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Abstract: In this paper, we developed a control chart methodology for the monitoring the mean
time between two events using the belief estimator under the neutrosophic gamma distribution.
The proposed control chart coefficients and the neutrosophic average run length (NARL) have been
determined using different process settings. The performance of the proposed chart is compared
with the control chart under classical statistics in terms of NARL using the simulation data and
real example. From comparisons, it is concluded that the proposed chart is efficient, effective and
adequate to be used under uncertainty environment than the chart under classical statistics.

Keywords: control chart; fuzzy logic; neutrosophic statistic; incomplete data; belief statistic;
gamma distribution

1. Introduction

The control chart is an important tool of Statistical Process Control (SPC) used in production
processes for monitoring the quality of the products and effective in defect prevention. The diagnosis
and correction of many production problems which often cause huge loss to the production unit can
substantially be improved with the utilization of the effective control chart technique [1]. Once the
control chart is established from the initial observations of the interested quality characteristic normally
known as the Phase-I control limits and revised according to monitoring parameters with the prime
objective of the maintaining the repute of the product in the market and the profit maximization.
In the quick monitoring of the quality of the product in this era of fast technology, being used in
the production units, a minute delay can result in the production of a huge amount of defective
items or items which need reworking. To maintain the production process at the required quality
level, the continuous improvement of the production process and the identification of sources of
the variation are the prime objectives of any process monitoring scheme [2]. Vigilant monitoring is
demanded by the production process to identify the root cause and preventing it from reoccurring
of unwanted situation. The Shewhart control charts are technically the most sophisticated tool for
monitoring such unusual changes in the processes Montgomery [3]. The tool of a control chart is used
for the need of conducting timely corrective action if any abnormality creeps into the production
process [4]. Fuzzy transformation methods to determine the tightness of the inspection for the linguist
data are a valuable development [5]. The belief estimator has been thoroughly defined and discussed
by Fallah Nezhad and Akhavan Niaki [6]. Variable control charts are developed when the characteristic
under study is continuous in nature. The best-fitted distribution is the normal distribution for the
continuous data when collected in groups or when the form of the distribution is known. In general,
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there are many instances when the data are not collected in the form of the groups or the shape of the
distribution is skewed or unknown. When this occurs then the use of normal distribution may lead
to erroneous results. The most commonly suggested distribution for this type of data is the gamma
distribution. The study of control charts using the gamma distribution has been explored by many
authors, for instance, see references [7-13]. The Shewhart control charts also known as the classic
control charts are used to analyze variations in the quality characteristic when the collected data are
quite exact and precise. However, the collected data may not always be so clear and exact in practice.
We observe that uncertainty is a natural phenomenon which is associated with the human world, for
which researches are continuously struggling for devising chart to address the uncertainty through
probability theory or the fuzzy set theory. Also, the data collected from the human subjectivity cannot
be treated as the exact numeric data and the construction of the control limits based upon such data
will lead to erroneous conclusions. The construction of the control chart for such vague data can be
best represented by using the most common logic of fuzzy control charts [14]. The fuzzy logic deals
with data of the situation, which is, not clear, ambiguous or not well defined. The fuzzy logic is a
special case of the neutrosophic statistic (see Smarandache [15]). In the literature of quality control,
the fuzzy control charts are developed when the data are vague, incomplete, ambiguous and not well
defined [16]. The notion of fuzzy sets was exposed by Zadeh [17]. The use of the fuzzy concept in
the control chart literature started when Wang and Raz [18] published their paper. They applied two
approaches to the construction of control charts for linguistic data. The linguistic data can provide
thorough investigation than the binary classification used in attribute control charts. Raz and Wang [19]
provided more results from the findings of Wang and Raz [18]. Taleb and Limam [20] proposed three
sets of membership functions with different degrees of fuzziness for the fuzzy and probabilistic models
using the average run lengths for comparisons. Kanagawa and Tamaki [21] developed control charts
for the process average and process variability based on linguistic or imprecise data. Erginel and

Sentiirk [22] developed the fuzzy control chart for monitoring the food industry using fuzzy X and S.
El-Shal and Morris [23] suggested a fuzzy rule-based algorithm for quality improvement monitoring
through control charts. Rowlands and Wang [24] studied the fuzzy logic operation and its functioning
in the control chart literature. Giilbay and Kahraman [1] used the a-cut control charts for the tightened
inspection of observation for the fuzzy sets. Aslam [25] developed a sampling plan for the Neutrosophic

statistics under the process loss index. Senturk and Erginel [26] constructed the fuzzy X-R and X-S
charts with the a-cuts. Sentiirk [27] developed the fuzzy regression control chart for the a-cut fuzzy
numbers. Kaya and Kahraman [28] proposed a fuzzy control chart for process capability analysis
based upon fuzzy measurements. Broumi and Smarandache [29] studied the correlation coefficient of
the interval Neutrosophic set. Sentiirk and Erginel [16] developed a fuzzy exponentially weighted
moving average chart for univariate data with a real case application.

As mentioned by Smarandache [30] that the neutrosophic logic which considered the measure
of indeterminacy is an extension of the fuzzy logic. The neutrosophic statistics which is based on
neutrosophic numbers is the generalization of classical statistics and has been used under uncertainty,
see Smarandache [31] and Smarandache [32]. The Neutrosophic statistics is the extension of the classic
statistics used to analyze the data of vague, undefined, imprecise, incomplete, and indeterminate nature
in opposition to the clear, certain, and crisp observations or parameters in which classical statistics is
suitable, (see [32] and [25]). Due to wide application of the neutrosophic statistics, several authors applied
itin various fields. Neutrosophic Statistical Numbers were introduced in [32], page 11. Chenetal. [33] and
Chen et al. [34] introduced the neutrosophic statistical numbers to measure the rock roughness. Aslam [25]
introduced the neutrosophic statistical quality control. Aslam [35] proposed a neutrosophic reliability
plan. Aslam [36] designed the plan for the exponential distribution using neutrosophic statistics.
Aslam [37] presented a neutrosophic attribute sampling plan. Aslam et al. [38] proposed the attribute
control chart using neutrosophic statistics. Aslam et al. [39] worked on neutrosophic variance chart.
Aslam et al. [40] proposed the chart for the gamma distribution under the neutrosophic statistics.
Aslam [41] proposed the plan with measurement error in uncertainty. Aslam and Arif [42] worked on
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sudden death tests under the uncertainty. Aslam and Raza [43] designed the neutrosophic plan for
multiple manufacturing lines. Peng and Dai [44] has given the bibliographic review of the Neutrosophic
statistics for the last two decades. Peng and Dai [45], initiated a new axiomatic definition of single-valued
neutrosophic distance measure and proposed a novel measure. More literature on Neutrosophic can be
seen in [46-51].

In this paper, a control chart scheme has been developed for monitoring the mean time between
two events under the neutrosophic statistics using the belief estimator for the NGD which according to
the best knowledge of the authors has not been explored by any researcher. It is mentioned here that
the proposed chart is reduced to the classical chart when no parameter is obtained as vague, imprecise,
indeterminate or incomplete. Gao, Cecati, and Ding [52] provided a sophisticated state-of-the-art
overview on data-driven and machine learning based fault detection and diagnosis approaches.
The proposed control chart will indicate the change in the process mean and will be helpful to correct
the fault during the process. The rest of the paper is organized as: the design of the proposed chart is
explained in Section 2. In Section 3 the simulation study of the proposed scheme has been discussed.
In Section 4 the application of the proposed chart has been explained by using a real-world example.
In the last section, the conclusion of the proposed chart has been described.

2. The Neutrosophic Gamma Distribution

The neutrosophic gamma distribution (NGD) is introduced by Aslam et al. [40]. Let Tne[Tr, Ty
be the neutrosophic random variable (NRV) of size nye[nr, ny| of the quality of interest that follows
the NGD, where T} and Ty are the lower and upper failure times of the indeterminacy interval.
The neutrosophic cumulative distribution function (ncdf) of the NGD with two neutrosophic parameters
anelar,ay) and bye[br, by], where aynelar,ay] is the shape parameter and bye[br, by is the scale
parameter is given by

NP
aN— b (T)
e N ‘bn
P(TN < i‘N) =1- E —],' ; TNG[TL, Tu], IZNG[IZL,{ZL[], bNG[bL, bu] 1)
j=0 '

The NGD is the generalization of the several distributions. The NGD reduces to neutrosophic
exponential distribution when ane[1, 1], see [36]. The NGD reduced to exponential distribution under
classical distribution when a;, = ay; and b, = by;. According to Wilson and Hilferty [53] using the
transformation of Ty, = Tll\,/ 3 T;\IG[T*, T’ZI] in the NGD tends to form the approximate neutrosophic
normal distribution, see Smarandache [32], with the mean and variance can be described as:

b\/*T(an + 1/3)
I'(an)

Hpe = E(T;\,) = ; T;\,e[Tz, T*u], anelar, ay), byelbr, by ()

2
= b/ \/rwé(;)zm) ) (F(aNr(:m1 /3)) el al, byl bl ¥

So, the approximate neutrosophic normal distribution of T7; T;\]e[T* , T{I] is given as:

T'(an) T'(an) T(an)

anelar, ay), bnelbr, bu]
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3. Designing of the Proposed Chart

Suppose that a single observation of the quality of interest is collected at every iteration or subgroup
with nye[1, 1] then the kth observation of Tk, and Ok, = Tn1, Tn2, IN3 - - - - - - , Tnk be defined as the kth
iteration. We define the posterior belief and the prior belief as B(OKN) and B(OKN_l) respectively with
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Oky = (TNK, OKN_l). The new observed variable T}, = Tll\]/ 3 T;\,e[Tz, T{I] is updated using B(OKN)
and B(OKN_l) for the posterior belief using the following equation

T;\] —p

N
B(Oxv._1)e T
B(Oky ) = B(Tky, Oky-1) = (T* Kf e N

NTN

B(OKN_l)eW + (1 - B(OKN—l))

s Tne T Ty | (5)

The variable Ty, is given without the subscript Ky just for the purpose of simplicity. Using a

new statistic based upon B(O KN) and B(OKN_l) suggested by Fallah Nezhad and Akhavan Niaki [6]
given as:

B(Oky)
Ziy = <— (6)
1-B(Oky)
The recursion relation is given as
T;\]—,UT;\]
Ziy = Zigae N @)

Let the initial value of B(Op) = 0.5 and Zj = 1 then according to Fallah Nezhad and Akhavan
Niaki [6] the statistic proposed below follows the normal distribution with mean 0 and variance
knelkr, ky]. Thus the neutrosophic lower and upper control limits of the proposed chart can be
written as:

UCLy = Ly vkn ®)
LCLy = ~Ly vky )

Using the Equations (8) and (9) the control coefficient Lye[L, Ly] is computed for the specific
level of type-I error and the predefined in-control average run length values.

3.1. The Proposed Chart

The procedure of the proposed control chart can be summarized using the following steps:
Step 1: Measure the quality characteristic Tk, of the kth subgroup selected at random.
Find Ty = T}Q/\’ 3 and then calculate

T, —ur
In(Zky) = In(Zxy-1) + KNTTKN (10)
KN

Step 2: If LCLy < ln(ZkN) < UCLy, Declare the process in-control and if ln(ZkN) > UCLy or
ln(ZkN) < LCLy then the process is declared as out-of-control.

For the purpose of calculating different measures of the in-control and out-of-control processes
we suppose that the scale parameter of the gamma distribution is not constant while other parameters,
i.e., shape parameter, is declared as a constant parameter. Let bgy and byy be the in-control and the
out-of-control values of the shape parameter respectively then the probability of declaring the process
as out-of-control when the process is in-control may be defined as

PO, = Plin(Za,,) < LCLn|bn = bon} + P{in(Z,) > UCLx|by = box)

ou

(11)

- cDN(UCLN) n q)(LCLN

Vi Vi
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where @y (x) denotes the cumulative distribution function of neutrosophic standard normal distribution,
see Smarandache [31].
Finally, Equation (11) reduces to
PO

out

=1-P(Ly) +D(-Ln) (12)
It is to be noted that Pgu ; is independent of Ky.

3.2. Neutrosophic Average Run Length for In-Control Process

As mentioned above the neutrosophic average run length (NARL) is defined as the average
number of samples before the process is indicated as the out-of-control. It is used very commonly
in the literature of the control chart for the evaluation and the comparison of the proposed control
chart [3]. Two types of ARLs has been used by the quality control researchers as the in-control ARL is
denoted by ARLj and the out-of-control is denoted by ARL; [54]. More literature on ARL can be seen
in references [55-62].

The NARL of the proposed chart can be calculated as

1

0
out,N

NARLy = (13)

3.3. Neutrosophic Average Run Length for Shifted Process

Now we develop the procedure for the shifted process. Here we suppose that a shift in the scale
parameter of the gamma distribution is introduced to observe the efficiency of the proposed scheme in
quick detection of this shift. It is to be noted that the NARL of the in-control process (NARLy) is some
predefined value of 200, 300, and 370 based upon the false alarm rate which is larger values while
NARL of the shifted process (NARL;) should be smaller values for the more efficient proposed chart.
Now let by = sby is the shift in the scale parameter of the gamma distribution with a shift constant is s.
Then the mean and variance of the T;\IG[T* , T*u] fort the shifted process can be determined as:

" F(QN + 1/3) * * *
E(TyJoin) = 51/ bon '/ W;TNG[TL, Ty ] (14)
Var(Ty|bin) = 522 bon?/ Dlay +2/3) _(Tlay + 1/3))] Tye|T7, Ty | (15)
N|IVIN ON F(aN) F(CIN) [\ L7-u

Then the mean and variance of ln(ZkN) at b1y can be calculated as:

T(ay + 1/3) (51/3 _ 1)

IT'(a
E[ln(ZkN)|b1N) =ky @ }kNe[kL/ ku} (16)
T(ay +2/3) (F(aN +1/3) )2
T(an) T(an)
Var(ln(ZkN)|b1N) = kNSZ/?’;kNe[kL,ku] (17)

The probability of shifted process to declare as an out-of-control process at kth subgroup is
calculated as:

PL i = Pn(Ziy) < LCLu|ow = bin} + Plin(Zy,,) > UCLn|bn = banf kel kul

out /kN

18
= P{ln(ZkN) < -Ly \/Ia'bN = blN} + P{Zi’l(ZkN) > Ly \/E|bz\] = blN}; kNe[kL, ku] (18)
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Finally, we have

C(ay +1/3) (175 T(ay +1/3) (173
L V- kn- Ty ) ( ]) N~ k- Ty ) ( 1)
T(ay + 2/3) 7(1‘(111\/ +1/3) )2 r(ay +2/3) 7(1‘(111\/ +1/3) )2
pl —1-® I(ay ) T(ay ) L@ T(ay ) I(ay ) .
outky \/st_2/3 W (19)
kNE[kL/ ku]

The probability of declaring out-of-control at (k + j)th subgroup when the process shift occurs at
k is expressed as

) 1 1 1 1
P{RL - ]} - (1 - Pout,kN+1)<1 - Pout,kN+2) T (1 - Pout,kN+j—1)Pout,kN+j (20)

where RL is a random variable representing NARL;.
Therefore, ARL; under the proposed control chart is given as:

_pl 1 1 1 1 1
NARLiy = Pout,kN+l + 2(1 - POllt,kN+1)P011t,kN+2 + 3(1 - Pout,kN+1)(1 - Pout,kN+2)Pout,kN+3 +oe (21)

Note here that the formulae in Equation (1) to Equation (21) under the neutrosophic statistics is the
generalization of the formulae in Aslam et al. [63].

To determine the control coefficient Ly, NARL( denoted by (ryp)and the NARL; using the
above-mentioned methodology, the following stepwise algorithm can be described as:

Step 1: Choose a range of control coefficient Ly

Step 2: Calculate Ly such that ARLgny > rno

Step 3: For a fixed level of ky and various shift constants s calculate Pclm by using Equation (19).

Step 4: Calculate the values of ARL1y for a fixed ky for various shift constants s.

Using the above mentioned methodology, an R-language code program was written and run for
different parameters such that ane[1, 1], ane[5, 5] and aye[10, 10] and using different in-control NARL
values as ron€e[200, 200], rone[300,300] and rgne[370,370] and different shift levels as s = 4.00, 3.00, 2.80,
2.50, 2.25,2.00, 1.90, 1.80, 1.70, 1.60, 1.50, 1.40, 1.30, 1.20, 1.10, 1.00, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40, 0.30,
0.25,0.15, 0.10, and 0.05. The NARL; values are determined and given in Tables 1-4.

Table 1. The values of neutrosophic average run length (NARL) when aye[1.95,2.05] and kye|3, 5].

kn [2.8071,2.8141] |  [2.935429416] |  [3.0003,3.0012]
s NARL

4.00 [1.28,1.06] [1.32,1.07] [1.34,1.07]
3.00 [1.76,1.24] [1.88,1.28] [1.95,1.31]
2.80 [1.98,1.34] [2.13,1.40] [2.22,1.43]
2.50 [2.50,1.58] [2.75,1.68] [2.89,1.73]
2.25 [3.27,1.97] [3.67,2.13] [3.91,2.22]
2.00 [4.75,2.74] [5.48,3.05] [5.92,3.22]
1.90 [5.74,3.28] [6.71,3.70] [7.29,3.93]
1.80 [7.13,4.05] [8.47,4.66] [9.28,4.98]
1.70 [9.18,5.24] [11.1,6.12] [12.26,6.61]
1.60 [12.32,7.12] [15.19,851] [16.96,9.28]
1.50 [17.4,10.34] [21.93,12.67] [24.76,13.98]
1.40 [26.08,16.27] [33.74,20.51] [38.61,22.94]
1.30 [41.89,2825] [55.90,36.86] [64.99,41.90]
1.20 [72.12,54.92] [99.88,74.68] [118.35,86.58]
1.10 [127.96,115.71] [185.0,165.6] [224.15,196.69]
1.00 [200.02,204.41] [300.17,306.26] [370.82,371.83]
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Table 1. Cont.

kn [2.8071,2.8141] |  [2.935429416] |  [3.0003,3.0012]
s NARL

0.80 [152.58,98.67] [227.95,143.72] [281.15,172.31]
0.75 [119.34,67.59] [177.29,97.32] [218.11,116.09]
0.70 [90.73,45.44] [134.07,64.61] [164.56,76.64]
0.60 [49.26,19.71] [71.88,27.17] [87.73,31.78]
0.50 [24.63,8.22] [35.26,10.86] [42.65,12.45]
0.40 [11.21,3.44] [15.56,4.26] [18.55,4.75]
0.30 [4.64,1.60] [6.10,1.82] [7.09,1.95]
0.25 [2.91,1.22] [3.68,1.32] [4.19,1.37]
0.15 [1.27,1.00] [1.4,1.01] [1.49,1.01]
0.10 [1.03,1.00] [1.05,1.00] [1.07,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]

Table 2. The values of NARL when aye[1.95,2.05] and kye[8, 10].

kn [2.8071,2.8164] ‘ [2.9354,2.9436] ‘ [2.9997,3.007]
s NARL
4.00 [1.011] [L.011] [L.01A]
3.00 [1.07,1.02] [1.08,1.03] [1.09,1.03]
2.80 [1.11,1.04] [1.13,1.05] [1.14,1.05]
250 [1.231.1] [1271.12] [1.29,1.13]
225 [1.431.22] [15,1.26] [1.54,1.28]
2.00 [1.86,1.5] [2.01,1.59] [2.1,1.64]
1.90 [2.17,1.71] [2.38,1.83] [2.5,1.9]
1.80 [2.63,2.02] [2.93,2.21] [3.1,2.31]
1.70 [3.34,2.52] [3.8,2.81] [4.07,2.97]
1.60 [4.51,3.36] [5.25,3.83] [5.69,4.1]
150 [6.58,4.88] [7.87,5.72] [8.64,622]
1.40 [10.58,7.92] [13.06,9.6] [14.57,10.61]
130 [19.27,14.85] [24.68,18.73] [28.06,21.11]
1.20 [40.86,33.47] [54.79,44.29] [63.76,51.16]
1.10 [99.7,91.45] [141.65,128.72] [169.75,153.39]
1.00 [200.01,205.94] [300.2,308.26] [370.01,379.03]
0.80 [63.82,47.69] [91.14,66.87] [109.64,79.63]
0.75 [39.6,27.68] [55.57,37.96] [66.28,44.72]
0.70 [244,1613] [33.57,21.58] [39.66,25.12]
0.60 [9.26,5.74] [12.14,7.23] [14.01,8.17]
0.50 [3.69,2.34] [4.54,2.74] [5.07,2.98]
0.40 [1.71,1.27] [1.94,1.36] [2.08,1.42]
0.30 [1.09,1.01] [1.14,1.02] [1.16,1.03]
025 [1.02,1.00] [1.03,1.00] [1.03,1.00]
0.15 [1.00,1.00] [1.00,1.00] [1.00,1.00]
0.10 [1.00,1.00] [1.00,1.00] [1.00,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]
Table 3. The values of NARL when ayne[0.95,1.05] and kye|3, 5].
kn [2.8071,2.8142] ‘ [2.9352,2.9392] ‘ [2.9997,3.0056]
S NARL

4.00 [2.09,1.4] [2.24,1.45] [2.32,1.49]
3.00 [3.34,2.02] [3.71,2.17] [3.92,2.26]
2.80 [3.86,2.29] [4.33,2.49] [4.61,2.61]
2.50 [5.04,2.93] [5.78,3.25] [6.21,3.43]
225 [6.74,3.83] [7.88,4.38] [8.56,4.69]
2.00 [9.78,5.66] [11.74,6.58] [12.92,7.15]

7 of 17
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Table 3. Cont.

kn [2.8071,2.8142] [2.93522.9392] |  [2.9997,3.0056]
s NARL

1.90 [11.71,6.84] [14.24,8.05] [15.76,8.81]
1.80 [14.33,8.5] [17.66,10.15] [19.69,11.19]
1.70 [17.99,10.91] [22.52,13.24] [25.31,14.73]
1.60 [23.25,14.56] [29.63,18] [33.6,20.23]
1.50 [31.1,20.36] [40.43,25.71] [46.32,29.23]
1.40 [43.21,30.06] [57.47,38.92] [66.63,44.84]
1.30 [62.46,47.23] [85.32,62.95] [100.27,73.68]
1.20 [93.37,78.73] [131.5,108.66] [156.99,129.57]
1.10 [140.64,134.1] [204.74,192.56] [248.65,234.62]
1.00 [200.02,204.48] [300.01,303.91] [370.04,377.32]
0.80 [238.37,175.18] [365.34,260.87] [455.85,324.45]
0.75 [220.33,142.4] [338.02,211.22] [422.1,262.24]
0.70 [197.09,112.31] [302.88,166.02] [378.67,205.82]
0.60 [147.18,65.42] [227.51,95.98] [285.52,118.6]
0.50 [101.86,34.98] [158.66,50.71] [200.09,62.32]
0.40 [64.33,16.86] [100.95,23.93] [127.95,29.12]
0.30 [35.38,7.15] [55.76,9.77] [70.97,11.66]
0.25 [24.24,4.43] [38.16,5.86] [48.62,6.88]
0.15 [8.68,1.64] [13.36,1.93] [16.9,2.13]
0.10 [4.15,1.12] [6.10,1.20] [7.59,1.26]
0.05 [1.60,1.00] [2.05,1.00] [2.39,1.00]

Table 4. The values of NARL when aye[0.95,1.05] and kye[8, 10].

kn [2.8071,2.8145] [2.93542.9399] |  [2.9998,3.0019]
s NARL

4.00 [1.18,1.07] [1.21,1.08] [1.22,1.08]
3.00 [1.55,1.27] [1.64,1.32] [1.68,1.34]
2.80 [1.72,1.38] [1.83,1.44] [1.90,1.47]
2.50 [2.13,1.64] [2.32,1.74] [2.42,1.80]
2.25 [2.76,2.05] [3.06,2.22] [3.24,2.32]
2.00 [3.97,2.87] [4.53,3.20] [4.86,3.39]
1.90 [4.78,3.43] [5.54,3.88] [5.98,4.14]
1.80 [5.95,4.25] [7.00,4.89] [7.62,5.25]
1.70 [7.68,5.50] [9.20,6.43] [10.10,6.97]
1.60 [10.37,7.48] [12.67,8.94] [14.06,9.79]
1.50 [14.79,10.84] [18.49,13.27] [20.77,14.71]
1.40 [22.54,17] [28.94,21.4] [32.96,24.07]
1.30 [37.13,29.36] [49.22,38.19] [56.97,43.67]
1.20 [66.38,56.51] [91.46,76.54] [107.95,89.33]
1.10 [123.82,117.26] [178.57,166.92] [215.76,199.71]
1.00 [200.02,204.72] [300.15,304.57] [370.2,372.66]
0.80 [133.37,103.02] [197.81,149.39] [242.69,180.6]
0.75 [100.03,71.35] [147.26,102.35] [180.06,123.11]
0.70 [73.11,48.45] [106.83,68.69] [130.19,82.17]
0.60 [36.85,21.38] [52.88,29.45] [63.9,34.75]
0.50 [17.23,9.02] [24.08,11.93] [28.73,13.8]
0.40 [7.48,3.76] [10.03,4.69] [11.73,5.28]
0.30 [3.10,1.71] [3.89,1.96] [4.40,2.11]
0.25 [2.02,1.28] [2.42,1.39] [2.67,1.46]
0.15 [1.09,1.00] [1.14,1.01] [1.18,1.01]
0.10 [1.00,1.00] [1.01,1.00] [1.01,1.00]
0.05 [1.00,1.00] [1.00,1.00] [1.00,1.00]
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From Tables 1-4, we note that the indeterminacy interval of NARL decreases when
knelkr, ky] decreases. We also note the increases trend in indeterminacy interval of NARL when
anelar, ay] decreases.

4. Advantages of the Proposed Chart

For the data having some ambiguous observations, Chen et al. [33] mentioned that the method
which provides the parameters in an indeterminacy interval is said to be more efficient and effective to
be applied than the method which provides the determined value of the parameters. Related to the
control chart theory, a control chart which provided the smaller values of NARL is called the efficient
control chart, see Aslam et al. [38]. Now we discuss the advantages of the proposed control chart over
the control chart proposed by Aslam et al. [63] under classical statistics.

4.1. By NARL

To compare both control chart in terms of NARL, the values of NARL are reported for the same
values of control chart parameters. Let NARL = ARL; + IARL;, where ARL; denotes the values of
ARL of the chart under classical statistics and Ie[infl, infU] be the indeterminacy interval. Table 5 is
presented for both control chart when ane[0.95,0.95] and kye[8, 8]. From Table 5, it can be noted that
the proposed control provides the values of NARL in the indeterminacy interval while the existing
control chart proposed by Aslam et al. [63] provides the determined values of ARL. For example, when
s = 1.50, the indeterminacy interval from the proposed chart is NARL = 14.77 + [14.77; Ie[0,0.4122].
The value of ARL from [63] chart is 20.76. It means that when s = 1.50, the control chart will be
out-of-control between 14th and 20th sample. By comparing both the control chart, it is concluded that
the proposed control chart under uncertain situations is more effective than the control chart proposed
by Aslam et al. [63].

Table 5. Comparison of average run length values at different levels of shift when a = 0.95 and k = 8.

s Control Chart [63] The Proposed Chart
ARLs NARL

4.00 1.178764 1.206864 1.2224 [1.18,1.07] [1.21,1.08] [1.22,1.08]
3.00 1.550192 1.635354 1.68279 [1.55,1.27] [1.64,1.32] [1.68,1.34]
2.80 1.720708 1.833704 1.896919 [1.72,1.38] [1.83,1.44] [1.90,1.47]
2.50 2.133142 2.317927 2.422306 [2.13,1.64] [2.32,1.74] [2.42,1.80]
2.25 2.757243 3.061253 3.23504 [2.76,2.05] [3.06,2.22] [3.24,2.32]
2.00 3.967114 4.530703 4.858373 [3.97,2.87] [4.53,3.20] [4.86,3.39]
1.90 4.783924 5.539304 5.982269 [4.78,3.43] [5.54,3.88] [5.98,4.14]
1.80 5.950011 6.99735 7.617622 [5.95,4.25] [7.00,4.89] [7.62,5.25]
1.70 7.680794 9.193211 10.09918 [7.68,5.50] [9.20,6.43] [10.10,6.97]
1.60 10.37155 12.66559 14.058 [10.37,7.48] [12.67,8.94] [14.06,9.79]
1.50 14.79182 18.4856 20.76225 [14.79,10.84] [18.49,13.27] [20.77,14.71]
1.40 22.53872 28.93451 32.94814 [22.54,17] [28.94,21.4] [32.96,24.07]
1.30 37.12749 49.20506 56.94885 [37.13,29.36] | [49.22,38.19] | [56.97,43.67]
1.20 66.37585 91.41983 107.9055 [66.38,56.51] | [91.46,76.54] | [107.95,89.33]
1.10 123.8084 178.4871 215.6592 [123.82,117.26]| [178.57,166.92]| [215.76,199.71]
1.00 200 300 370.0001 [200.02,204.72]| [300.15,304.57]| [370.2,372.66]
0.80 133.3607 197.7073 242.5684 [133.37,103.02]| [197.81,149.39]| [242.69,180.6]
0.75 100.0185 147.1854 179.9717 [100.03,71.35] | [147.26,102.35]| [180.06,123.11]
0.70 73.10437 106.7805 130.1201 [73.11,48.45] | [106.83,68.69] | [130.19,82.17]
0.60 36.84876 52.85517 63.86527 [36.85,21.38] | [52.88,29.45] [63.9,34.75]
0.50 17.23191 24.06818 28.71763 [17.23,9.02] [24.08,11.93] [28.73,13.8]
0.40 7479311 10.02559 11.72831 [7.48,3.76] [10.03,4.69] | [11.73,5.28]
0.30 3.097514 3.884251 4.398122 [3.10,1.71] [3.89,1.96] [4.40,2.11]
0.25 2.023985 2417816 2.672091 [2.02,1.28] [2.42,1.39] [2.67,1.46]
0.15 1.090389 1.144401 1.180756 [1.09,1.00] [1.14,1.01] [1.18,1.01]
0.10 1.003689 1.008166 1.011881 [1.00,1.00] [1.01,1.00] [1.01,1.00]
0.05 1.000 1.000 1.000001 [1.00,1.00] [1.00,1.00] [1.00,1.00]
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4.2. By Simulation

Control charts are used for monitoring the process for unusual changes in the process. The proposed
scheme has been developed for the efficient monitoring of the mean time of the process under uncertainty
environment. The proposed control chart has been examined using the simulation data of the mean
time between two events. The first 20 neutrosophic observations are generated from the neutrosophic
gamma distribution with neutrosophic parameters Ky = [3,5], ay =[1.95,2.05] and by = [2,2.2]. The next
20 observations are generated from the same distribution with s = 1.50. The gamma distributed
data is transformed into a neutrosophic normal distribution using the transformation T}, = Tll\]/ 3,
At these parameters, the tabulated value of ARLN;€[24.76,13.98]. It is expected that the process will be
out-of-control between 14th sample and 24th sample. We plotted the values of statistic ln(ZkN) on the
control chart in Figure 1. From Figure 1, it is clear that the first shift is at the 38th sample. The values of
ln(ZkN) are also calculated for Aslam et al. [63] and plotted in Figure 2. From Figure 2, we note no shift
indication in the process. By comparing both control charts, it is concluded that the proposed control
chart provides the values of NARL in indeterminacy interval and gives the quick indication about the
shift in the process as compared to the existing sampling plan. A quick indication in the shift in the
process helps industrial engineers to identify the cause of variation which resulted in minimizing the
non-conforming items.

2 94 — Lnzt),
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. . Y ; \ s
E _To\\ -~ die 4 @ |Op' bO 7‘-@ J,-fo‘\"\
S o] AL N =
o f‘\\l\ f@\ O-‘r o =0 o: Ol|l : ||l / ;{ °
LT <] \Of'fk ,.\ / v ' |,' < F:," o
i o o =t |: o]
w LCLL=-5.19
LCLU=-6.71
C:I —_
I I I I I
0 10 20 30 40

Sample Number

Figure 1. The proposed chart for the simulated data.
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Figure 2. The existing chart for the simulated data.

5. Real Example

The application of the proposed control will be given in the healthcare department. Healthcare
practitioners are interested in applying the proposed control chart for the monitoring of urinary tract
infections (UTI) among male patients in a large hospital. A similar study was done by Santiago and
Smith [64] and Aslam et al. [63] using classical statistics. The UTIs data is measured with the help
of measurement devices. Therefore, there is a chance that observations are more fuzzy or imprecise.
Under this uncertainty situation, the application of the existing control chart under classical statistics
may mislead healthcare practitioners in monitoring the UTIs. Therefore, the proposed control chart
is quite reasonable to apply for the monitoring of the UTIs infection. The neutrosophic data, which
follows the gamma distribution with aye[1.95, 2.05] and bye|2, 2.2] is reported in Table 6.

The control limits are calculated as follows: UCLy = Ly Vkn; UCLye[-5.19,-6.71] and
LCLy = —Ly Vkyn; LCLyne[5.19,6.71]. We set the initial value of Zg = 1 and B(Oy) = 0.5. As,

Ziy = ZkN_lexp( TI\;:T;V which yield Zkle[0.985, 54.568]. The values of neutrosophic statistic ln(ZkN)
are plotted in Figure 3. From Figure 3, we note although the process is an in-control state, the 16th
sample and 33rd sample are near the control limits which indicate some issue in the process. The values
of ln(ZkN) under classical statistics are also plotted in Figure 4. From Figure 4, it can be seen that
only one point is near to control limit. By comparing both charts, it is concluded that the proposed
control chart indicates that there is some issue in the process which should be identified. Therefore,
the proposed control is more beneficial to be applied for the monitoring of UTIs inspection among

male patients.
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Table 6. The data for a real example.

Sr. # B(k) z(k) In(zk)

1 [0.496,0.982] [0.985,54.568] [-0.015,3.999]
2 [0.968,0.261] [30.555,0.353] [3.42,—1.04]

3 [0.922,0.252] [11.788,0.338] [2.467,—1.086]
1 [0.403,0.290] [0.675,0.408] [~0.393,-0.897]
5 [0.432,0.654] [0.761,1.891] [~0.274,0.637]
6 [0.096,0.652] [0.106,1.872] [-2.247,0.627]
7 [0.490,0.988] [0.962,83.351] [~0.039,4.423]
8 [0.204,0.264] [0.256,0.358] [-1.363,—1.028]
9 [0.287,0.820] [0.403,4.546] [~0.908,1.514]
10 [0.325,0.519] [0.481,1.078] [~0.732,0.075]
11 [0.795,0.904] [3.885,9.443] [1.357,2.245]
12 [0.396,0.941] [0.656,15.825] [-0.421,2.762]
13 [0.740,0.049] [2.843,0.051] [1.045,—2.974]
14 [0.361,0.017] [0.564,0.017] [~0.572,—4.048]
15 [0.084,0.331] [0.091,0.496] [~2.393,-0.701]
16 [0.972,0.278] [34.857,0.385] [3.551,—0.956]
17 [0.849,0.109] [5.611,0.122] [1.725,-2.101]
18 [0.932,0.06] [13.683,0.064] [2.616,—2.75]
19 [0.752,0.086] [3.028,0.094] [1.108,—2.364]
20 [0.293,0.621] [0.414,1.64] [~0.883,0.495]
21 [0.924,0.304] [12.2,0.436] [2.501,—0.829]
22 [0.631,0.636] [1.709,1.748] [0.536,0.558]
23 [0.859,0.611] [6.108,1.572] [1.810,0.452]
24 [0.863,0.812] [6.296,4.306] [1.840,1.460]
25 [0.279,0.983] [0.388,59.465] [~0.947,4.085]
26 [0.208,0.191] [0.263,0.236] [~1.337,—1.445]
27 [0.691,0.232] [2.236,0.303] [0.805,—1.195]
28 [0.052,0.896] [0.055,8.661] [~2.908,2.159]
29 [0.659,0.608] [1.936,1.551] [0.660,0.439]
30 [0.252,0.981] [0.337,50.315] [~1.087,3.918]
31 [0.186,0.221] [0.229,0.283] [-1.475,-1.262]
32 [0.968,0.286] [29.788,0.4] [3.394,-0.916]
33 [0.324,0.279] [0.479,0.387] [~0.736,—0.95]
34 [0.791,0.157] [3.78,0.186] [1.33,—1.684]
35 [0.217,0.812] [0.277,4.321] [—1.284,1.464]
36 [0.08,0.942] [0.086,16.316] [~2.449,2.792]
37 [0.246,0.273] [0.327,0.376] [-1.119,-0.979]
38 [0.398,0.914] [0.66,10.644] [~0.415,2.365]
39 [0.625,0.358] [1.665,0.557] [0.51,—0.586]
40 [0.720,0.286] [2.569,0.400] [0.944,—0.916]
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6. Conclusions

In this article, a control chart for the belief statistic under the gamma distribution has been presented
when the interested quality characteristics of the process are imprecise, incomplete and vague. Although
there are numerous techniques available in the literature like the fuzzy logic the proposed scheme is
effective in dealing with vague information. The control limits have been determined for different
settings of the parameters and different levels of process shifts. In this paper, the average run lengths for
many settings of the proposed technique have been tabulated. The comparison of the proposed chart
with the existing chart for different process shifts have been tested and it has been observed that the
proposed chart is an effective addition in the toolkit of the quality control experts. We conclude that the
proposed control is more robustness in detecting cause of variation in the process than the chart under
classical statistics in uncertainty. The proposed chart can further be extended for other probability
distributions, see, for example, references [65] and [66], particularly for the multivariate case.
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