010747] 
24 [74.015,74.011] [74.008,74.008] [73.993,73.993] [74,74] [74.01,74.011] [0.008701,0.007893] 
25 [73.982,73.982] [73.984,73.989] [73.995,73.995] [74.017,74.012] [74.013,74.01] [0.016177,0.013088] 

For this real example, suppose ݊ே	߳	ሼ5,5ሽ and ݎ଴ே		= 370. The control limits of the proposed chart 
under the neutrosophic statistics are shown in Figure 3. We plotted the neutrosophic statistic ܵேଶ  in 
Figure 3. From Figure 3, it can be seen that although the process is in-control state, some plotting 
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Figure 2. The control chart under the classical statistics.

4. Case Study

The application of the proposed chart is given in the automobile industry. In this industry,
the measurement of the inside diameter of engine piston rings is an important variable, see
Montgomery [25]. Therefore, the monitoring of this variable is an important task in the automobile
industry. The inside diameter is a continuous variable. Due to human subjectivity or measurement
devices and environmental conditions, it is possible that some observations are uncertain. In this case,
the control chart under classical statistics cannot be applied for the monitoring of the diameter. The
data having some uncertain observations are reported in Table 5.
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Table 5. Real example data.

Sample No. Sample Observation S2
N

1 [74.03,74.03] [74.002,73.991] [74.019,74.019] [73.992,73.992] [74.008,74.001] [0.014772,0.017242]
2 [73.995,73.995] [73.992,74.003] [74.001,74.001] [74.011,74.011] [74.004,74.004] [0.007503,0.005762]
3 [73.988,74.017] [74.024,74.024] [74.021,74.021] [74.005,74.005] [74.002,73.995] [0.014748,0.012116]
4 [74.002,74.002] [73.996,73.996] [73.993,73.993] [74.015,74.015] [74.009,74.009] [0.009083,0.009083]
5 [73.992,73.992] [74.007,74.007] [74.015,74.015] [73.989,73.989] [74.014,73.998] [0.012219,0.010756]
6 [74.009,74.009] [73.994,74.001] [73.997,73.997] [73.985,73.985] [73.993,73.993] [0.008706,0.008944]
7 [73.995,73.998] [74.006,74.006] [73.994,73.994] [74,74] [74.005,74.005] [0.005523,0.00498]
8 [73.985,73.985] [74.003,74.01] [73.993,73.993] [74.015,74.015] [73.988,73.988] [0.012256,0.01348]
9 [74.008,74.005] [73.995,73.995] [74.009,74.009] [74.005,74.005] [74.004,74.004] [0.005541,0.005177]
10 [73.998,73.998] [74,74] [73.99,73.99] [74.007,74.007] [73.995,73.995] [0.006285,0.006285]
11 [73.994,73.998] [73.998,73.998] [73.994,73.994] [73.995,73.995] [73.99,74.001] [0.002864,0.002775]
12 [74.004,74.004] [74,74.002] [74.007,74.005] [74,74.001] [73.996,73.996] [0.004219,0.003507]
13 [73.983,73.993] [74.002,74.002] [73.998,73.998] [73.997,73.997] [74.012,74.005] [0.010455,0.004637]
14 [74.006,74.006] [73.967,73.985] [73.994,73.994] [74,74] [73.984,73.996] [0.015304,0.007759]
15 [74.012,74.012] [74.014,74.012] [73.998,73.998] [73.999,73.999] [74.007,74.007] [0.007314,0.006804]
16 [74,74] [73.984,73.984] [74.005,74.005] [73.998,73.998] [73.996,73.996] [0.007797,0.007797]
17 [73.994,73.994] [74.012,74.012] [73.986,73.986] [74.005,74.005] [74.007,74.007] [0.010569,0.010569]
18 [74.006,74.006] [74.01,74.011] [74.018,74.018] [74.003,74.003] [74,74.001] [0.006986,0.006834]
19 [73.984,73.984] [74.002,74.002] [74.003,74.003] [74.005,74.005] [73.997,73.997] [0.008468,0.008468]
20 [74,74] [74.01,74.01] [74.013,74.009] [74.02,74.015] [74.003,74.003] [0.007981,0.005941]
21 [73.982,73.982] [74.001,74.001] [74.015,74.015] [74.005,74.005] [73.996,73.996] [0.012153,0.012153]
22 [74.004,74.004] [73.999,73.999] [73.99,73.99] [74.006,74.006] [74.009,74.002] [0.007436,0.006261]
23 [74.01,74.01] [73.989,73.989] [73.99,73.99] [74.009,74.005] [74.014,74.011] [0.011929,0.010747]
24 [74.015,74.011] [74.008,74.008] [73.993,73.993] [74,74] [74.01,74.011] [0.008701,0.007893]
25 [73.982,73.982] [73.984,73.989] [73.995,73.995] [74.017,74.012] [74.013,74.01] [0.016177,0.013088]

For this real example, suppose nN ε{5, 5} and r0N = 370. The control limits of the proposed chart
under the neutrosophic statistics are shown in Figure 3. We plotted the neutrosophic statistic S2

N in
Figure 3. From Figure 3, it can be seen that although the process is in-control state, some plotting points
are near the control limits. The S2 control chart under the classical statistics is presented in Figure 4.
From Figure 4, we note that the process is an in-control state with one point near the control limit.
From Figure 3, we note that sample numbers 2, 7, 9, 10 and 11 are very close to LCLN . On the other
hand, Figure 4 indicates that 11th and 12th sample numbers are very near to the LCL. By comparing
Figure 3 with Figure 4, it can be concluded that although the plotting statistic is an in-control state,
several points near the control limits need attention.
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5. Concluding Remarks

We presented the designing of S2 control chart under the neutrosophic interval statistical method.
Some necessary measures to assess the performance of the proposed control chart are given. The
advantages of the proposed control chart over the chart using the classical statistics are given. From the
comparison, it is concluded that the proposed control chart is more effective and adequate under the
uncertainty environment. The simulation study showed that the proposed chart has the ability to detect
a shift in the process. The implementation of the proposed chart on the real data also shows its efficacies
over the existing control chart. Therefore, it is recommended to apply the proposed control when the
observations or the parameters are fuzzy. From the comparison and real example, it is concluded that
the proposed chart under the neutrosophic statistics is quite adequate and effective in the uncertainty
environment, more so than the method based on classical statistics. The proposed control chart using
the exponentially weighted moving average (EWMA) will be considered as future research.
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