
Available online at www.sciencedirect.com
www.elsevier.com/locate/cogsys

ScienceDirect

Cognitive Systems Research xxx (2018) xxx–xxx
Medical image denoising by using discrete wavelet
transform: Neutrosophic theory new direction
T.E. Aravindan a,⇑, R. Seshasayanan b, K.S. Vishvaksenan c

aSathyabama University, Chennai, India
bDept of ECE, Anna University, Chennai, India
cSSN College of Engineering, Chennai, India

Received 19 August 2018; received in revised form 23 October 2018; accepted 26 October 2018
Abstract

Medical images are corrupted by noises during the transmission and reception process. Hence noise reduction has been a conventional
issue in medical image processing. The main aim of this work is to denoise the high noise density image efficiently, with minimal compu-
tation cost. In this paper, an image denoising technique based on Discrete Wavelet Transform (DWT) and Social Spider Optimization
(SSO) algorithm is proposed. In Gaussian noise, salt & pepper and speckle noise are added, in which DWT is applied. The wavelet coef-
ficient optimization process is performed for optimizing the coefficient value with the help of SSO. Then in this wavelet-optimized param-
eter, the inverse DWT (IDWT) is applied. The proposed technique reduces the noise from image more adequately. Performance results
usingMATLAB, demonstrate that SSO performs better than the other traditional techniques by minimizing the mean square error (MSE).
� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Denoising is a procedure of removing noise from a sig-
nal. All recording devices such as analog and digital have
attributes which are susceptible to noise. Noise is included
to an image during catching or transmission of the image
(Kaur, 2014; Khan, Jain, & Khare, 2012). Medical images
are regularly affected by noises due to machine specifica-
tions, detector specifications and surroundings (Somnath
& Mukhopadhyay, 2013). The fundamental objective of
image denoising is to suppress noise from images while pro-
tecting their features, namely meaningful edges or texture
details (Yang, Wang, Niu, & Liu, 2014). Image denoising
intends to recover the unknown original image from a noisy
estimation or polluted perception and upgrade the contrast
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(Kaizhi, Zhang, & Ding, 2014). Being the most straightfor-
ward possible inverse problem, it gives an advantageous
platform over which image processing thoughts and proce-
dures can be surveyed (Wang, Yang, Zhang, & Fu, 2013).
Generally, most continuous distortions are due to the cor-
ruption by additive noise (Gaussian), salt & pepper noise
and multiplicative noise (speckle) with various attributes
(Bhandar, Kumar, Kumar, & Singh, 2016). Additionally,
the energy of the noise is distributed among each coefficients
of the wavelet domain.

1.1. Neutrosophics set (NS) theory

Neutrosophics originate their places into modern
research; we have established the notions of neutrosophic
crisp sets, neutrosophic crisp point and neutrosophic topol-
ogy on crisp sets (Salama, ElGhawalby, & Ali, 2017). Neu-
trosophy is a branch of philosophy, initiated by
age denoising by using discrete wavelet transform: Neutrosophic
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Nomenclature

di,j Euclidian distance
MSE Mean Square Error
NSE entire population
NSEf number of female spider
NSEm number of male spiders
poj

high upper initial parameter bound
poj

low lower initial parameter bound
PSNR Peak Signal to Noise Ratio

PSEri probability
ra radius of mating
SSO Social Spider Optimization
SErnew new spider candidate
SErwo worst spider
Vib vibration
wi weight
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Smarandache in 1980, which studies the origin, nature and
scope of neutralities, as excellent as their relations with dis-
tinctive ideational spectra (Sahin & Kargın, 2018). In neu-
trosophic sets, we have truth membership, indeterminacy
membership and falsity membership functions, which are
independent (Islam & Ray, 2018). Contrasted to additional
uncertainty theories, the neutrosophic set can compact with
indeterminacy situation (Alias, Mohamad, & Shuib, 2018).
It has been the base for increasing of new techniques to
handle indeterminate and incompatible information as
neutrosophic sets an neutrosophic logic and particularly
in decision making problems (Alava, Figueroa, Alcivar,
& Vazquez, 2018). Neutrosophic means based on three
components T (truth-membership), I (indeterminacy), and
F (falsehood non-membership) (Smarandache, 2016). Neu-
trosophic sets are characterized by three independent
degrees (Mohamed, Abdel-Basset, Zaied, &
Smarandache, 2017). Each of three independent compo-
nents of NS belongs to [�0, 1+] (Dalapati & Pramanik,
2018). It is a simplification of Fuzzy set theory and intu-
itionistic Fuzzy set theory. This theory is considered as
entire representation of a mathematical model of an actual
world problem (Chalapathi & Kiran Kumar, 2017).

1.2. Problem statement and proposed solution

The wavelet transform of the original and noise signal are
combined together to yield wavelet transform of a noisy sig-
nal. Hence the noise power can be compressed to a greater
extent with the main signal features remain unchanged
(Nasri & Nezamabadi-pour, 2009). While the wavelet trans-
form provides the frequency illustration of raw signal at any
time instant, the Fourier transform provides the frequency-
amplitude illustration of the raw signal (Singh&Wadhwani,
2015a). Because of the nearness of noise, even the specialists
with adequate experience will most likely be unable to draw
accurate and valuable data from the images (Bhadauria &
Dewal, 2013). The DWT which is generally utilized for
time-frequency localization, multi-resolution examination,
edge detection and decorrelation, has been successfully used
in the MR image denoising (Kai, Cheng, Li, & Gao, 2018).
The DWT based denoising, named as wavelet shrinkage,
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works by thresholding (often, nonlinearly) the wavelet coef-
ficients before recreating the denoised signal from wavelet
decomposition coefficients (Rajpoot, Rajpoot, & Noble,
2008). Initially, the optimum wavelet basis and decomposi-
tion layer are selected through simulation (Chen, Cheng, &
Liu, 2017). In this paper, wavelet thresholding strategies are
connected to an image. It removes noise by removing coef-
ficients that are unimportant with respect to some threshold.
The decision of this threshold decides the adequacy of
denoising (Al Jumah, 2013). Finally, the performances are
evaluated in terms of the metrics MSE and PSNR (Soni &
Roy, 2014).

The upcoming sections described as Section 2 literature
review of the work, Section 3 expressed the proposed
methodology in detail, Section 4 explained the results and
discussion finally concluded the work in Section 5.

2. Literature review
Year/author/
reference
age denoising by using
i.org/10.1016/j.cogsys
Techniques
discrete wavelet transf
.2018.10.027
Remarks
In 2018, Jianjun
Yuan (Yuan,
2018)
Alternating
Direction
Method of
Multipliers
(ADMM)
Investigational
outcomes reveal
that the proposed
technique was
proficient, and has
superior denoising
capability than the
state-of-the-art
models.
In 2017, Sushil
Kumar (Kumar,
2017)
Discrete Wavelet
Transform
(DWT)
The PSNR for the
SLT based Block
Shrink was better
alternative as it
gives better time
confinement and
better signal
compression
contrasted with
the established
DWT.
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In 2017, Ruxin
Zhao et al.
(Zhao, Luo, &
Zhou, 2017)
Please cite this article
theory new direction
Elite Opposition-
based SSO
algorithm
(EOSSO)
in press as: Aravinda
. Cognitive Systems R
The outcomes of
results
demonstrate that
EOSSO could get
a precise
arrangement and
converges in short
iterations with
high security.
In 2015, Sonali
Singh and
Sulochana
Wadhwani
(Singh &
Wadhwani,
2015b)
Wavelet
transform
Outcomes got
utilizing that
strategy based on
genetic algorithm
beats in contrast
with different
strategies namely
Visu shrink, Sure
shrink and Bayes
shrink. It gives
better outcomes as
far as visual
quality and
PSNR.
In 2015, Nadir
Mustafa et al.
(Mustafa, Li,
Khan, & Gless,
2015)
Discrete Wavelet
Transform
(DWT)
Experimental
work has been
conducted by
utilizing the
parameters
namely PSNR &
MSE from
numerical
outcomes for
productive de-
noising of noisy
medical image.
In 2011, Sachin D
Ruikar and
Dharmpal D
Doye (Ruikar &
Doye, 2011)
Wavelet
transform
In this work,
existing method
was extended to
yield a thorough
assessment of the
proposed strategy.
Outcomes based
on various noises
were performed.
Fig. 1. Flowchart for proposed technique.
3. Proposed methodology

In this paper, an image denoising technique based on
DWT and SSO algorithm is proposed. The medical images
are considered as input by applying the noises such as
Gaussian noise, salt and pepper noise and speckle noise.
After applying these noises, DWT has been applied for
medical images to disintegrate the original image into com-
ponents and coefficients. The Haar wavelet is used to sep-
arate the bands and threshold operation is carried out in
n, T. E., et al. Medical im
esearch (2018), https://do
three bands. The wavelet coefficient optimization process
is performed for optimizing the coefficient value with the
help of SSO algorithm. Finally, by applying the IDWT
on thresholded coefficients, the denoised image is obtained
and then the PSNR evaluation is utilized for finding the
superior performance shown in Fig. 1.

The actual image is in spatial domain it is hard to com-
pute that’s why we convert it into transformation domain.

3.1. Types of various noises

3.1.1. Gaussian noise

Gaussian noise is a type of additive amplifier noise
which is independent at each pixel with unique signal inten-
sity. Amplifier noise is the main component of ‘red noise’
which is having constant noise level in dark portions of
images.

3.1.2. Salt-and-pepper noise

Impulsive noise is also called as salt-and-pepper noise or
spike noise. This kind of noise is usually present in images.
An image with salt-and-pepper noise will contain dark pix-
els in bright portions and bright pixels in dark portions.
This noise is formed by dead pixels, errors due to analog-
to-digital conversions, bit errors etc. It can be discarded
by applying dark frame subtraction and performing inter-
polation around dark/bright pixels.
age denoising by using discrete wavelet transform: Neutrosophic
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3.1.3. Speckle noise

Speckle noise is a type of granular noise which reduces
the quality of active radar and synthetic aperture radar
(SAR) images. It is caused by the frequent fluctuations in
the return signal of an object. Image interpolation in
images with Speckle noise becomes more difficult. In
oceanography speckle noise is caused by signals from ele-
mentary scatters, the gravity-capillary ripples and mani-
fests as a pedestal image.

3.2. Discrete Wavelet Transform (DWT)

In numerical and functional investigations, DWT is any
wavelet transform in which the wavelets are discretely
inspected. The Hungarian mathematician Alfréd Haar
invented the first DWT. The mathematical manipulation,
which implies analysis and synthesis, is called discrete
wavelet transform and inverse discrete wavelet transform.
An image can be decomposed into a sequence of different
spatial resolution images using DWT. It decomposes the
data into four different bands LL, HL, LH, and HH. The
sub-band LL is a reduced resolution corresponding to the
low frequency part of the image. The other three sub-
bands HL, LH and HH are the high frequency parts in
the vertical, horizontal, and diagonal directions, respec-
tively. The Haar transformation technique is the simplest
among all the wavelet transformation techniques which
meet our requirements. In this technique, low-pass filtering
is done by finding the average of two adjacent pixel values
and high-pass filtering is done by finding the difference
between the two adjacent pixel values.

3.3. Threshold operation

In threshold operation, three different (horizontal, verti-
cal, and diagonal) sub-bands are taken. From these three
subbands, the optimum coefficient parameter is determined
using the SSO algorithm which is explained in the next sec-
tion in detail.

SðxÞ ¼ Sign ðxÞ ð xj j � tÞ � ð xj j > tÞ ð1Þ
where t is a threshold.

3.4. Social Spider Optimization (SSO)

SSO is a swarm optimization algorithm from the social-
spider colony. In SSO, the searching space is a collective
web where all the social spiders are dependent on the other.
There are two unique spiders: males and females. Every spi-
der is directed by a set of different evolutionary operators,
which emulate distinctive collective behaviors that are gen-
erally estimated inside the colony, depending on genders.

Initially, the female and male spiders are characterized
in the searching space. The number of females NSEf is ran-
domly selected inside the scope of 65–90% of the entire
population NSE. Thusly, NSEf is ascertained by the
following condition:
Please cite this article in press as: Aravindan, T. E., et al. Medical im
theory new direction. Cognitive Systems Research (2018), https://do
NSEf ¼ floor ½ð 0:9� rand:025 Þ : NSE� ð2Þ
where rand represents random number in the range of [0,
1]. The number of male spiders NSEm is calculated as the
complement between NSE and NSEf as

NSEm ¼ NSE � NSEf ð3Þ
Hence the full population SEr with NSE members is cat-

egorized into the groups F and M.

3.4.1. Initialization

The whole population is randomly initialized. The set
SEr of NSE spider positions are initialized. These values
are randomly and consistently conveyed between the pre-
indicated lower bound poj

low and the upper bound poj
high,

represented by the following expressions:

f 0
i;j ¼ polowj þ randð0; 1Þ:ðpohighj � polowj Þ

ði ¼ 1; 2:::NSEf ; j ¼ 1; 2; ::nÞ ð4Þ
m0

k;j ¼ polowj þ randð0; 1Þ:ðpohighj � polowj Þ
ðk ¼ 1; 2:::NSEm; j ¼ 1; 2; ::nÞ ð5Þ

where j, i and k are individual indexes and zero represents
the initial population. Hence, fi,j is the j

th parameter of the
ith female spider position.

Then the radius of mating is computed by

ra ¼
Pn

j¼1ðpohighj � polowj Þ
2:n

ð6Þ

The randomly generated initial solution is coefficient
values and the number of spiders are 4, the range for the
solution is (�1 to 1).

3.4.2. Fitness function

In this algorithm, each spider gets a weight wi which
speaks to the solution quality which is related to the spider
i of population SE.

For finding coefficient value optimization, the fitness
function in terms of Peak Signal to Noise Ratio (PSNR)
is shown as below:

Fitness ¼ Avg ðPSNRÞ ð7Þ
¼ Avg 20 log10

2552

MSE

� �
dB

� �

where MSE denotes the Mean Square Error between the
original and denoised image given by

MSE ¼ 1

MN

XM
i¼1

XN
j¼1

Uij � V ij

� � 2 ð8Þ

where M, N are width and height of image V–Noisy image
U–original image.

The weight of the spider is determined as

wi ¼ JðSEriÞ � worstSEr

bestSEr � worstSEr

ð9Þ

where J(SEri) is the value of fitness function determined by
the position of spider SEi with respect to the objective func-
age denoising by using discrete wavelet transform: Neutrosophic
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tion J(.) The values worstsEr and bestsEr are defined as
below:

bestsEr ¼ mink2f1;2;:::NgðJðSErÞÞ and worstsEr

¼ maxk2f1;2;::::NgðJðSErÞÞ ð10Þ
3.4.3. Determining vibrations of spiders

The vibrations are based on the weight and separation
of the spiders. With a specific end goal to emulate this
method, the vibrations observed by the member i due to
data transmission by the member j is given below:

Vibi;j ¼ wj:e
�d2ii;j ð11Þ

where the di,j is the distance between the spiders i and
j, di,j = ||Sri � Srj||.

3.4.3.1. Cooperative operators. In this cooperative operator
method, two types of operators are explained beneath
namely female and male cooperative operators.

3.4.3.2. Female cooperative operator. In order to imitate the
cooperative activities of the female i, a new operator is
characterized by considering the change of position of i

(CPi) at each iteration. CPi is derived as a mix of three dis-
tinct components. The first contains the change concerning
the closest part to i that contains a larger weight and cre-
ates the vibration Vibxi. The second one considers the
change with respect to the best member of SEr who delivers
the vibration Vibyi. The third one joins an irregular
improvement.

Vibxi ¼ wx:e
�d2i;y ; Vibyi ¼ wy :e

�d2i;x ð12Þ
A uniform random number rm is created in the range [0,

1]. If rm is <PF, an attraction movement is created; Other-
wise, a repulsion movement is created. Hence, such opera-
tor can be represented as below:

f kþ1
i ¼

f k
i þ a:Vibxi:ðSEry � f k

i Þ þ b:Vibyi:ðSErx � f k
i Þ

þd:ðrand � 12Þwith proability PF

f k
i � a:Vibxi:ðSEry � f k

i Þ � b:Vibyi:ðSErx � f k
i Þ

þd:ðrand � 12Þwith proability 1� PF

8>>><
>>>:

ð13Þ
wherever a, b, d and rand are random numbers in the range
of [0, 1] and k denotes the iteration index. The individuals
SErx and SEry symbolize the nearest member to i that has a
larger weight and the best member of SEr, respectively.

3.4.3.3. Male cooperative operator. Male individuals, with a
weight value over the median value inside the male popula-
tion, are viewed as the overwhelming people D. Those
below the middle esteem are marked as non-prevailing
ND males. To actualize such calculation, the male popula-
tion M (M = {m1, m2, . . . mNSEm} is masterminded by their
weight an incentive in diminishing request. The vibration
Vibwi observed by that individual i(Di) because of the data
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passed on by the part w(Dz) with w persistently the nearest
female unmistakable to i.

Vibwi ¼ wz:e
�d2i;z ð14Þ

Since records of M concerning the SEr are expanded by
the number of females NSEf, the median weight is indexed
by NSEf+m. Then, position change for the male spider can
be derived as:

mkþ1
i ¼

mk
i þa:Vibwi:ðSErf �mk

i Þþd:ðrand�12Þif wNSEfþi >wNSEfþm

mk
i þa:

PNSEm

h¼1
mk
h :wNSEfþhPNSEm

h¼1
wNSEfþh

�mk
i

� �
if wNESfþi 6wNSEfþm

8><
>:

ð15Þ
where Srf indicates the nearest female member to the male
member i while (Rh�1

NSEm mh
k�WNSEf+h/Rh�1

NSEm WNSEf+h)
communicate to the weighted mean of M.

By utilizing this operator, two distinct behaviors are
delivered. First, the set D is pulled into others keeping in
mind the end goal to incite mating. Such conduct permits
fusing differing qualities into the population. Second, the
set ND is pulled into the weighted mean of M. This reality
is utilized to control the pursuit procedure as per the aver-
age performance of a subgroup of the population.

3.4.4. Mating process

In mating, the weight of each spider (elements of Tg)
characterizes the probability of impact for every person
into the new brood. The spiders having a larger weight will
probably affect the new item, while components with smal-
ler weight have a lower probability. The impact probability
PSEri of every part is allotted by the roulette approach,
which is characterized as takes after:

pSEri
¼ wiP

j2T kwj
where i 2 T g ð16Þ

Once the new spider is shaped, it is contrasted with the
new spider candidate SErnew holding the worst spider SErwo

of the colony, as indicated by their weight values (where
wwo = minle{1,2,. . .,NSE} (wl)). On the off chance that the
new spider is superior to the worst spider, the new one
replaces the worst spider. Something else, the new spider
is disposed of and the population does not endure changes.
If there should arise an occurrence of substitution, the new
spider accepts the gender and index from the supplanted
spider. Such certainty guarantees that the entire population
Sr keeps up the first rate amongst female and male
individuals.

4. Results and discussion

In this result section, MATLAB is used to implement
the proposed denoising algorithm. A usual way to denoise
is to find a processed image such that it minimizes MSE
and increases the value of the PSNR. For study purpose,
10 images have been taken considering various noises. A
neutrosophic set (NS) image IM is represented by three
element as IM(t,i,f), where t varies in T, i varies in I and
age denoising by using discrete wavelet transform: Neutrosophic
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Table 1
PSNR value for different noise level.

Original image PSNR

Gaussian noise level Salt and pepper noise level Speckle noise level

0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03

1 61.71 62.41 63.29 66.77 66.53 66.32 65.12 63.06 62.08
2 61.66 62.53 63.30 66.84 66.62 66.35 65.13 63.06 62.05
3 61.35 62.14 62.95 66.19 65.97 65.76 64.74 62.99 62.07
4 61.21 61.93 62.79 65.83 65.61 65.44 64.56 62.91 62.07
5 61.27 62.02 62.82 65.54 65.34 65.17 64.35 62.72 61.94
6 61.39 62.15 62.89 65.73 65.52 65.34 64.38 62.66 61.86
7 61.35 62.14 62.88 65.75 65.55 65.37 64.46 62.77 61.97
8 61.38 62.21 63.02 65.74 65.56 65.37 64.28 62.53 61.67
9 61.85 62.59 63.40 66.29 66.08 65.88 64.59 62.64 61.70
10 62.10 62.90 63.66 66.72 66.49 66.26 64.81 62.62 61.55

Fig. 2. Original images.

Fig. 3. MSE graph for various Gaussian noise levels for different algorithms.
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Fig. 4. PSNR graph for various Gaussian noise levels for different algorithms.
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f varies in F in the set A of the universal set U. Our picture
fuzzy set turns out a particular case of neutrosophic set.
Hence, from now on, we too regard picture fuzzy set as
standard neutrosophic set (Bui, Phong, & Smarandache,
2016).

Then DWT and threshold operation using SSO algo-
rithm are performed. The performance of the algorithm
is evaluated with the brain images from the test database
– Osirix. The algorithm was tested at different Gaussian
noise levels, Salt and pepper noise levels and Speckle noise
levels. Objective Analysis is of two kinds Statistical and
Human Visual System, in Statistical analysis Peak Signal
to Noise Ratio (PSNR) and Mean Square Error (MSE)
Fig. 5. SSIM graph for various Gaussian

Please cite this article in press as: Aravindan, T. E., et al. Medical im
theory new direction. Cognitive Systems Research (2018), https://do
performed. In Human Visual System, the Structural Simi-
larity Index Model (SSIM) and Universal Image Quality
Index (UIQI) performed. After observing results, the
PSNR for Gaussian noise, Salt & pepper noise and Speckle
noise is better.

In Table 1, the PSNR value for different noise level has
been shown clearly. Gaussian noise level, Salt and pepper
noise level and speckle noise level has analyzed and find
the PSNR values for 10 images.

Table 1 demonstrates the PSNR value for different noise
level and Fig. 2 shows the original images.

In Fig. 3 the MSE graph shown for different Gaussian
noise level and different algorithm. The graph exposed
noise levels for different algorithms.

age denoising by using discrete wavelet transform: Neutrosophic
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Fig. 6. UIQI graph for various Gaussian noise levels for different algorithms.

Fig. 7. MSE graph for various Salt and pepper noise levels for different algorithms.

8 T.E. Aravindan et al. / Cognitive Systems Research xxx (2018) xxx–xxx
for ten-brain images using different Gaussian noise level
(0.01, 0.02 and 0.03) and different algorithms such as
SSO, PSO, GA and Default. In this, the MSE value is min-
imized in SSO-0.03 compared with other techniques.

In Fig. 4, the PSNR graph shown for different Gaussian
noise level and different algorithm. The graph exposed for
ten-brain images using different Gaussian noise level (0.01,
0.02 and 0.03) and different algorithms such as SSO, PSO,
GA and Default. In this, the PSNR value is high in SSO-
0.03 compared with other techniques.

In Fig. 5, the SSIM graph shown for different Gaussian
noise level and different algorithm. The graph exposed for
Please cite this article in press as: Aravindan, T. E., et al. Medical im
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ten-brain images using different Gaussian noise level (0.01,
0.02 and 0.03) and different algorithms such as SSO, PSO,
GA and Default. In this, the SSIM value is high in SSO-
0.03 compared with other techniques.

In Fig. 6, the UIQI graph shown for different Gaussian
noise level and different algorithm. The graph exposed for
ten-brain images using different Gaussian noise level (0.01,
0.02 and 0.03) and different algorithms such as SSO, PSO,
GA and Default. In this, the UIQI value is high in SSO-
0.03 compared with other techniques.

In Fig. 7, the MSE graph is shown for different noise
levels, for different algorithms. The graph exposed for
age denoising by using discrete wavelet transform: Neutrosophic
i.org/10.1016/j.cogsys.2018.10.027
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Fig. 8. PSNR graph for various Salt and pepper noise levels for different algorithms.

Fig. 9. SSIM graph for various Salt and pepper noise levels for different algorithms.
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ten-brain images with noise levels (0.01, 0.02 and 0.03) for
different algorithms such as SSO, PSO, GA and Default. In
this, the MSE value is minimized in SSO-0.03 compared
with other techniques.

In Fig. 8, the PSNR graph is shown for different noise
levels, for different algorithms. The graph exposed for
ten-brain images with noise levels (0.01, 0.02 and 0.03)
for different algorithms such as SSO, PSO, GA and
Default. In this, the PSNR value is high in SSO-0.01 com-
pared with other techniques.

In Fig. 9, the SSIM graph is shown for various noise
levels for different algorithms. The graph exposed for
Please cite this article in press as: Aravindan, T. E., et al. Medical im
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ten-brain images with noise levels (0.01, 0.02 and 0.03)
for different algorithms such as SSO, PSO, GA and
Default. In this, the SSIM value is high in SSO-0.03 com-
pared with other techniques.

In Fig. 10, the UIQI graph is presented for various noise
levels for different algorithms. The graph exposed for ten-
brain images with noise levels (0.01, 0.02 and 0.03) for dif-
ferent algorithms such as SSO, PSO, GA and Default. In
this, the UIQI value is high in SSO-0.03 compared with
other techniques.

In Fig. 11, the MSE graph demonstrates for different
noise levels for different algorithms. The graph exposed
age denoising by using discrete wavelet transform: Neutrosophic
i.org/10.1016/j.cogsys.2018.10.027
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Fig. 10. UIQI graph for various Salt and pepper noise levels for different algorithms.

Fig. 11. MSE graph for different Speckle noise levels for different algorithms.
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for ten-brain images with noise levels (0.01, 0.02 and 0.03)
for different algorithms such as SSO, PSO, GA and
Default. In this, the MSE value is minimized in SSO-0.01
compared with other techniques.

In Fig. 12, the PSNR graph demonstrates for different
noise levels for different algorithms. The graph exposed
Please cite this article in press as: Aravindan, T. E., et al. Medical im
theory new direction. Cognitive Systems Research (2018), https://do
for ten-brain images with noise levels (0.01, 0.02 and
0.03) for different algorithms such as SSO, PSO, GA and
Default. In this, the PSNR value is high in SSO-0.01 com-
pared with other techniques.

In Fig. 13, the SSIM graph demonstrates for different
noise levels for different algorithms. The graph exposed
age denoising by using discrete wavelet transform: Neutrosophic
i.org/10.1016/j.cogsys.2018.10.027
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Fig. 12. PSNR graph for different Speckle noise levels for different algorithms.

Fig. 13. SSIM graph for various Speckle noise levels for different algorithms.
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Fig. 14. UIQI graph for different Speckle noise levels for different algorithms.

Fig. 15. Convergence graph.
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for ten-brain images with noise levels (0.01, 0.02 and 0.03)
for different algorithms such as SSO, PSO, GA and
Default. In this, the SSIM value is high in SSO-0.03 com-
pared with other techniques.

In Fig. 14, the UIQI graph demonstrates for different
noise levels for different algorithm. The graph exposed
for ten-brain images with noise levels (0.01, 0.02 and
0.03) for different algorithms such as SSO, PSO, GA and
Default. In this, the UIQI value is high in SSO-0.01 com-
pared with other techniques.

From the above Fig. 15, three different algorithms per-
formed namely SSO, PSO and GA from this SSO algo-
rithm is better when compared with other techniques.
The time complexity of SSO is 145.56 sec, PSO is
101.67 sec and GA is 78.89 sec. From the graph, SSO algo-
rithm increased from 10th iteration the fitness value is 45.8
Please cite this article in press as: Aravindan, T. E., et al. Medical im
theory new direction. Cognitive Systems Research (2018), https://do
then slightly improved up to 100th iteration of fitness 61.8.
The PSO algorithm increased 10th iteration the fitness
value is 45.8 then slightly improved up to 100th iteration
of fitness 58.1. Finally, GA algorithm increased 10th itera-
tion the fitness value is 45.8 then slightly improved up to
100th iteration of fitness 58.

5. Conclusion

This paper proposed a denoising (SSO) algorithm for
the brain images, which are corrupted with various types
of noises. The execution of the algorithm is tested with
the brain images from the test database – Osirix. Objective
Analysis is of two sorts Statistical and Human Visual Sys-
tem. In Statistical analysis, PSNR and MSE are measured.
In Human Visual System, the SSIM and UIQ are mea-
sured. After observing the outcomes, the PSNR for various
types of noises found to be better. It also demonstrates that
MSE is diminished to a larger level and PSNR is maxi-
mized. Experimental outcomes demonstrate that the SSO
technique based on the wavelet transform, produces better
results as far as PSNR and visual impacts. In future, vari-
ous techniques and various datasets will be used for more
analysis and image quality improvements.

Appendix A. Supplementary material

Supplementary data to this article can be found online
at https://doi.org/10.1016/j.cogsys.2018.10.027.
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