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METHODOLOGIES AND APPLICATION

Modeling and stability analysis methods of neutrosophic transfer
functions

Jun Ye1 • Wenhua Cui1

� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Uncertainty is inherent property in actual control systems because parameters in actual control systems are no constants

and changeable under some environments. Therefore, actual systems imply their indeterminate parameters, which can

affect the control behavior and performance. Then, a neutrosophic number (NN) presented by Smarandache is very easy

expressing determinate and/or indeterminate information because a NN p = c ? dI is composed of its determinate term

c and its indeterminate term dI for c, d [ R (R is all real numbers), where the symbol ‘‘I’’ denotes indeterminacy.

Unfortunately, all uncertain modeling and analysis of practical control systems in existing literature do not provide any

concept of NN models and analysis methods till now. Hence, this study firstly proposes a neutrosophic modeling method

and defines a neutrosophic transfer function and a neutrosophic characteristic equation. Then, two stability analysis

methods of neutrosophic linear systems are established based on the bounded range of all possible characteristic roots and

the neutrosophic Routh stability criterion. Finally, the proposed methods are used for two practical examples on the RLC

circuit and mass–spring–damper systems with NN parameters. The analysis results demonstrate the effectiveness and

feasibility of the proposed methods.

Keywords Neutrosophic transfer function � Neutrosophic characteristic equation � Neutrosophic Routh stability criterion �
Neutrosophic characteristic root

1 Introduction

Uncertainty is inherent property in actual control systems

because parameters in actual control systems are no con-

stants and changeable under some environments. There-

fore, actual systems imply their indeterminate parameters,

which can affect the control behavior and performance. In

fact, in traditional control problems, the coefficients of the

plant are always treated as determinate/nominal values in

common control systems. Variations or indeterminacies of

system parameters are produced due to many reasons, such

as manufacturing tolerances, aging of main components,

and environmental changes, which present an uncertain

threat to the system. Therefore, such a system needs special

modeling and analysis methods of a control system to

grantee the robust stability and control performance to the

control system with unconcern parameters. For instance,

many research methods for modeling uncertain systems

were proposed, and the robust stability for dynamic elec-

trical and mechanical systems was assessed in interval

linear time-invariant systems (Kolev 1988; Hussein

2005, 2010, 2011, 2015). Kharitonov’s theorem (Khar-

itonov 1979) introduced a significant result in the field of

robust stability of systems with parametric uncertainty/in-

terval parameters, which indicated that the strict Hurwitz

property of the entire family is equivalent to the strict

Hurwitz property of four specifically constructed vertex

polynomials. This theorem has been widely used in various

control system applications (Czarkowski et al. 1995;

Meressi et al. 1993; Precup and Preitl 2006; Hote et al.

2009; Elkaranshawy et al. 2009; Hote et al. 2010).

In indeterminate problems, a neutrosophic number (NN)

presented by Smarandache (1998, 2013, 2014) is very easy
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expressing determinate and/or indeterminate information

because a NN p = c ? dI is composed of its determinate

term c and its indeterminate term dI for c, d [ R (R is all

real numbers), where the symbol ‘‘I’’ denotes indetermi-

nacy. Hence, NNs have been successfully applied in mul-

tiple attribute group decision-making problems (Ye

2016a, 2017a), fault diagnosis problems (Kong et al. 2015;

Ye 2016b), expression and analysis problems of rock joint

roughness coefficient (Ye et al. 2016; 2017; Chen et al.

2017a, b), linear and nonlinear optimization problems

(Jiang and Ye 2016, Ye 2018), and traffic flow problems

(Ye 2017b). Unfortunately, all uncertain modeling and

analysis of practical control systems in existing literature

do not provide any concept of NN models and analysis

methods till now. Hence, it is necessary to firstly propose a

neutrosophic modeling method and to define a neutro-

sophic transfer function and a characteristic equation.

Then, we establish stability analysis methods of neutro-

sophic linear time-invariant systems. To do so, the main

objectives of this paper are: (1) to propose a neutrosophic

modeling method based on actual physical systems with

indeterminate parameters; (2) to define a neutrosophic

transfer function and its neutrosophic characteristic equa-

tion; (3) to present two stability analysis methods of neu-

trosophic linear systems.

The main contribution of this study is that the modeling

and stability analysis methods of neutrosophic transfer

functions are proposed for the first time to provide the

necessary preliminary basis for the analysis and design of

neutrosophic control systems in incomplete, uncertain, and

indeterminate environments.

The rest of this paper is structured as the following

arrangement. Section 2 introduces some basic concepts of

NNs used for this study. Section 3 proposes modeling

methods of neutrosophic transfer functions, including the

modeling of actual physical systems with indeterminate

parameters and the definition of the neutrosophic transfer

function and characteristic equation. Section 4 presents

two stability analysis methods of neutrosophic systems

based on the bounded range of all possible characteristic

roots and the neutrosophic Routh stability criterion and

uses them for two practical examples on the RLC circuit

and mass–spring–damper systems with NN parameters. In

Sect. 5, some conclusions and future research are given

lastly.

2 Some basic concepts of NNs

In indeterminate situations, the concept of NN was origi-

nally presented by Smarandache (1998, 2013, 2014). It is

defined as p = c ? dI for c, d [ R and I [ [IL, IU]. It is

obvious that NN is composed of its determinate term c and

its indeterminate part dI. Based on this expression form of

NN, it easily expresses the determinate and/or indetermi-

nate information in real world. For instance, some resistor

R in a circuit may suffer from uncertainty and deviation

from the nominal value R = 100 X due to several condi-

tions such as aging, temperature, manufacturing tolerance,

or other disturbances. Then, the NN of R can be expressed

as p = 100 ? I X, which indicates that its determinate term

(nominal value) is 100 X and its indeterminate term is I. In

real situations, some possible interval range of indetermi-

nacy I [ [IL, IU] is usually specified to satisfy some actual

requirement. When the indeterminacy I belongs to the

specified interval [- 10, 10], it is equivalent to p = [90,

110] X, i.e., p is within the interval [90, 110] X. When the

indeterminacy I belongs to the specified interval [- 5, 5],

then there is p = [95, 105] X.

Obviously, a NN p = c ? dI may be also expressed as a

possible interval number p = [c ? dIL, c ? dIU] for p [ Z

(Z is all NNs) and I [ [IL, IU]. Thus, the NN p implies a

changeable interval number corresponding to different

indeterminate ranges of I [ [IL, IU]. Especially, the NN p is

reduced to the determinate part p = c when dI = 0 for the

best case, while the NN p is reduced to the indeterminate

part p = dI if c = 0 for the worst case; then, p is reduced to

a real number if IL = IU. It is obvious that NN is more

flexible and suitable for the expression of determinate and/

or indeterminate information, which indicates the advan-

tage of expression and analysis convenience and flexibility

in indeterminate system.

For two NNs p1 = c1 ? d1I and p2 = c2 ? d2I for c1, d1,

c2, d2 [ R, p1, p2 [ Z, and I [ [IL, IU], they have the

following operational laws (Ye 2018):

p1 þ p2 ¼ ðc1 þ d1IÞ þ ðc2 þ d2IÞ ¼ c1 þ c2 þ ðd1 þ d2ÞI;
ð1Þ

p1 � p2 ¼ ðc1 þ d1IÞ � ðc2 þ d2IÞ ¼ c1 � c2 þ ðd1 � d2ÞI;
ð2Þ

p1 � p2 ¼ ðc1 þ d1IÞ � ðc2 þ d2IÞ
¼ c1c2 þ ðc1d2 þ c2d1ÞI þ d1d2I

2; ð3Þ

p1

p2

¼ c1 þ d1I

c2 þ d2I
: ð4Þ

3 Modeling method of neutrosophic
transfer functions

Indeterminate system analysis needs mathematical models.

From the differential or integral–differential equations

describing the behavior of an indeterminate system, pro-

cess, or component, we can also establish the neutrosophic

transfer functions based on the Laplace transformation and
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its properties (Dazzo and Houpis 1995). To establish neu-

trosophic transfer functions of indeterminate systems, the

following two typical examples are presented to show the

modeling method.

Example 1 A typical example on a series RLC circuit

(Dazzo and Houpis 1995) is presented as a circuit system

consisting of a resistor R, an inductor L, and a capacitor C,

which is shown in Fig. 1. Then, some variation or inde-

terminacy is implied in all components R, L, and C of the

circuit.

The output voltage uo of the circuit indicated in Fig. 1 is

excited by the input voltage ui. Then, the parameters (R, L,

and C) of the series RLC circuit are suffering from varia-

tions or indeterminacies from their nominal values due to

several conditions such as aging, temperature, manufac-

turing tolerances, or other disturbances. According to the

Kirchhoff’s laws (Dazzo and Houpis 1995), the RLC cir-

cuit equations are given as follows:

ui ¼ Riþ L
di

dt
þ uo

uo ¼
1

C

Z
idt

8><
>: : ð5Þ

Then, the relationship between uo and ui can be obtained

as the following second-order differential equation:

LC
d2uo

dt2
þ RC

duo

dt
þ uo ¼ ui: ð6Þ

Based on the Laplace transformation and its properties

(Dazzo and Houpis 1995), the transformed equation with

zero initial conditions is as follows:

LCs2UoðsÞ þ RCsUoðsÞ þ UoðsÞ ¼ UiðsÞ: ð7Þ

Solving for the ratio of the transformed output to the

transformed input yields the transfer function of the

system:

GðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

LCs2 þ RCsþ 1
: ð8Þ

Under the indeterminate environment, since R, L, and C

imply some variations or indeterminacies, they are com-

posed of their determinate terms (nominal values) and

indeterminate terms (changeable values), and then LC and

RC can be expressed as two neutrosophic numbers p2-

= c2 ? d2I and p1 = c1 ? d1I, respectively, for I[[IL, IU].

Thus, the transfer function of the circuit with NNs can be

represented as the following neutrosophic transfer function:

Gðs; IÞ ¼ Uoðs; IÞ
Uiðs; IÞ

¼ 1

p2s2 þ p1sþ 1
; ð9Þ

where G(s, I) is a neutrosophic transfer function of the

second-order system, which is expressed as a ratio of the

output Uo(s, I) to the input Ui(s, I) for I [ [IL, IU] in the

s (Laplace) domain, and then p1 and p2 are the NN coef-

ficients in the denominator polynomial Ui(s, I).

Example 2 A typical mechanical movement system with

mass–spring–damper (Dazzo and Houpis 1995) is consid-

ered in Fig. 2, whose parameters are suffering from vari-

ations or indeterminacies from the nominal values due to

several conditions such as aging, temperature, manufac-

turing tolerances, or other disturbances.

The free body diagram for this system is illustrated in

Fig. 3, where m is mass, k is spring constant, l is damping

constant, f(t) is input force, and y0 is an initial displacement

in the y coordinate direction.

Applying Newton’s second law (Dazzo and Houpis

1995), we can get the following equation:

f ðtÞ � k yðtÞ þ y0½ � � l
dyðtÞ
dt

þ mg ¼ m
d2yðtÞ

dt2
: ð10Þ

Since mg ¼ ky0, Eq. (10) can be simplified as the sec-

ond-order differential equation of the system:

m
d2yðtÞ

dt2
þ l

dyðtÞ
dt

þ kyðtÞ ¼ f ðtÞ: ð11Þ

By the Laplace transformation (Dazzo and Houpis

1995), the transformed equation with zero initial conditions

is as follows:

ms2YðsÞ þ lsYðsÞ þ kYðsÞ ¼ FðsÞ: ð12Þ

Solving for the ratio of the transformed output to the

transformed input yields the transfer function of the

system:

R L

Cui uoi

Fig. 1 Series RLC circuit Fig. 2 Mechanical movement system with mass–spring–damper
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GðsÞ ¼ YðsÞ
FðsÞ ¼

1

ms2 þ lsþ k
: ð13Þ

Under the indeterminate environment, since m, l, and k

imply some variations or indeterminacies, we can consider

that m, l, and k are composed of their determinate terms

(nominal values) and indeterminate terms (changeable

values), which can be expressed as three neutrosophic

numbers p2 = c2 ? d2I, p1 = c1 ? d1I, and p0 = c0 ? d0I,

respectively, for indeterminacy I[[IL, IU]. Thus, the transfer

function of the system with NNs can be represented as the

following neutrosophic transfer function:

Gðs; IÞ ¼ Yðs; IÞ
Fðs; IÞ ¼

1

p2s2 þ p1sþ p0

; ð14Þ

where G(s, I) is a neutrosophic transfer function of the

second-order system, which is expressed as a ratio of the

output displacement Y(s, I) to the input force F(s, I) for I [
[IL, IU] in the s (Laplace) domain, and then p0, p1, and p2

are the NN coefficients in the denominator polynomial F(s,

I).

From the transfer functions of the above two physical

systems, we see that different physical systems show the

same mathematical models (the same second-order sys-

tems). For a linear time-invariant system, we can give the

common definition of a neutrosophic transfer function.

Definition 1 For a linear time-invariant system with zero

initial conditions, the neutrosophic transfer function itself

can be expressed as a ratio of two neutrosophic polyno-

mials with NNs in the complex Laplace variable s:

Gðs; IÞ ¼ Nðs; IÞ
Dðs; IÞ ¼

qms
m þ qm�1s

m�1 þ � � � q0

pnsn þ pn�1sn�1 þ � � � þ p0

; ð15Þ

where qi = ai ? biI (i = 0, 1, …, m) for qj [ Z and I[[IL,

IU] are the NN coefficients of the numerator polynomial

N(s, I) and pj = cj ? djI (i = 0, 1, …, n) for pi [ Z and I [
[IL, IU] are the NN coefficients of the denominator poly-

nomial D(s, I). For physical systems, N(s, I) will be of

lower order than D(s, I) since nature integrates rather than

differentiates.

4 Stability analysis of neutrosophic transfer
functions

In Eq. (15), the denominator D(s, I) of the neutrosophic

transfer function is called the neutrosophic characteristic

equation since it contains all the physical characteristics of

the system. The neutrosophic characteristic equation is

formed by setting D(s, I) equal to zero. The roots of the

neutrosophic characteristic equation (generally neutro-

sophic characteristic roots) determine the stability of the

system and the general nature of the transient response to

any input. The numerator neutrosophic polynomial N(s,

I) is a function of how the input enters the system. Con-

sequently, N(s, I) does not affect the absolute stability or

the number or nature of the transient modes. It does,

however, along with the specific input, determine the

magnitude and sign of each transient mode and thus

establishes the shape of the transient response as well as the

steady-state value of the output.

By setting the denominator polynomial equal to zero,

the neutrosophic characteristic equation is formed as

follows:

Dðs; IÞ ¼ pns
n þ pn�1s

n�1 þ � � � þ p1s
1 þ p0 ¼ 0 for

pj 2 Z;

ð16Þ

and can be also written as the following factored form:

Dðs; IÞ ¼
Yn
j¼1

ðsþ rjÞ ¼ 0 for rj 2 Z: ð17Þ

Based on the stability criterion of conventional systems

(Dazzo and Houpis 1995), we can give that a necessary and

sufficient condition for the neutrosophic/indeterminate

system to be stable is that the NN roots of the neutrosophic

characteristic equation have negative real parts. This can

ensure that the impulse response will decay exponentially

with time.

For higher-order neutrosophic system, it may be difficult

to directly solve NN roots of neutrosophic characteristic

polynomials. Therefore, this research only proposes two

stability analysis methods.

(1) Method 1: Stability criterion based on the bounded

range of all possible characteristic roots

Based on the analysis methods of eigenvalues of inter-

val/indeterminate systems introduced by Hussein

(2010, 2015), a simple and efficient method can be pro-

vided to determine the bounded range of all possible

Fig. 3 The free body diagram for mechanical movement system
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characteristic roots corresponding to a neutrosophic char-

acteristic polynomial for assessing the stability of such a

neutrosophic system. By applying the convex hull concept

(Hussein 2010, 2015), it can generate a plot (convex hull/

bounded edges) that constrains the roots of the entire

family of the neutrosophic characteristic polynomials.

Let us consider the following neutrosophic polynomial:

Dðs; IÞ ¼ pns
n þ pn�1s

n�1 þ � � � þ p1s
1 þ p0 ¼ 0

for pj 2 Z;
ð18Þ

where pj [ [cj ? djI
L, cj ?djI

U] (j = 0, 1, …, n) for I[[IL,

IU] are NN coefficients in the neutrosophic characteristic

polynomial D(s, I). If the number of NN coefficients in the

neutrosophic characteristic polynomial is k, there exists the

family of 2k characteristic polynomials (Hussein

2010, 2015) with all possible coefficient combinations

associated with Eq. (18). Thus, the neutrosophic system is

robustly stable when the bounded range of all possible

roots corresponding to the 2k characteristic polynomials is

located on the left-half s plane (complex plane), in which

all possible roots can be constructed as the convex hull (the

bounded edges) (Hussein 2010, 2015). In other words, we

can also give the following convex hull stability criterion

based on the convex hull concept.

Convex hull stability criterion The neutrosophic system

is robustly stable as long as the convex hull of all possible

characteristic roots is located on the left-half s plane.

(2) Method 2: Neutrosophic Routh stability criterion

The classical Routh stability criterion (Dazzo and

Houpis 1995) can be extended to the neutrosophic Routh

stability criterion.

Based on the classical Routh array (Dazzo and Houpis

1995), the NN Routh array is defined below:

sn pn pn�2 pn�4 pn�6 � � �
sn�1 pn�1 pn�3 pn�5 pn�7 � � �
sn�2 a1 a2 a3 � � �
sn�3 b1 b2 � � �
� � � � � � � � �
s1 c1

s0 d1

: ð19Þ

In the NN Routh array (19), sn, sn-1, sn-2, sn-3, …, s1,

and s0 are denoted as their rows, pn, pn-1, pn-2, …, p0 are the

NN coefficients of the neutrosophic characteristic Eq. (18),

and then the NNs a1, a2, a3, … and b1, b2, … in the sn-2,

sn-3 rows are calculated by the following formulae:

a1 ¼ qn�1qn�2 � qnqn�3

qn�1

; ð20Þ

a2 ¼ qn�1qn�4 � qnqn�5

qn�1

; ð21Þ

a3 ¼ qn�1qn�6 � qnqn�7

qn�1

; ð22Þ

b1 ¼ a1qn�3 � qn�1a2

a1

; ð23Þ

b2 ¼ a1qn�5 � qn�1a3

a1

; ð24Þ

b3 ¼ a1qn�7 � qn�1a4

a1

: ð25Þ

These calculations are continued until the a’s and b’s

elements are all equal to zeros. Then, the rest of the rows

are calculated in this way down to the s0 row.

Neutrosophic Routh stability criterion A necessary but

not sufficient condition for stable roots is that all the NN

coefficients in Eq. (18) should be positive. Then, the suf-

ficient condition for stable roots is that all the NN roots of a

neutrosophic characteristic Eq. (18) have negative real

parts if and only if the elements of the first NN column of

the Routh array have the same sign; otherwise, the number

of NN roots with positive real parts is equal to the number

of changes of sign of the first NN column.

To validate the proposed two methods, we firstly con-

sider the series RLC circuit in Fig. 1 as a typical practical

example in the second-order system for convenient analy-

sis and calculation.

Example 3 Consider the series RLC circuit system in

Fig. 1, it is assumed that the tolerance in all components of

the circuit is to be 10%, such that R = 500 ? 500I = [450,

550] X, C = 0.01 ? 0.01I = [0.009, 0.011] F,

L = 0.2 ? 0.2I = [0.18, 0.22] H, RC = [4.05, 6.05], and

LC = [0.00162, 0.00242] for I[[- 0.1, 0.1].

Based on the neutrosophic transfer function (9) for the

series RLC circuit system, there is the following neutro-

sophic characteristic polynomial:

Dðs; IÞ ¼ ð0:2 þ 0:2IÞð0:01 þ 0:01IÞs2

þ ð500 þ 500IÞð0:01 þ 0:01IÞsþ 1

¼ ð0:00202þ0:004IÞs2 þ ð5:05þ10IÞsþ 1

¼ ½0:00162; 0:00242�s2 þ ½4:05; 6:05�sþ 1 ¼ 0:

ð26Þ

According to Method 1, the four (22 = 4 for two NN

coefficients, i.e., k = 2) possible characteristic polynomials

are generated from the neutrosophic characteristic poly-

nomial (26) as follows:

D1ðsÞ ¼ 0:00162s2 þ 4:05sþ 1 ¼ 0;

D2ðsÞ ¼ 0:00162s2 þ 6:05sþ 1 ¼ 0;

D3ðsÞ ¼ 0:00242s2 þ 4:05sþ 1 ¼ 0;

D4ðsÞ ¼ 0:00242s2 þ 6:05sþ 1 ¼ 0:
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Then, the roots of the corresponding four characteristic

polynomials are calculated by the Matlab software as

follows:

R ¼ �2499:7531; �0:2469; �3734:4026; �0:1653;½
�1673:3068; �0:247; �2499:8347; �0:1653�:

The bounded range of all the roots of the characteristic

polynomials is shown in Fig. 4, and this bounded range is a

line due to the system having no imaginary poles. Then, all

poles of the system neutrosophic transfer function are real

and the bounds are located on the real axis of the left-half

s plane, so the system is robustly stable.

Corresponding to the above four characteristic equa-

tions, the four transfer functions can be constructed as

follows:

tf1ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00162s2 þ 4:05sþ 1
;

tf2ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00162s2 þ 6:05sþ 1
;

tf3ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00242s2 þ 4:05sþ 1
;

tf4ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00242s2 þ 6:05sþ 1
:

Hence, their step responses for the RLC system with I [
[- 0.1, 0.1] are shown in Fig. 5. Obviously, the neutro-

sophic system contains indeterminate step responses.

Based on Method 2, it is obvious that the NN coeffi-

cients in the neutrosophic characteristic Eq. (26) with I [
[- 0.1, 0.1] are positive, which can satisfy the necessary

condition. Then, based on the neutrosophic Routh stability

criterion for the neutrosophic characteristic Eq. (26), by

using Eqs. (19)–(25), we can construct the following NN

Routh array:

s2 0:00202 þ 0:004I ¼ ½0:00182; 0:00222� 1

s1 5:05 þ 10I ¼ ½4:55; 5:55� 0

s0 1 0

:

It is obvious that the elements of the first NN column of

the NN Routh array have the same sign corresponding to

I [ [- 0.1, 0.1]; hence, the neutrosophic system is robustly

stable.

If the indeterminacy of the neutrosophic characteristic

Eq. (26) is specified as I [ [- 0.05, 0.05], then it can be

expressed as the following neutrosophic characteristic

equation:

Dðs; IÞ ¼ ð0:00202þ0:004IÞs2 þ ð5:05þ10IÞsþ 1

¼ ½0:00182; 0:00222�s2 þ ½4:55; 5:55�sþ 1 ¼ 0:

ð27Þ

Similarly, the four (22 = 4) possible characteristic

equations are generated from the neutrosophic character-

istic polynomial (27) as follows:

D1ðsÞ ¼ 0:00182s2 þ 4:55sþ 1 ¼ 0;

D2ðsÞ ¼ 0:00182s2 þ 5:55sþ 1 ¼ 0;

D3ðsÞ ¼ 0:00222s2 þ 4:55sþ 1 ¼ 0;

D4ðsÞ ¼ 0:00222s2 þ 5:55sþ 1 ¼ 0:

Thus, the roots of the corresponding four characteristic

equations are calculated by the Matlab software as follows:

R ¼ �2499:7802; �0:2198; �3049:2704; �0:1802;½
�2049:3297; �0:2198; �2499:8198; �0:1802�:

The bounded range of all roots of the characteristic

equations is shown in Fig. 6, and then, this bounded range
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Fig. 4 The bounded range of all roots of characteristic polynomials

for I[[- 0.1, 0.1]
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Fig. 5 Step responses of the RLC system with I [ [- 0.1, 0.1]
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is also a line due to the system having no imaginary poles.

Then, all poles of the system neutrosophic transfer function

are real. Thus, the bounded range of all the roots is located

on the real axis of the left-half s plane, so the system is

robustly stable.

Based on the neutrosophic Routh stability criterion and

the neutrosophic characteristic Eq. (27), it is obvious that

the NN coefficients in the neutrosophic characteristic

Eq. (27) with I [ [- 0.05, 0.05] are positive, which can

also satisfy the necessary condition. Then, by using

Eqs. (19)–(25), we can construct the following NN Routh

array:

s2 0:00202 þ 0:004I ¼ ½0:00182; 0:00222� 1

s1 5:05 þ 10I ¼ ½4:55; 5:55� 0

s0 1 0

:

Obviously, the elements of the first NN column of the

NN Routh array have the same sign for I [ [- 0.05, 0.05];

hence, the neutrosophic system is also robustly stable.

Corresponding to the above four characteristic equa-

tions, the four transfer functions can be constructed as

follows:

tf1ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00182s2 þ 4:55sþ 1
;

tf2ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00182s2 þ 5:55sþ 1
;

tf3ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00222s2 þ 4:55sþ 1
;

tf4ðsÞ ¼ UoðsÞ
UiðsÞ

¼ 1

0:00222s2 þ 5:55sþ 1
:

Hence, their step responses for the mass–spring–damper

system with I [ [- 0.05, 0.05] are shown in Fig. 7. Gen-

erally, the neutrosophic system implies the indeterminate

responses, and then, the indeterminate degree of the step

responses decreases with narrowing the indeterminate

range of I.

Especially, when the indeterminacy of the neutrosophic

characteristic Eq. (27) is specified as I = 0, it is reduced to

the following determinate/nominal characteristic equation:

DðsÞ ¼ 0:002s2 þ 5sþ 1 ¼ 0:

Thus, its characteristic roots are - 2499.8 and - 0.2. It

is obvious that the nominal system is stable. Then, the step

response of the nominal system is shown in Fig. 8.

Furthermore, we consider the mass–spring–damper

system in Fig. 2 as another typical practical example in the

second-order system for convenient analysis and

calculation.
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Fig. 6 The roots of all characteristic equations for I [ [- 0.05, 0.05]
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Example 4 Consider that a mass–spring–damper in Fig. 2

as a mechanical movement system, where the parameters

suffer from uncertainty and deviations from the nominal

values due to several conditions such as aging, tempera-

ture, manufacturing tolerances, or other disturbances.

Assume that the physical system contains some variation/

indeterminacy I [ [IL, IU] from the nominal values in mass,

spring, and damper parameters, which are given in Table 1.

According to Method 1, from the neutrosophic transfer

function (14), there is the following neutrosophic charac-

teristic equation:

Dðs; IÞ ¼ ð1þIÞs2 þ ð0:2þ0:2IÞsþ ð1 þ IÞ
¼ ½0:9; 1:1�s2 þ ½0:18; 0:22�sþ ½0:9; 1:1� ¼ 0:

ð28Þ

Thus, the eight (23 = 8 for three NN coefficients, i.e.,

k = 3) characteristic equations are generated from the

neutrosophic characteristic Eq. (28) as follows:

D1ðsÞ ¼ 0:9s2 þ 0:18sþ 0:9 ¼ 0;

D2ðsÞ ¼ 0:9s2 þ 0:18sþ 1:1 ¼ 0;

D3ðsÞ ¼ 0:9s2 þ 0:22sþ 0:9 ¼ 0;

D4ðsÞ ¼ 0:9s2 þ 0:22sþ 1:1 ¼ 0;

D5ðsÞ ¼ 1:1s2 þ 0:18sþ 0:9 ¼ 0;

D6ðsÞ ¼ 1:1s2 þ 0:18sþ 1:1 ¼ 0;

D7ðsÞ ¼ 1:1s2 þ 0:22sþ 0:9 ¼ 0;

D8ðsÞ ¼ 1:1s2 þ 0:22sþ 1:1 ¼ 0:

Then, all the roots of the corresponding eight charac-

teristic polynomials are obtained as follows:

R ¼ ½�0:1000 � 0:9950i; �0:1000 þ 0:9950i; �0:1000

� 1:1010i; �0:1000 þ 1:1010i; �0:1222

� 0:9925i; �0:1222 þ 0:9925i; �0:1222 � 1:0988i;

� 0:1222 þ 1:0988i; �0:1000 � 0:9950i; �0:1000

þ 0:9950i; �0:1000 � 1:1010i; �0:1000 þ 1:1010i;

� 0:1222 � 0:9925i; �0:1222 þ 0:9925i; �0:1222

� 1:0988i; �0:1222 þ 1:0988i�:

The symmetric bounds of the roots of the characteristic

polynomials are constructed as the convex hull in Fig. 9,

and then, the convex hull is presented to indicate all the

possible roots that are located inside the convex hull.

Therefore, the system is robustly stable since the convex

hull is located on the left-half plane of complex plane.

Based on Method 2 and the neutrosophic characteristic

Eq. (28), it is obvious that the NN coefficients in the

neutrosophic characteristic Eq. (28) with I [ [- 0.1, 0.1]

are positive, which can satisfy the necessary condition.

Then, by using Eqs. (19)–(25), we can construct the fol-

lowing NN Routh array:

s2 1 þ I ¼ ½0:9; 1:1� 1

s1 0:2 þ 0:2I ¼ ½0:18; 0:22� 0

s0 1 þ I ¼ ½0:9; 1:1� 0

:

Obviously, the elements of the first NN column of the

NN Routh array have the same sign for I [ [-0.1, 0.1];

hence, the neutrosophic system is robustly stable.

Corresponding to the eight characteristic equations, the

eight transfer functions can be constructed as follows:

Table 1 Physical parameters for the mass–spring–damper system

with I [ [IL, IU]

Parameter Indeterminate value (NN) of parameters

Mass (m) p2 = 1.0 ? I kg

Damping coefficient (l) p1 = 0.2 ? 0.2I Ns/m

Spring stiffness (k) p0 = 1.0 ?I Nm

Input force (f) f = 1.0 N
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Fig. 9 Convex hull including the roots of all characteristic equations

for I [ [- 0.1, 0.1]
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tf1ðsÞ ¼ YðsÞ
FðsÞ ¼

1

0:9s2 þ 0:18sþ 0:9
;

tf2ðsÞ ¼ YðsÞ
FðsÞ ¼

1

0:9s2 þ 0:18sþ 1:1
;

tf3ðsÞ ¼ YðsÞ
FðsÞ ¼

1

0:9s2 þ 0:22sþ 0:9
;

tf4ðsÞ ¼ YðsÞ
FðsÞ ¼

1

0:9s2 þ 0:22sþ 1:1
;

tf5ðsÞ ¼ YðsÞ
FðsÞ ¼

1

1:1s2 þ 0:18sþ 0:9
;

tf6ðsÞ ¼ YðsÞ
FðsÞ ¼

1

1:1s2 þ 0:18sþ 1:1
;

tf7ðsÞ ¼ YðsÞ
FðsÞ ¼

1

1:1s2 þ 0:22sþ 0:9
;

tf8ðsÞ ¼ YðsÞ
FðsÞ ¼

1

1:1s2 þ 0:22sþ 1:1
:

Thus, their step responses for the mass–spring–damper

system with I [ [- 0.1, 0.1] are shown in Fig. 10. Obvi-

ously, the indeterminate system shows the indeterminate

responses.

Especially, when the indeterminacy of the neutrosophic

characteristic Eq. (28) is specified as I = 0, it is reduced to

the following nominal characteristic equation:

DðsÞ ¼ s2 þ 0:2sþ 1 ¼ 0:

Thus, its characteristic roots are - 0.1000 ? 0.9950i

and - 0.1000 - 0.9950i. It is obvious that the nominal

system is stable. Then, the step response of the nominal

system is shown in Fig. 11.

These step responses of the neutrosophic and nominal

systems above indicate the transient response information

of these stable systems, which will provide the necessary

preliminary basis for the analysis and design of the neu-

trosophic control system.

5 Conclusion

This study firstly presented the concept of neutrosophic

transfer functions by modeling of two typical physical

systems with indeterminate parameters and then introduced

two stability analysis methods: (1) the family of all pos-

sible characteristic equations is constructed responding to a

neutrosophic characteristic equation, and the robust sta-

bility of the neutrosophic system is assessed by the convex

hull area including the roots of all possible characteristic

equations; (2) the neutrosophic Routh stability criterion is

used to assess the robust stability of the neutrosophic

system with nth-order neutrosophic characteristic equation.

Finally, two typical practical examples on the RLC circuit

and mass–spring–damper systems were presented for

convenient analysis and calculation in the second-order

systems to demonstrate the effectiveness and feasibility of

the proposed methods. Furthermore, step responses of the

neutrosophic systems and nominal systems were given to

provide information about the transient response of

stable systems.

However, this study proposed the preliminary modeling

and stability analysis methods of the neutrosophic/inde-

terminate system for the first time. Then, regarding the

analysis of higher-order/complicated neutrosophic systems,

the proposed analysis method may result in the analysis

and calculation complexity in this study. Therefore, as the

future study, we need to propose new analysis methods in

higher-order/complicated neutrosophic systems and to

further investigate them to higher-order/complicated neu-

trosophic systems by more complicated actual examples.
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Fig. 10 Step responses of the mass–spring–damper system with I [
[- 0.1, 0.1]
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