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m−POLAR NEUTROSOPHIC GRAPHS

A. HASSAN1, M. A. MALIK2, §

Abstract. The concept of m−Polar antipodal single valued neutrosophic graph (m−
PASVNG), eccentric m−PSVNG, self centered m−PSVNG and self median m−PSVNG
of the given m−PSVNG are introduced here. We also investigate different types of
isomorphism properties of antipodal m−PSVNG, eccentric m−PSVNG and self centered
m−PSVNG.

Keywords: Radius, diameter in m−PSVNG, antipodal m−PSVNG, eccentric m−PSVNG,
self centered m−PSVNG and self median m−PSVNG.
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1. Introduction

Neutrosopic sets were introduced by Smarandache [10], which are the generalization of
fuzzy sets and intuitionistic fuzzy sets. The Neutrosophic sets have many applications in
medical, management sciences, life sciences, engineering, graph theory, robotics, automata
theory and computer science. The single valued neutrosophic graphs and isolated SVNGs
were introduced by Broumi, Talea, Bakali and Smarandache [1, 2]. Also recently in [8,
9, 3] proposed some algorithms dealt with shortest path problem in a network (graph)
where edge weights are characterized by a neutrosophic numbers including single valued
neutrosophic numbers, bipolar neutrosophic numbers and interval valued neutrosophic
numbers. Nasir in [7] also contributed on neutrosophic graphs.
Malik and Hassan in [4] defined the concept of classes of some single valued neutrosophic
graphs and studied of their properties. Later on, the concept of single valued neutrosophic
hyper-graphs has generalized by Hassan et Malik in [5, 6]. The SVNGs have also many
applications in path problems, networks and computer science. The concept of antipodal
fuzzy graphs introduced by Gani and Malarvizhi [11]. The self centered intuitionistic fuzzy
graphs were introduced by Karunambigai [12], the complete intuitionistic fuzzy graph to
be a self centered intuitionistic fuzzy graph and its properties discussed, also the necessary
and sufficient condition to be a self centered intuitionistic fuzzy graph were discussed. In
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this paper, we introduce new classes of SVNGs, antipodal SVNGs, eccentric SVNGs, self
centered and self median SVNGs.

2. Preliminary

In this section we recall some basic concepts on SVNG and let G denotes SVNG and
and G∗ = (V,E) denotes underlying crisp graph.

Definition 2.1. [10] Let X be a space of points (objects) with generic elements in X
denoted by x; then the neutrosophic set A (NS A) is an object having the form A =
{< x : TA(x), IA(x), FA(x) >, x ∈ X}, where the functions T, I, F : X →]−0, 1+[ define
respectively the truth-membership function, an indeterminacy-membership function, and a
falsity-membership function of the element x ∈ X to the set A with the condition −0 ≤
TA(x) + IA(x) + FA(x) ≤ 3+. The functions TA(x), IA(x) and FA(x) are real standard or
nonstandard subsets of ]−0, 1+[.

Since it is difficult to apply NSs to practical problems, Wang et al. introduced the
concept of a SVNS, which is an instance of a NS and can be used in real scientific and
engineering applications.

Definition 2.2. [10] Let X be a space of points (objects) with generic elements in X
denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function TA, an indeterminacy-membership function IA and a falsity-membership
function FA. For each point x ∈ X TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can be
written as A = {< x : TA(x), IA(x), FA(x) >, x ∈ X}. And for every x ∈ X; 0 ≤
TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.3. [1] The single valued neutrosophic graph (SVNG) is a pair G = (C,D)
of G∗ = (V,E), where C is SVNS on V and D is SVNS on E such that

TD(α, β) ≤ min(TC(α), TC(β))

ID(α, β) ≥ max(IC(α), IC(β))

FD(α, β) ≥ max(FC(α), FC(β))

whenever

0 ≤ TD(α, β) + ID(α, β) + FD(α, β) ≤ 3

∀ α, β ∈ V. The SVNG G = (C,D) is said to be complete (strong) SVNG, if

TD(x, y) = min(TC(x), TC(y))

ID(x, y) = max(IC(x), IC(y))

FD(x, y) = max(FC(x), FC(y))

∀ x, y ∈ V (∀(x, y) ∈ E). The order of G, which is denoted by O(G), is defined by

O(G) = (OT (G), OI(G), OF (G)),

where

OT (G) =
∑
α∈V

TC(α), OI(G) =
∑
α∈V

IC(α), OF (G) =
∑
α∈V

FC(α).

The size of G, which is denoted S(G), is defined by

S(G) = (ST (G), SI(G), SF (G)),
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where

ST (G) =
∑

(α,β)∈E
α 6=β

TD(α, β), SI(G) =
∑

(α,β)∈E
α 6=β

ID(α, β), SF (G) =
∑

(α,β)∈E
α 6=β

FD(α, β).

The degree of a vertex α in G, which is denoted by dG(α), is defined by

dG(α) = (dT (α), dI(α), dF (α)),

where

dT (α) =
∑

(α,β)∈E
α 6=β

TD(α, β), dI(α) =
∑

(α,β)∈E
α6=β

ID(α, β), dF (α) =
∑

(α,β)∈E
α 6=β

FD(α, β).

Definition 2.4. [1] The Partial single valued neutrosophic subgraph of SVNG G = (C,D)

on G∗ = (V,E) is a SVNG H = (C
′
, D

′
), if

(1) C
′ ⊆ C, that is ∀x ∈ V

TC′ (x) ≤ TC(x), IC′ (x) ≥ IC(x), FC′ (x) ≥ FC(x).

(2) D
′ ⊆ D, that is ∀(α, β) ∈ E

TD′ (α, β) ≤ TD(α, β), ID′ (α, β) ≥ ID(α, β), FD′ (α, β) ≥ FD(α, β).

The single valued neutrosophic subgraph of SVNG G = (C,D) of G∗ = (V,E) is a SVNG

H = (C
′
, D

′
) on a H∗ = (V

′
, E

′
), such that

(1) C
′

= C, that is ∀x ∈ V ′ ⊆ V, with

TC′ (x) = TC(x), IC′ (x) = IC(x), FC′ (x) = FC(x).

(2) D
′

= D, that is ∀(α, β) ∈ E′ ⊆ E, with

TD′ (α, β) = TD(α, β), ID′ (α, β) = ID(α, β), FD′ (α, β) = FD(α, β).

Definition 2.5. [1] A path P in a SVNG G = (C,D) is P : v1, v2, v3, . . . , vn such that
TD(vi, vi+1) > 0, ID(vi, vi+1) > 0, FD(vi, vi+1) > 0 for 1 ≤ i ≤ n. The SVNG G is said
to be a connected, if there is at least one path between every pair of vertices, else G is
disconnected.

3. The classes of SVNGs or 1-PSVNGs

In this section we discuss the antipodal SVNGs, eccentric SVNGs, self centered SVNGs
and self median SVNGs.

Definition 3.1. Let G1 = (C1, D1) and G2 = (C2, D2) be two SVNGs of G∗1 = (V1, E1)
and G∗2 = (V2, E2), respectively. The homomorphism χ : V1 → V2 is a mapping from V1
into V2 satisfying following conditions

TC1(p) ≤ TC2(χ(p)), IC1(p) ≥ IC2(χ(p)), FC1(p) ≥ FC2(χ(p))

∀p ∈ V1.

TD1(p, q) ≤ TD2(χ(p), χ(q)), ID1(p, q) ≥ ID2(χ(p), χ(q)), FD1(p, q) ≥ FD2(χ(p), χ(q))

∀(p, q) ∈ E1. The weak isomorphism υ : V1 → V2 is a bijective homomorphism from V1
into V2 satisfying following conditions

TC1(p) = TC2(υ(p)), IC1(p) = IC2(υ(p)), FC1(p) = FC2(υ(p))
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∀p ∈ V1. The co-weak isomorphism κ : V1 → V2 is a bijective homomorphism from V1 into
V2 satisfying following conditions

TD1(p, q) = TD2(κ(p), κ(q)), ID1(p, q) = ID2(κ(p), κ(q)), FD1(p, q) = FD2(κ(p), κ(q))

∀(p, q) ∈ E1. An isomorphism ψ : V1 → V2 is a bijective homomorphism from V1 into V2
satisfying following conditions

TC1(p) = TC2(ψ(p)), IC1(p) = IC2(v(p)), FC1(p) = FC2(ψ(p))

∀p ∈ V1.

TD1(p, q) = TD2(ψ(p), ψ(q)), ID1(p, q) = ID2(ψ(p), ψ(q)), FD1(p, q) = FD2(ψ(p), ψ(q))

∀(p, q) ∈ E1.

Remark 3.1. One can see the following.

(1) The weak isomorphism between two SVNGs preserves the orders.
(2) The weak isomorphism between SVNGs is a partial order relation.
(3) The co-weak isomorphism between two SVNGs preserves the sizes.
(4) The co-weak isomorphism between SVNGs is a partial order relation.
(5) The isomorphism between two SVNGs is an equivalence relation.
(6) The isomorphism between two SVNGs preserves the orders and sizes.
(7) The isomorphism between two SVNGs preserves the degrees of their vertices’s.

Definition 3.2. Let G = (C,D) be a SVNG of G∗. The strength of connectedness between
x and y in V, which is denoted by S∞D (x, y), is defined by

S∞D (x, y) = (T∞D (x, y), I∞D (x, y), F∞D (x, y)),

where

T∞D (x, y) = sup{T kD(x, y) : k = 1, 2, . . . , n},

T∞D (x, y) = sup{TD(x, v1) ∧ . . . ∧ TD(vk−1, y) : x, v1, v2, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n},

I∞D (x, y) = inf{IkD(x, y) : k = 1, 2, . . . , n},

I∞D (x, y) = inf{ID(x, v1) ∨ . . . ∨ ID(vk−1, y) : x, v1, v2, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n}

F∞D (x, y) = inf{F kD(x, y) : k = 1, 2, . . . , n},

F∞D (x, y) = inf{FD(x, v1) ∨ . . . ∨ FD(vk−1, y) : x, v1, v2, . . . , vk−1, y ∈ V, k = 1, 2, . . . , n},
Here T∞D (x, y), I∞D (x, y) and F∞D (x, y) are called T -strength, I-strength and F -strength
between vertices x and y in V, respectively. The length of path P : v1, v2, . . . , vn, which is
denoted by l(P ), is defined by l(P ) = (lT (P ), lI(P ), lF (P )), where

lT (P ) =
n−1∑
i=1

1

TD(vi, vi+1)
, lI(P ) =

n−1∑
i=1

1

ID(vi, vi+1)
, lF (P ) =

n−1∑
i=1

1

FD(vi, vi+1)
.

where lT (P ), lI(P ) and lF (P ) are called the T -length, I-length and F -length of path P,
respectively. The distance between two vertices α and β in V, which is denoted by δ(α, β),
is defined by

δ(α, β) = (δT (α, β), δI(α, β), δF (α, β)),

where

δT (α, β) = min(lT (P )), δI(α, β) = min(lI(P )), δF (α, β) = min(lF (P )),
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Figure 1. SVNG

where δT (α, β), δT (α, β) and δT (α, β) are called the T -distance, I-distance and F -distance
of any path α− β, respectively. The eccentricity of vi ∈ V, which is denoted by is e(vi), is
defined by e(vi) = (eT (vi), eI(vi), eF (vi)), where

eT (vi) = max{δT (vi, vj) : vj ∈ V, vi 6= vj}

eI(vi) = min{δI(vi, vj) : vj ∈ V, vi 6= vj}
eF (vi) = min{δF (vi, vj) : vj ∈ V, vi 6= vj}

where eT (vi), eI(vi) and eF (vi) are called the T -eccentricity, I-eccentricity and F -eccentricity
of vertex vi, respectively. The radius of G, which is denoted by r(G), is defined by
r(G) = (rT (G), rI(G), rF (G)), where

rT (G) = min{eT (vi) : vi ∈ V }

rI(G) = min{eI(vi) : vi ∈ V }
rF (G) = min{eF (vi) : vi ∈ V }

where rT (G), rI(G) and rF (G) are called the T -radius, I-radius and F -radius of graph
G, respectively. The diameter of G, which is denoted by d(G), is defined by d(G) =
(dT (G), dI(G), dF (G)), where

dT (G) = max{eT (vi) : vi ∈ V }

dI(G) = max{eI(vi) : vi ∈ V }
dF (G) = max{eF (vi) : vi ∈ V }

where dT (G), dI(G) and dF (G) are called the T -diameter, I-diameter and F -diameter of
graph G, respectively.

Definition 3.3. An antipodal single valued neutrosophic graph (ASVNG) A(G) = (Q,R)
of a SVNG G = (A,B) is the SVNG, such that
(a) Q = A on V. (b) If δ(p, q) = d(G), then
(i) If p and q are adjacent in G, then R = B on E.
(ii) If p and q are not adjacent in G, then

TR(p, q) = min(TA(p), TA(q))

IR(p, q) = max(IA(p), IA(q))

FR(p, q) = max(FA(p), FA(q))
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Figure 2. Antipodal SVNG

Example 3.1. Consider the SVNG G = (A,B) of G∗ = (V,E), which is shown in Fig-
ure 1. Then by routine calculations, δ(a, b) = (7, 2, 3), δ(a, c) = (5, 4, 3), δ(b, c) = (7, 2, 5),
e(a) = (7, 2, 3), e(b) = (7, 2, 3), e(c) = (7, 2, 3), d(G) = (7, 2, 3) = δ(a, b). Hence an
ASVNG A(G) = (Q,R), which is shown in Figure 2.

Definition 3.4. An eccentric SVNG Ge = (P,Q) of a SVNG G = (A,B) is the SVNG,
such that
(a) P = A on V. (b) If

δT (p, q) = min(eT (p), eT (q))

δI(p, q) = max(eI(p), eI(q))

δF (p, q) = max(eF (p), eF (q))

then
(i) If p and q are neighbors in G, then Q = B on E.
(ii) If p and q are not neighbors in G, then

TQ(p, q) = min(TA(p), TA(q))

IQ(p, q) = max(IA(p), IA(q))

FQ(p, q) = max(FA(p), FA(q))

(c) else Q = O = (0, 0, 0).

Example 3.2. Consider the SVNG G = (A,B) of G∗ = (V,E), which is given in Ex-
ample 3.1. Then by calculations, δ(a, b) = (7, 2, 3), δ(a, c) = (5, 4, 3), δ(b, c) = (7, 2, 5),
e(a) = (7, 2, 3), e(b) = (7, 2, 3), e(c) = (7, 2, 3), d(G) = (7, 2, 3) = δ(a, b) here, δT (a, b) =
7 = min(eT (a), eT (b)), δI(a, b) = 2 = max(eI(a), eI(b)), δF (a, b) = 3 = max(eF (a), eF (b)),
δF (a, c) = 3 = max(eF (a), eF (c)), δT (b, c) = 7 = min(eT (b), eT (c)), δI(b, c) = 2 =
max(eI(b), eI(c)). The ESVNG is shown in Figure 3.

Proposition 3.1. The ASVNG of the SVNG is the generalization of antipodal fuzzy graph
of fuzzy graph and antipodal intuitionistic fuzzy graph of intuitionistic fuzzy graph.

Proposition 3.2. The ESVNG of SVNG is the generalization of eccentric fuzzy graph of
fuzzy graph and eccentric intuitionistic fuzzy graph of intuitionistic fuzzy graph.

Proposition 3.3. A(G) is always a single valued neutrosophic subgraph of Ge. Further
A(G) and Ge are same, whenever G = (A,B) be a complete SVNG.
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Figure 3. Eccentric SVNG

Definition 3.5. The connected SVNG G = (A,B) is distance regular SVNG, whenever

δ(x, y) = k = (k1, k2, k3)

∀ x, y ∈ V.

Proposition 3.4. If G = (A,B), is distance regular SVNG, then G is single valued
neutrosophic spanning subgraph of A(G), such that A(G) is same as Ge.

Theorem 3.1. If G = (A,B) be a complete SVNG, then G and A(G) are isomorphic.

Proof. Since A is constant function, that is A(x) = c = (c1, c2, c3) where c1, c2 and c3 are
constants, hence we get δ(p, q) = d = (d1, d2, d3) for all p, q ∈ V, therefore eccentricity of
G e(p) = d = (d1, d2, d3) for all p ∈ V. Hence d(G) = d = (d1, d2, d3) = δ(p, q) for all p ∈ V.
Thus adjacency between every two vertices in A(G) such that (i) Q = A on V. (ii) Since
p and q are neighbors in G, hence R = B on E. Therefore G is isomorphic to A(G). �

Theorem 3.2. Let G = (A,B) be a connected SVNG, then ASVNG A(G) is subgraph of
G.

Proof. Since by the definition of ASVNG, A(G) and G have same vertex set, such that
(i) Q = A on V. (ii) If δ(p, q) = d(G), then (a) If p and q are adjacent in G, then R = B
on E. (b) If p and q are not adjacent in G, then TR(p, q) = min(TA(p), TA(q)), IR(p, q) =
max(IA(p), IA(q)) and FR(p, q) = max(FA(p), FA(q)). �

Theorem 3.3. If G1 = (A1, B1) and G2 = (A2, B2) are isomorphic, then so A(G1) and
A(G2).

Proof. By hypothesis there is an isomorphism f between them, which preserves the weights
of edges, so the length and distance will be preserved. Hence if vertex α has maximum
T -eccentricity, minimum I-eccentricity and minimum F -eccentricity in G1, then f(α) has
maximum T -eccentricity, minimum I-eccentricity and minimum F -eccentricity in G2, so
G1 and G2 will have same diameter. If distance between α and β is k = (k1, k2, k3) in G1,
then f(α) and f(β) will also have their distance as k = (k1, k2, k3) in G2, f is a bijective
function between A(G1) and A(G2) with Q1(α) = A1(α) = A2(α) = Q2(α) for all α ∈ V1
and (i) If α and β are adjacent in E1, then R1 = B1. (ii) If α and β are not adjacent in E1,
then TR1(α, β) = min(TA1(α), TA1(β)), IR1(α, β) = max(IA1(α), IA1(β)) and FR1(α, β) =
max(FA1(α), FA1(β)) as f : G1 → G2 is an isomorphism, then α and β are adjacent in
E1, then R1(α, β) = B2(f(α), f(β)), if α and β are not adjacent in E1, then TR1(α, β) =
min(f(α), f(β)), IR1(α, β) = max(f(α), f(β)) and FR1(α, β) = max(f(α), f(β)), thus we
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conclude that R1(α, β) = R2(f(α), f(β)), so the same isomorphism f is an isomorphism
between A(G1) and A(G2). �

Theorem 3.4. If G1 = (A1, B1) and G2 = (A2, B2) be two connected SVNGs, If G1 and
G2 are co-weak isomorphic, then A(G1) is homomorphic to A(G2).

Proof. Since G1 and G2 are co-weak isomorphic SVNGs, then there exists a bijection
f : G1 → G2 satisfying the conditions TA1(α) ≤ TA2(f(α)), IA1(α) ≥ IA2(f(α)), FA1(α) ≥
FA2(f(α)) for all α ∈ V1 and B1(α, β) = B2(f(α), f(β)) for all (α, β) ∈ E1, so the distance
and diameters will preserved. Let d(G1) = d(G2) = k = (k1, k2, k3) if u, v ∈ V1 are at a
distance k in G1, then they are made as neighbors in A(G1), so f(u), f(v) ∈ V2 are at a
distance k in G2, then they are made as neighbors in A(G2). If u and v are neighbors in G1,
then R1(u, v) = B1(u, v) = B2(f(u), f(v)) = R2(f(u), f(v)). If u and v are not neighbors in
G1, then TR1(u, v) = min(TA1(u), TA1(v)) ≤ min(TA2(f(u)), TA2(f(v))) = TR2(f(u), f(v))
similarly IR1(u, v) ≥ IR2(f(u), f(v)) and FR1(u, v) ≥ FR2(f(u), f(v)). Hence A(G1) is
homomorphic to A(G2). �

Theorem 3.5. If G1 = (A1, B1) and G2 = (A2, B2) be two complete SVNGs, then if G1

is co-weak isomorphic to G2, then A(G1) is co-weak isomorphic to A(G2).

Proof. Straight forward as Theorem 3.4 is proved. �

Definition 3.6. Let G = (A,B) be a SVNG, a vertex vi ∈ V is said to be a central vertex
if r(G) = e(vi). The set of all central vertices of G, is denoted by C(G). The connected
SVNG G = (A,B) is said to be self centered single valued neutrosophic graph (SCSVNG),
if r(G) = e(vi) ∀vi ∈ V.

Example 3.3. Consider the SVNG G = (A,B) of G∗ = (V,E), which is given in ex-
ample 3.1. Then by calculations, δ(a, b) = (7, 2, 3), δ(a, c) = (5, 4, 3), δ(b, c) = (7, 2, 5),
e(a) = (7, 2, 3), e(b) = (7, 2, 3), e(c) = (7, 2, 3), r(G) = (7, 2, 3) = e(a) = e(b) = e(c).
Therefore G is a self centered SVNG.

Definition 3.7. A path cover of a SVNG G = (A,B) is the set Q of paths so that every
vertex of G is incident to some path of Q.

Definition 3.8. An edge cover of a SVNG G = (A,B) is the set E of edges such that
every vertex of G is incident to some edge of E.

Theorem 3.6. Every complete SVNG G = (A,B) is a self centered SVNG and

r(G) =

(
1

TAi
,

1

IAi
,

1

FAi

)
where TAi is minimal, IAi and FAi are maximal.

Proof. Let vi ∈ V such that TAi is least truth membership of vertex value in G.
Case(i) ∀ vi − vj paths P of length n in G for all vj ∈ V.
for n = 1 trivially holds, if n > 1, the T -strength of one edge TAi and therefore T -
length of a vi − vj path will exceed 1

TAi
, thus T -length of path P = lT (P ) > 1

TAi
, hence

δT (vi, vj) = min(lT (P )) = 1
TAi

for all vj ∈ V.
Case(ii) Let vk 6= vi ∈ V, consider all vk − vj paths Q of length n in G for all vj ∈ V.
Subcase(i) Whenever n = 1, then TB(vk, vj) = min(TAk, TAj) ≥ TAi since TAi is minimal,

hence T -length of Q = lT (Q) = 1
TB(vk,vj)

≤ 1
TAi

.

Subcase(ii) Whenever n = 2, then lT (Q) = 1
TB(vk,vk+1)

+ 1
TB(vk+1,vj)

≤ 2
TAi

since TAi is

minimal.
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Figure 4. SVNG

Subcase(iii) Whenever n > 2, then lT (Q) ≤ n
TAi

since TAi is minimal, hence δT (vk, vj) =

min(lT (Q)) ≤ 1
TAi

for all vk, vj ∈ V. Thus we have eT (vi) = min(δT (vi, vj)) = 1
TAi

for all

vi ∈ V. Next rT (G) = min(eT (vi)) = 1
TAi

, hence rT (G) = 1
TAi

where TA(vi) is minimal.

Similarly others can be proved. Hence G is self centered SVNG.
�

Remark 3.2. In general converse part does not hold of Theorem 3.6.

Example 3.4. Consider a SVNG G = (A,B) of G∗ = (V,E), which is shown in Figure 4.
Then by calculations, δ(α, β) = (6, 3, 2), δ(α, δ) = (5, 3, 2), δ(β, γ) = (5, 3, 2), δ(γ, δ) =
(6, 3, 2), δ(α, γ) = (11, 6, 4), δ(β, δ) = (11, 6, 4), e(α) = (11, 3, 2), e(β) = (11, 3, 2), e(γ) =
(11, 3, 2), e(δ) = (11, 3, 2). Here r(G) = e(G) = (11, 3, 2). Thus G is self centered SVNG,
but G is not complete SVNG.

Remark 3.3. A SVNG G = (A,B) is self centered SVNG if and only if d(G) = r(G).

Theorem 3.7. Let G = (A,B) be a connected SVNG with path covers P1, P2 and P3 of
G, respectively. Then G is self centered SVNG if and only if

δT (vi, vj) = dT (G), ∀(vi, vj) ∈ P1

δI(vi, vj) = dI(G), ∀(vi, vj) ∈ P2

δF (vi, vj) = dF (G), ∀(vi, vj) ∈ P3

Proof. Assume that G = (A,B) be self centered SVNG. Suppose that conditions are false,
that is

δT (vi, vj) = dT (G), ∃(vi, vj) ∈ P1

δI(vi, vj) = dI(G), ∃(vi, vj) ∈ P2

δF (vi, vj) = dF (G), ∃(vi, vj) ∈ P3

then by above remark, the above inequality becomes

δT (vi, vj) 6= rT (G), ∃(vi, vj) ∈ P1

δI(vi, vj) 6= rI(G), ∃(vi, vj) ∈ P2

δF (vi, vj) 6= rF (G), ∃(vi, vj) ∈ P3

Thus we conclude that, for some vi ∈ V
eT (vi) 6= rT (G), eI(vi) 6= rI(G), eF (vi) 6= rF (G)
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which shows that G is not self centered SVNG, which contradict the assumption. Thus

δT (vi, vj) = dT (G), ∀(vi, vj) ∈ P1

δI(vi, vj) = dI(G), ∀(vi, vj) ∈ P2

δF (vi, vj) = dF (G), ∀(vi, vj) ∈ P3

Next assume that
δT (vi, vj) = dT (G), ∀(vi, vj) ∈ P1

δI(vi, vj) = dI(G), ∀(vi, vj) ∈ P2

δF (vi, vj) = dF (G), ∀(vi, vj) ∈ P3

then by our hypothesis, we have

δT (vi, vj) = eT (vi), ∀(vi, vj) ∈ P1

δI(vi, vj) = eI(vi), ∀(vi, vj) ∈ P2

δF (vi, vj) = eF (vi), ∀(vi, vj) ∈ P3

this implies that, vi ∈ V
eT (vi) = rT (G), eI(vi) = rI(G), eF (vi) = rF (G)

hence e(G) = r(G), this shows that G is SCSVNG. �

Theorem 3.8. If G = (A,B) be a connected SVNG, with edge covers L1,L2 and L3 of G,
G is self centered SVNG if and only if

δ(vi, vj) = dT (G) for all (vi, vj) ∈ L1,

δ(vi, vj) = dI(G) for all (vi, vj) ∈ L2,

δ(vi, vj) = dF (G) for all (vi, vj) ∈ L3.

Proof. Similarly as Theorem 3.7 proved. �

Theorem 3.9. Let H = (A
′
, B

′
) be connected self centered SVNG, then there exists a

connected SVNG G = (A,B) for which < C(G) > is isomorphic with H and dT (G) =
2rT (G), dI(G) = 2rI(G), dF (G) = 2rF (G).

Proof. Let H = (A
′
, B

′
) be a connected self centered SVNG. Let dT (H) = l, dI(H) = m,

and dF (H) = n. For two vertices vi, vj ∈ V with TA(vi) = TA(vj) = 1
l , IA(vi) = IA(vj) =

1
2m , FA(vi) = FA(vj) = 1

2n . Also all the vertices of H are neighbors to both vi and vj with

TB(vi, vk) = TB(vj , vk) = 1
l , IB(vi, vk) = IB(vj , vk) = 1

2m , FB(vi, vk) = FB(vj , vk) = 1
2n

for all vk ∈ V.
′
. Next put TA = TA′ , IA = IA′ and FA = FA′ for all vertices in H and

TB = TB′ , IB = IB′ and FB = FB′ ∀ (α, β) ∈ E.
If possible TA(vi) > TA(vk) for at least one vertex vk ∈ V,

′
, then 1

l > TA(vk) that is

l < 1
TA(vk)

≤ 1
TB(vk,vl)

, this holds for all vl ∈ V
′

because H is SVNG, thus 1
TB(vk,vl)

> l for

all vk ∈ V
′

which contradict to fact dT (H) = l, therefore TA(vi) ≤ TA(vk) for all vk ∈ V
′

and TB(vi, vk) ≤ min(TAi, TAk) = 1
l , similarly TB(vj , vk) ≤ min(TAj , TAk) = 1

l for all

vk ∈ V,
′

note that IA(vi) ≥ IA(vk) and IA(vj) ≥ IA(vk) for all vk ∈ V
′

since dI(H) = m,
therefore IB(vi, vk) ≥ max(IAi, IAk) = 1

2m , similarly IB(vj , vk) ≥ max(IAj , IAk) = 1
2m for

all vk ∈ V,
′
, similarly FA(vi) ≥ FA(vk) and FA(vj) ≥ FA(vk) for all vk ∈ V,

′
since dF (H) =

n, therefore FB(vi , vk) ≤ max(FAi, FAk) = 1
2n , similarly FB(vj , vk) ≥ max(FAj , FAk) = 1

2n

for all vk ∈ V
′

hence G is SVNG.
Next eT (vk) = l for all vk ∈ V

′
and eT (vi) = eT (vj) = 1

TB(vi,vk)
+ 1

TB(vi,vk)
= 2l, rT (G) = l,

dT (G) = 2l. Next eI(vk) = m for all vk ∈ V
′

and eI(vi) = eI(vj) = 1
IB(vl,vk)

= 2m, rI(G) =
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Figure 5. SVNG

m, dI(G) = 2m. Similarly eF (vk) = n for all vk ∈ V
′
and eF (vi) = eF (vj) = 1

FB(vl,vk)
= 2n,

rF (G) = n, dF (G) = 2n. �

Definition 3.9. Let G = (A,B) be a connected SVNG, the status of a vertex α, which is
denoted by S(α), is defined by S(α) = (ST (α), SI(α), SF (α)), where

ST (α) =
∑
β∈V

δT (α, β), SI(α) =
∑
β∈V

δI(α, β), SF (α) =
∑
β∈V

δF (α, β)

where ST (α), SI(α) and SF (α) are called T -status, I-status and F -status of the vertex α,
respectively. The connected SVNG G is called self-median if all vertices have same status.

Definition 3.10. minimum and maximum status of connected SVNG the G is denoted
and defined by respectively

m(S(G)) = (min(ST (G)),min(SI(G)),min(SF (G)))

M(S(G)) = (max(ST (G)),max(SI(G)),max(SF (G)))

Definition 3.11. The total status of of connected SVNG the G is given by

t(S(G)) = (t(ST (G)), t(SI(G)), t(SF (G)))

where

t(ST (G)) =
∑
α∈V

ST (α), t(SI(G)) =
∑
α∈V

SI(α), t(SF (G)) =
∑
α∈V

SF (α)

Example 3.5. Consider the SVNG G = (A,B) of G∗ = (V,E), which is shown in
Figure 5. Then by calculations, S(α) = (5, 3, 4), S(β) = (18, 9, 12), S(γ) = (13, 6, 8),
S(δ) = (21, 7, 10). Thus G is not self median SVNG.

Remark 3.4. Let G = (C,D) be a connected SVNG of G∗ = (V,E), which is an even
cycle, then G is self-median SVNG, if alternative edges have same truth, indeterminacy
and falsity membership values.

Example 3.6. Consider the SVNG G = (A,B) of G∗ = (V,E) which is given in Ex-
ample 3.4. Then by routine calculations, we get δ(α, β) = (6, 3, 2), δ(α, δ) = (5, 3, 2),
δ(β, γ) = (5, 3, 2), δ(γ, δ) = (6, 3, 2), δ(α, γ) = (11, 6, 4), δ(β, δ) = (11, 6, 4), S(α) =
(22, 12, 8), S(β) = (22, 12, 8), S(γ) = (22, 12, 8), S(δ) = (22, 12, 8), t(S(G)) = S(α) =
S(β) = S(γ) = S(δ). Thus G is self median SVNG.
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4. The Classes of m−PSVNGs

In this section, we discuss the m−PSVNGs and special classes of m−PSVNGs such
as, antipodal, eccentric, self centered and self median m−PSVNGs. Let G denotes
m−PSVNG and G∗ = (V,E) denotes underlying crisp graph. In the whole article the
results and definitions hold ∀r = 1, 2, 3, · · · ,m.

Definition 4.1. Let X be a space of points (objects) with generic elements in X de-
noted by x. A m−Polar single valued neutrosophic set A (m−PSVNS A) is characterized
by m−Polar truth-membership function TA(x) : X −→ [0, 1]m m−Polar indeterminacy-
membership function IA(x) : X −→ [0, 1]m and m−Polar falsity-membership function
FA(x) : X −→ [0, 1]m. The m−PSVNS is the generalization of m−Polar fuzzy set and
m−Polar intuitionistic fuzzy set. Note that a [0, 1]m-set is an L-set. An L-set on the set
X is a synonym of a mapping A : X −→ L, where L is a lattice. So, [0, 1]m is considered to
be a partial order set with the point-wise order ≤, where m is an arbitrary ordinal number,
≤ is defined by x ≤ y ⇔ pr(x) ≤ pr(y) for each r ∈ m and pr : [0, 1]m −→ [0, 1] is the r−th
projection mapping (r ∈ m), when L = [0, 1], an L-set on X will be called a fuzzy set on X.

Definition 4.2. An m−Polar single valued neutrosophic graph is a pair G = (A,B),
where A : V −→ [0, 1]m is an m−Polar single valued neutrosophic set in V such that,

0 ≤ pr ◦ TA(x) + pr ◦ IA(x) + pr ◦ FA(x) ≤ 3,

∀x ∈ V, ∀r = 1, 2, 3, · · · ,m and B : V × V −→ [0, 1]m is an m−Polar single valued
neutrosophic relation on V, such that

pr ◦ TB(x, y) ≤ inf(pr ◦ TA(x), pr ◦ TA(y)),

pr ◦ IB(x, y) ≥ sup(pr ◦ IA(x), pr ◦ IA(y)),

pr ◦ FB(x, y) ≥ sup(pr ◦ FA(x), pr ◦ FA(y)),

∀x, y ∈ V, whenever

0 ≤ pr ◦ TB(x, y) + pr ◦ IB(x, y) + pr ◦ FB(x, y) ≤ 3,

∀(x, y) ∈ E ⊆ V × V and ∀r = 1, 2, 3, · · · ,m. Note that pr ◦ B(x, y) = 0, ∀(x, y) ∈
V ×V −E, ∀r = 1, 2, 3, · · · ,m. Also A is called the m−Polar SVN vertex set of G and B
is called the m−Polar SVN edge set of G, respectively. An m−Polar SVN relation B on
V is called symmetric if pr ◦B(x, y) = pr ◦B(y, x) ∀x, y ∈ V.
The m−PSVNG is the generalization of m−Polar fuzzy graph and m−Polar intuitionistic
fuzzy graph. The graph G is said to be a complete (strong) m−Polar SVNG, if

pr ◦ TB(x, y) = inf(pr ◦ TA(x), pr ◦ TA(y)),

pr ◦ IB(x, y) = sup(pr ◦ IA(x), pr ◦ IA(y)),

pr ◦ FB(x, y) = sup(pr ◦ FA(x), pr ◦ FA(y)),

∀x, y ∈ V ((x, y) ∈ E) and ∀r = 1, 2, 3, · · · ,m. The order of G, which is denoted by O(G),
is defined by

O(G) = ((p1 ◦OT (G), p1 ◦OI(G), p1 ◦OF (G)), · · · , (pm ◦OT (G), pm ◦OI(G), pm ◦OF (G)))

where

pr ◦OT (G) =
∑
x∈V

pr ◦ TA(x), pr ◦OI(G) =
∑
x∈V

pr ◦ IA(x), pr ◦OF (G) =
∑
x∈V

pr ◦ FA(x)

∀r = 1, 2, 3, · · · ,m. The size of G, which is denoted by S(G), is defined by

S(G) = ((p1 ◦ ST (G), p1 ◦ SI(G), p1 ◦ SF (G)), · · · , (pm ◦ ST (G), pm ◦ SI(G), pm ◦ SF (G)))
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where
pr ◦ ST (G) =

∑
(x,y)∈E
x 6=y

pr ◦ TB(x, y),

pr ◦ SI(G) =
∑

(x,y)∈E
x 6=y

pr ◦ IB(x, y),

pr ◦ SF (G) =
∑

(x,y)∈E
x 6=y

pr ◦ FB(x, y),

∀r = 1, 2, 3, · · · ,m. The degree of vertex x, which is denoted by dG(x), is defined by

dG(x) = ((p1 ◦ dT (x), p1 ◦ dI(x), p1 ◦ dF (x)), · · · , (pm ◦ dT (x), pm ◦ dI(x), pm ◦ dF (x)))

where
pr ◦ dT (x) =

∑
(x,y)∈E
x 6=y

pr ◦ TB(x, y),

pr ◦ dI(x) =
∑

(x,y)∈E
x 6=y

pr ◦ IB(x, y),

pr ◦ dF (x) =
∑

(x,y)∈E
x 6=y

pr ◦ FB(x, y)

∀r = 1, 2, 3, · · · ,m.
The total degree of vertex x is denoted and defined by

tdG(x) = ((p1 ◦ tdT (x), p1 ◦ tdI(x), p1 ◦ tdF (x)), · · · , (pm ◦ tdT (x), pm ◦ tdI(x), pm ◦ tdF (x)))

where,

pi ◦ tdT (x) =
∑

(x,y)∈E
x 6=y

pi ◦ TB(x, y) + pi ◦ TA(x)

pi ◦ tdI(x) =
∑

(x,y)∈E
x 6=y

pi ◦ IB(x, y) + pi ◦ IA(x)

pi ◦ tdF (x) =
∑

(x,y)∈E
x 6=y

pi ◦ FB(x, y) + pi ◦ FA(x)

∀i = 1, 2, 3, · · · ,m. The degree of edge e = xy is denoted and defined by

dG(x, y) = (· · · , (pi ◦ dT (x, y), pi ◦ dI(x, y), pi ◦ dF (x, y)), · · · )
where

pi ◦ dT (x, y) =
∑

(x,w)∈E
x 6=w

pi ◦ TB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ TB(w, y)

pi ◦ dI(x, y) =
∑

(x,w)∈E
x 6=w

pi ◦ IB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ IB(w, y)

pi ◦ dF (x, y) =
∑

(x,w)∈E
x6=w

pi ◦ FB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ FB(w, y)
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∀i = 1, 2, 3, · · · ,m. The total degree of edge e = xy is denoted and defined by

tdG(x, y) = (· · · , (pi ◦ tdT (x, y), pi ◦ tdI(x, y), pi ◦ tdF (x, y)), · · · )
where

pi ◦ tdT (x, y) =
∑

(x,w)∈E
x 6=w

pi ◦ TB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ TB(w, y) + pi ◦ TB(x, y)

pi ◦ tdI(x, y) =
∑

(x,w)∈E
x 6=w

pi ◦ IB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ IB(w, y) + pi ◦ IB(x, y)

pi ◦ tdF (x, y) =
∑

(x,w)∈E
x 6=w

pi ◦ FB(x,w) +
∑

(w,y)∈E
w 6=y

pi ◦ FB(w, y) + pi ◦ FB(x, y)

∀i = 1, 2, 3, · · · ,m.

Definition 4.3. A strong (complete) m−Polar single valued neutrosophic graph is a pair
G = (A,B), where A : V −→ [0, 1]m is an m−Polar single valued neutrosophic set in V
and B : V × V −→ [0, 1]m is an m−Polar single valued neutrosophic relation on V, such
that

pr ◦ TB(x, y) = inf(pr ◦ TA(x), pr ◦ TA(y))

pr ◦ IB(x, y) = sup(pr ◦ IA(x), pr ◦ IA(y))

pr ◦ FB(x, y) = sup(pr ◦ FA(x), pr ◦ FA(y))

∀(x, y) ∈ V (∀x, y ∈ V ) and ∀r = 1, 2, 3, · · · ,m.

Definition 4.4. The Partial m−PSVN-subgraph of m−PSVNG G = (A,B) on a crisp

graph G∗ = (V,E) is a m−PSVNG H = (A
′
, B

′
), such that

(1) A
′ ⊆ A, i.e ∀r = 1, 2, 3, · · · ,m and ∀x ∈ V
pr ◦ TA′ (x) ≤ pr ◦ TA(x), pr ◦ IA′ (x) ≥ pr ◦ IA(x), pr ◦ FA′ (x) ≥ pr ◦ FA(x)

(2) B
′ ⊆ B, i.e ∀r = 1, 2, 3, · · · ,m and ∀xy ∈ E

pr ◦ TB′ (x, y) ≤ pr ◦ TB(x, y), pr ◦ IB′ (x, y) ≥ pr ◦ IB(x, y), pr ◦ FB′ (x, y) ≥ pr ◦ FB(x, y)

Definition 4.5. The m−Polar SV N -subgraph of m−PSVNG G = (A,B), on a crisp

graph G∗ = (V,E) is a m−PSVNG H = (A
′
, B

′
), on a crisp graph H∗ = (V

′
, E

′
), such

that
(1) A

′
= A, i.e ∀x ∈ V ′ ⊆ V, with

pr ◦ TA′ (x) = pr ◦ TA(x), pr ◦ IA′ (x) = pr ◦ IA(x), pr ◦ FA′ (x) = pr ◦ FA(x)

∀r = 1, 2, 3, · · · ,m.
(2) B

′
= B, i.e ∀xy ∈ E′ ⊆ E, with

pr ◦ TB′ (x, y) = pr ◦ TB(x, y), pr ◦ IB′ (x, y) = pr ◦ IB(x, y), pr ◦ FB′ (x, y) = pr ◦ FB(x, y)

∀r = 1, 2, 3, · · · ,m.

Definition 4.6. A m−PSVN path P in a m−PSVNG G = (A,B), is a sequence of
distinct vertices v0, v1, · · · , vn, such that

pr ◦ TB(vj−1, vj) > 0, pr ◦ IB(vj−1, vj) > 0, pr ◦ FB(vj−1, vj) > 0

for 0 ≤ j ≤ n and ∀r = 1, 2, 3, · · · ,m. Here n ≥ 1 is called length of path P. A sin-
gle node or a vertex v may also be considered as a path. In this case path is of length
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((0, 0, 0), · · · , (0, 0, 0)). The consecutive pairs (vj−1, vj) are called edges of path. We call P
a cycle if v0 = vn and n ≥ 3. An m−PSVNG G = (A,B), is said to be connected if every
pair of vertices has at least one m−PSVN path between them, otherwise it is disconnected.

Definition 4.7. Let G1 = (C1, D1) and G2 = (C2, D2) be two m−PSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. The homomorphism χ : V1 → V2 is a mapping
from V1 into V2 satisfying following conditions:

pr ◦ TC1(ξ) ≤ pr ◦ TC2(χ(ξ)), pr ◦ IC1(ξ) ≥ pr ◦ IC2(χ(ξ)), pr ◦ FC1(ξ) ≥ pr ◦ FC2(χ(ξ))

∀ξ ∈ V1 and ∀r = 1, 2, 3, · · · ,m.
pr ◦ TD1(ξ, η) ≤ pr ◦ TD2(χ(ξ), χ(η))

pr ◦ ID1(ξ, η) ≥ pr ◦ ID2(χ(ξ), χ(η))

pr ◦ FD1(ξ, η) ≥ pr ◦ FD2(χ(ξ), χ(η))

∀(ξ, η) ∈ E1 and ∀r = 1, 2, 3, · · · ,m. The weak isomorphism υ : V1 → V2 is an bijective
homomorphism from V1 into V2 satisfying following conditions:

pr ◦ TC1(ξ) = pr ◦ TC2(υ(ξ)), pr ◦ IC1(ξ) = pr ◦ IC2(υ(ξ)), pr ◦ FC1(ξ) = pr ◦ FC2(υ(ξ))

∀ξ ∈ V1 and ∀r = 1, 2, 3, · · · ,m. The co-weak isomorphism κ : V1 → V2 is an bijective
homomorphism from V1 into V2 satisfying following conditions:

pr ◦ TD1(ξ, η) = pr ◦ TD2(χ(ξ), χ(η))

pr ◦ ID1(ξ, η) = pr ◦ ID2(χ(ξ), χ(η))

pr ◦ FD1(ξ, η) = pr ◦ FD2(χ(ξ), χ(η))

∀(ξ, η) ∈ E1 and ∀r = 1, 2, 3, · · · ,m. An isomorphism ψ : V1 → V2 is a bijective homo-
morphism from V1 into V2 satisfying following conditions:

pr ◦ TC1(ξ) = pr ◦ TC2(ψ(ξ)), pr ◦ IC1(ξ) = pr ◦ IC2(ψ(ξ)), pr ◦ FC1(ξ) = pr ◦ FC2(ψ(ξ))

∀ξ ∈ V1 and ∀r = 1, 2, 3, · · · ,m.
pr ◦ TD1(ξ, η) = pr ◦ TD2(χ(ξ), χ(η))

pr ◦ ID1(ξ, η) = pr ◦ ID2(χ(ξ), χ(η))

pr ◦ FD1(ξ, η) = pr ◦ FD2(χ(ξ), χ(η))

∀(ξ, η) ∈ E1 and ∀r = 1, 2, 3, · · · ,m.

Remark 4.1. One can see the following.

(1) The weak isomorphism between two m−PSVNGs preserves the orders.
(2) The weak isomorphism between m−PSVNGs is a partial order relation.
(3) The co-weak isomorphism between two m−PSVNGs preserves the sizes.
(4) The co-weak isomorphism between m−PSVNGs is a partial order relation.
(5) The isomorphism between two m−PSVNGs is an equivalence relation.
(6) The isomorphism between two m−PSVNGs preserves the orders and sizes.
(7) The isomorphism between two m−PSVNGs preserves the degrees of their vertices’s.

Definition 4.8. Let G be a m−PSVNG of G∗, the m−PSVN-Length of path Q : v1, v2, . . . , vn,
which is denoted by l(Q), is defined by

l(Q) = (pr ◦ lT (Q), pr ◦ lI(Q), pr ◦ lF )

where

pr ◦ lT (Q) =

n−1∑
i=1

1

pr ◦ TB(vi, vi+1)
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pr ◦ lI(Q) =
n−1∑
i=1

1

pr ◦ IB(vi, vi+1)

pr ◦ lF (Q) =
n−1∑
i=1

1

pr ◦ FB(vi, vi+1)

The pr ◦ lT (Q), pr ◦ lI(Q) and pr ◦ lF (Q) are called the m−PSVN-T-Length, m−PSVN-I-
Length and m−PSVN-F-Length of path Q, respectively. The m−PSVN-Distance between
two vertices α and β in V, which is denoted by δ(α, β), is defined by

δ(α, β) = (pr ◦ δT (α, β), pr ◦ δI(α, β), pr ◦ δF (α, β))

where

pr ◦ δT (α, β) = inf(lT (Q)), pr ◦ δI(α, β) = inf(lI(Q)), pr ◦ δF (α, β) = inf(lF (Q)).

where pr ◦ δT (α, β), pr ◦ δI(α, β) and pr ◦ δF (α, β) are called the m−PSVN-T-Distance,
m−PSVN-I-Distance and m−PSVN-F-Distance, respectively of any path α−β. The m−PSVN-
Eccentricity of vi ∈ V, which is denoted by e(vi), is defined by

e(vi) = (pr ◦ eT (vi), pr ◦ eI(vi), pr ◦ eF (vi))

where

pr ◦ eT (vi) = sup{pr ◦ δT (vi, vj) : vj ∈ V, vi 6= vj}

pr ◦ eI(vi) = inf{pr ◦ δT (vi, vj) : vj ∈ V, vi 6= vj}

pr ◦ eF (vi) = inf{pr ◦ δT (vi, vj) : vj ∈ V, vi 6= vj}
where pr◦eT (vi), pr◦eI(vi) and pr◦eF (vi) are called the m−PSVN-T-Eccentricity, m−PSVN-
I-Eccentricity and m−PSVN-F-Eccentricity of vertex vi, respectively. The m−PSVN-
Radius of G, which is denoted by r(G), is defined by

r(G) = (pr ◦ rT (G), pr ◦ rI(G), pr ◦ rF (G))

where

pr ◦ rT (G) = inf{pr ◦ eT (vi) : vi ∈ V }

pr ◦ rI(G) = inf{pr ◦ eI(vi) : vi ∈ V }

pr ◦ rF (G) = inf{pr ◦ eF (vi) : vi ∈ V }
where pr ◦ rT (G), pr ◦ rI(G) and pr ◦ rF (G) are called the m−PSVN-T-Radius, m−PSVN-
I-Radius and m−PSVN-F-Radius, respectively. The m−PSVN-Diameter of G, which is
denoted by d(G), is defined by

d(G) = (pr ◦ dT (G), pr ◦ dI(G), pr ◦ dF (G))

where

pr ◦ dT (G) = sup{pr ◦ eT (vi) : vi ∈ V }

pr ◦ dI(G) = sup{pr ◦ eI(vi) : vi ∈ V }

pr ◦ dF (G) = sup{pr ◦ eF (vi) : vi ∈ V }
where pr◦dT (G), pr◦dI(G) and pr◦dF (G) are called the m−PSVN-T-Diameter, m−PSVN-
I-Diameter and m−PSVN-F-Diameter, respectively.



A. HASSAN, M. A. MALIK: M−POLAR NEUTROSOPHIC GRAPHS 675

Definition 4.9. An m−Polar antipodal single valued neutrosophic graph (mPASVNG)
A(G) = (Q,R) of a m−PSVNG G = (A,B) is the m−PSVNG in which
(a) Q = A on V. (b) If pr ◦ δ(p, q) = pr ◦ d(G), then
(i) If (p, q) ∈ E, then R = B on E.
(ii) If (p, q) 6∈ E, then

pr ◦ TR(p, q) = inf(pr ◦ TA(p), pr ◦ TA(q))

pr ◦ IR(p, q) = sup(pr ◦ IA(p), pr ◦ IA(q))

pr ◦ FR(p, q) = sup(pr ◦ FA(p), pr ◦ FA(q))

Example 4.1. Consider the crisp graph G∗ = (V,E) of 3-PSVNG G = (A,B), the 3-
PSVNSs A and B of V = {ξ, η, ζ} and E = {(ξ, η), (η, ζ)(ζ, ξ)} are defined in Table. 1.

p1 ◦A p1 ◦ TA p1 ◦ IA p1 ◦ FA p1 ◦B p1 ◦ TB p1 ◦ IB p1 ◦ FB
ξ 1/5 1/4 1/3 (ξ, η) 1/7 1/2 1/3
η 1/7 1/2 1/5 (η, ζ) 1/7 1/2 1/5
ζ 1/4 1/6 1/8 (ζ, ξ) 1/5 1/4 1/3

p2 ◦A p2 ◦ TA p2 ◦ IA p2 ◦ FA p2 ◦B p2 ◦ TB p2 ◦ IB p2 ◦ FB
ξ 1/4 1/6 1/2 (ξ, η) 1/4 1/5 1/2
η 1/3 1/5 1/3 (η, ζ) 1/3 1/5 1/3
ζ 1/2 1/8 1/7 (ζ, ξ) 1/4 1/6 1/2

p3 ◦A p3 ◦ TA p3 ◦ IA p3 ◦ FA p3 ◦B p3 ◦ TB p3 ◦ IB p3 ◦ FB
ξ 1/3 1/2 1/6 (ξ, η) 1/8 1/2 1/6
η 1/8 1/3 1/7 (η, ζ) 1/8 1/3 1/3
ζ 1/6 1/5 1/3 (ζ, ξ) 1/6 1/2 1/3

Table 1. 3-PSVNSs of 3-PSVNG

By calculations 3-PSVNSs of 3-PASVNG, which are defined in Table. 2.

p1 ◦Q p1 ◦ TQ p1 ◦ IA p1 ◦ FQ p1 ◦R p1 ◦ TR p1 ◦ IR p1 ◦ FR
ξ 1/5 1/4 1/3 (ξ, η) 1/7 1/2 1/3
η 1/7 1/2 1/5 (η, ζ) 0 0 0
ζ 1/4 1/6 1/8 (ζ, ξ) 0 0 0

p2 ◦Q p2 ◦ TQ p2 ◦ IA p2 ◦ FQ p2 ◦R p2 ◦ TR p2 ◦ IR p2 ◦ FR
ξ 1/4 1/6 1/2 (ξ, η) 1/4 1/5 1/2
η 1/3 1/5 1/3 (η, ζ) 0 0 0
ζ 1/2 1/8 1/7 (ζ, ξ) 0 0 0

p3 ◦Q p3 ◦ TQ p3 ◦ IA p3 ◦ FQ p3 ◦R p3 ◦ TR p3 ◦ IR p3 ◦ FR
ξ 1/3 1/2 1/6 (ξ, η) 0 0 0
η 1/8 1/3 1/7 (η, ζ) 0 0 0
ζ 1/6 1/5 1/3 (ζ, ξ) 0 0 0

Table 2. 3-PSVNSs of 3-PASVNG

Definition 4.10. An eccentric m−PSVNG Ge = (Q,R) of a m−PSVNG G = (A,B),
which is the m−PSVNG, is defined by
(a) Q = A on V. (b) If

pr ◦ δT (α, β) = inf(pr ◦ eT (α), pr ◦ eT (β))

pr ◦ δI(α, β) = sup(pr ◦ eI(α), pr ◦ eI(β))
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pr ◦ δF (α, β) = sup(pr ◦ eF (α), pr ◦ eF (β))

then
(i) If (α, β) ∈ E, then R = B on E.
(ii) If (α, β) 6∈ E, then

pr ◦ TQ(α, β) = inf(pr ◦ TA(α), pr ◦ TA(β))

pr ◦ IQ(α, β) = sup(pr ◦ IA(α), pr ◦ IA(β))

pr ◦ FQ(α, β) = sup(pr ◦ FA(α), pr ◦ FA(β))

(c) Otherwise R = O = (0, · · · , 0).

Example 4.2. Consider the 3-PSVNG G = (A,B) of G∗ = (V,E), which is given in
Example. 4.1. By calculations 3-PSVNSs of eccentrc 3-PSVNG are given in Table. 3.

p1 ◦Q p1 ◦ TQ p1 ◦ IA p1 ◦ FQ p1 ◦R p1 ◦ TR p1 ◦ IR p1 ◦ FR
ξ 1/5 1/4 1/3 (ξ, η) 1/7 1/2 1/3
η 1/7 1/2 1/5 (η, ζ) 1/7 1/2 0
ζ 1/4 1/6 1/8 (ζ, ξ) 0 0 1/3

p2 ◦Q p2 ◦ TQ p2 ◦ IA p2 ◦ FQ p2 ◦R p2 ◦ TR p2 ◦ IR p2 ◦ FR
ξ 1/4 1/6 1/2 (ξ, η) 0 0 0
η 1/3 1/5 1/3 (η, ζ) 0 0 1/3
ζ 1/2 1/8 1/7 (ζ, ξ) 0 0 0

p3 ◦Q p3 ◦ TQ p3 ◦ IA p3 ◦ FQ p3 ◦R p3 ◦ TR p3 ◦ IR p3 ◦ FR
ξ 1/3 1/2 1/6 (ξ, η) 1/8 1/2 0
η 1/8 1/3 1/7 (η, ζ) 1/8 0 1/3
ζ 1/6 1/5 1/3 (ζ, ξ) 0 1/2 1/3

Table 3. 3-PSVNSs of eccentric 3-PSVNG

Proposition 4.1. The m−PASVNG of the m−PSVNG is the generalization of m−Polar
antipodal bipolar fuzzy graph and m−Polar antipodal intuitionistic bipolar fuzzy graph.

Proposition 4.2. The eccentric m−PSVNG is the generalization of m−Polar eccentric
bipolar fuzzy graph and eccentric m−Polar intuitionistic bipolar fuzzy graph.

Proposition 4.3. The A(G) is always a m−PSVN subgraph of Ge. For a complete
m−PSVNG G = (C,D), A(G) is same as Ge and they are m−PSVN subgraphs of G.

Definition 4.11. The connected m−PSVNG G = (X,Y ) is distance regular m−PSVNG,
whenever

pr ◦ δ(x, y) = kr = (k1r, k2r, k3r)

∀ x, y ∈ V.

Theorem 4.1. For the complete m−PSVNG G = (A,B) where A be constant m−PSVNS
then G and A(G) are isomorphic.

Proof. Since A is constant function, that is A(x) = cr = (c1r, c2r, c3r) where c1r, c2r, and
c3r are constants, hence pr ◦ δ(p, q) = dr = (d1r, d2r, d3r) ∀p, q ∈ V, therefore eccentricity
pr ◦ e(α) = dr = (d1r, d2r, d3r) ∀α ∈ V. Hence pr ◦ d(G) = dr = (d1r, d2r, d3r) = δ(α, β)
∀α ∈ V. Thus adjacency between every two vertices in A(G) such that (i) Q = A on V.
(ii) Since α and β are neighbors in G, hence R = B on E. Therefore G is isomorphic to
A(G). �
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Theorem 4.2. If G1 = (A1, B1) and G2 = (A2, B2) are isomorphic m−PSVNGs, then so
A(G1) and A(G2).

Proof. By hypothesis there is an isomorphism τ between them preserves the weights of
edges. Hence if vertex α has maximum T -eccentricity, minimum I-eccentricity, minimum
F -eccentricity in G1, then τ(α) has maximum T -eccentricity, minimum I-eccentricity and
minimum F -eccentricity in G2, so G1 and G2 will have same diameter. If distance between
α and β is kr = (k1r, k2r, k3r) in G1, then pr◦τ(α) and pr◦τ(β) will also have their distance
as kr in G2, since τ is a bijective function between A(G1) and A(G2) with pr ◦ Q1(α) =
pr ◦A1(α) = pr ◦A2(α) = pr ◦Q2(α) ∀α ∈ V1 and (i) If (α, β) ∈ E1, then pr ◦R1 = pr ◦B1.
(ii) If (α, β) 6∈ E1, then

pr ◦ TR1(α, β) = inf(pr ◦ TA1(α), pr ◦ TA1(β))

pr ◦ IR1(α, β) = sup(pr ◦ IA1(α), pr ◦ IA1(β))

pr ◦ FR1(α, β) = sup(pr ◦ FA1(α), pr ◦ FA1(β))

Since τ : G1 → G2 is an isomorphism, so if (α, β) ∈ E1 this implies pr ◦ R1(α, β) =
pr ◦R2(τ(α), τ(β)), if (α, β) 6∈ E1, then

pr ◦ TR1(α, β) = inf(pr ◦ τ(α), pr ◦ τ(β))

pr ◦ IR1(α, β) = sup(pr ◦ τ(α), pr ◦ τ(β))

pr ◦ FR1(α, β) = sup(pr ◦ τ(α), pr ◦ τ(β))

Therefore we conclude that pr ◦R1(α, β) = pr ◦R2(τ(α), τ(β)). �

Theorem 4.3. Let G1 = (A1, B1) and G2 = (A2, B2) be two connected m−PSVNGs, If
G1 and G2 are co-weak isomorphic, then A(G1) is homomorphic to A(G2).

Theorem 4.4. Let G1 = (A1, B1) and G2 = (A2, B2) be two complete m−PSVNGs, if G1

is co-weak isomorphic to G2, then A(G1) is co-weak isomorphic to A(G2).

Definition 4.12. A vertex vi ∈ V is said to be a central vertex if pr ◦ r(G) = pr ◦ e(vi).
The set of all central vertices of a m−PSVNG G is C(G), G is said to be self centered
m−PSVNG whenever pr ◦ r(G) = pr ◦ e(vi) ∀vi ∈ V .

Example 4.3. The 3-PSVNG G = (A,B) of G∗, which is given in Example 3.1 is a self
centered 3-PSVNG.

Remark 4.2. Every complete m−PSVNG G = (A,B) is a self centered m−PSVNG.

Remark 4.3. In general converse part does not hold of Remark 4.2.

Example 4.4. Consider a crisp graph G∗ = (V,E), of 3-PSVNG G = (A,B), the 3-
PSVNSs A and B of V and E, which are defined in Table. 4. Here G is self centered
3-PSVNG, but G is not complete 3-PSVNG.
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p1 ◦A p1 ◦ TA p1 ◦ IA p1 ◦ FA p1 ◦B p1 ◦ TB p1 ◦ IB p1 ◦ FB
α 1/5 1/3 1/3 (α, β)) 1/6 1/3 1/2
β 1/5 1/5 1/5 (β, γ) 1/5 1/3 1/2
γ 1/3 1/6 1/6 (γ, ξ) 1/6 1/3 1/2
ξ 1/4 1/4 1/4 (ξ, α) 1/5 1/3 1/2

p2 ◦A p2 ◦ TA p2 ◦ IA p2 ◦ FA p2 ◦B p2 ◦ TB p2 ◦ IB p2 ◦ FB
α 1/4 1/5 1/6 (α, β) 1/4 1/4 1/6
β 1/3 1/4 1/7 (β, γ) 1/3 1/3 1/3
γ 1/2 1/3 1/3 (γ, ξ) 1/6 1/2 1/2
ξ 1/6 1/2 1/2 (ξ, α) 1/6 1/2 1/2

p3 ◦A p3 ◦ TA p3 ◦ IA p3 ◦ FA p3 ◦B p3 ◦ TB p3 ◦ IB p3 ◦ FB
α 1/2 1/7 1/8 (α, β) 1/6 1/2 1/7
β 1/6 1/2 1/7 (β, γ) 1/6 1/2 1/4
γ 1/3 1/9 1/4 (γ, ξ) 1/5 1/7 1/3
ξ 1/5 1/7 1/3 (ξ, α) 1/5 1/7 1/3

Table 4. 3-PSVNSs of self centered 3-PSVNG

Remark 4.4. The m−PSVNG G = (A,B) is self centered m−PSVNG if and only if
pr ◦ d(G) = pr ◦ r(G).

Theorem 4.5. Let H = (A
′
, B

′
) be self centered m−PSVNG, then there exists a m−PSVNG

G = (A,B) for which < C(G) > and H are isomorphic. Further 2(pr ◦ r(G)) = pr ◦ d(G).

Proof. Let pr ◦ dT (H) = lr, pr ◦ dI(H) = mr, and pr ◦ dF (H) = nr next take two vertices
vi, vj ∈ V with pr ◦ TA(vi) = pr ◦ TA(vj) = 1

lr
, pr ◦ IA(vi) = pr ◦ IA(vj) = 1

2mr
, pr ◦

FA(vi) = pr ◦ FA(vj) = 1
2nr

and all the vertices of H are neighbors to both vi and vj with

pr ◦TB(vi, vk) = pr ◦TB(vj , vk) = 1
lr
, pr ◦IB(vi, vk) = pr ◦IB(vj , vk) = 1

2mr
, pr ◦FB(vi, vk) =

pr ◦FB(vj , vk) = 1
2nr
∀vk ∈ V

′
. Next put pr ◦TA = pr ◦TA′ , pr ◦IA = pr ◦IA′ and pr ◦FA =

pr ◦FA′ for all vertices’s in H and pr ◦TB = pr ◦TB′ , pr ◦IB = pr ◦IB′ and pr ◦FB = pr ◦FB′

∀ αβ ∈ E(H). If possible pr ◦ TA(vi) > pr ◦ TA(vk) for at least one vertex vk ∈ V,
′
, then

1
lr
> pr ◦ TA(vk) that is lr <

1
pr◦TA(vk)

≤ 1
pr◦TB(vk,vl)

this holds ∀vl ∈ V
′

because H is

m−PSVNG, thus 1
pr◦TB(vk,vl)

> lr ∀vk ∈ V
′

which contradict to fact pr ◦ dT (H) = lr,

therefore pr ◦ TA(vi) ≤ TA(vk) ∀vk ∈ V
′

and pr ◦ TB(vi, vk) ≤ inf(pr ◦ TAi, pr ◦ TAk) = 1
lr
,

similarly pr ◦ TB(vj , vk) ≤ inf(pr ◦ TAj , pr ◦ TAk) = 1
lr
∀vk ∈ V,

′
note that pr ◦ IA(vi) ≥

pr ◦ IA(vk) and pr ◦ IA(vj) ≥ pr ◦ IA(vk) ∀vk ∈ V
′

since pr ◦ dI(H) = mr, therefore
pr ◦ IB(vi, vk) ≥ sup(pr ◦ IAi, pr ◦ IAk) = 1

2mr
, similarly pr ◦ IB(vj , vk) ≥ sup(pr ◦ IAj , pr ◦

IAk) = 1
2mr
∀vk ∈ V,

′
similarly pr ◦ FA(vi) ≥ pr ◦ FA(vk) and pr ◦ FA(vj) ≥ pr ◦ FA(vk)

∀vk ∈ V,
′

since pr ◦ dF (H) = nr, therefore pr ◦ FB(vi, vk) ≤ sup(pr ◦ FAi, pr ◦ FAk) = 1
2nr

,

similarly pr ◦FB(vj , vk) ≥ sup(pr ◦FAj , pr ◦FAk) = 1
2nr
∀vk ∈ V

′
. Hence G is m−PSVNG.

Also pr◦eT (vk) = lr ∀vk ∈ V
′
and pr◦eT (vi) = pr◦eT (vj) = 1

pr◦TB(vi,vk)
+ 1
pr◦TB(vi,vk)

= 2lr,

pr ◦ rT (G) = lr, pr ◦ dT (G) = 2lr. Next pr ◦ eI(vk) = mr ∀vk ∈ V
′

and pr ◦ eI(vi) =
pr◦eI(vj) = 1

pr◦IB(vl,vk)
= 2mr, pr◦rI(G) = mr, pr◦dI(G) = 2mr. Similarly pr◦eF (vk) = nr

∀vk ∈ V
′

and pr ◦ eF (vi) = pr ◦ eF (vj) = 1
pr◦FB(vl,vk)

= 2nr, pr ◦ rF (G) = nr, pr ◦ dF (G) =

2nr. �



A. HASSAN, M. A. MALIK: M−POLAR NEUTROSOPHIC GRAPHS 679

Definition 4.13. The status of vertex ξ, which is denoted by S(ξ), is defined by

S(ξ) = (pr ◦ ST (ξ), pr ◦ SI(ξ), pr ◦ SF (ξ))

where

pr ◦ ST (ξ) =
∑
η∈V

pr ◦ δT (ξ, η), pr ◦ SI(ξ) =
∑
η∈V

pr ◦ δI(ξ, η), pr ◦ SF (ξ) =
∑
η∈V

pr ◦ δF (ξ, η)

where pr◦ST (ξ), pr◦SI(ξ) and pr◦SF (ξ) are called m−PSVN-T-status, m−PSVN-I-status
and m−PSVN-F-status of the vertex ξ, respectively. The connected m−PSVNG is called
self median m−PSVNG, if every vertex has the same status.

Remark 4.5. Let G = (C,D) be a connected m−PSVNG of G∗, which is an even cycle,
then G is self median m−PSVNG, if alternative edges have same truth, indeterminacy
and falsity membership values.

Example 4.5. The 3-PSVNG which is given in Example 4.4 is also self median 3-PSVNG.

5. Conclusion

In this paper, we discussed the special classes of SVNGs, antipodal SVNGs, eccentric
SVNGs, self centered SVNGs and self-median SVNGs of the given SVNGs. We also investi-
gated isomorphism properties on antipodal SVNGs. Next, we generalize into the m−Polar
single valued neutrosophic graph which is the generalization of m−Polar fuzzy, m−Polar
intuitionistic fuzzy, m−Polar bipolar fuzzy, m−Polar bipolar intuitionistic fuzzy graphs.
The m−PSVNGs gives more flexibility than BSVNGs. The m−PSVNGs have many appli-
cations in path problems, networks and computer science. The concept of m−Polar antipo-
dal SVNG, eccentric m−PSVNG, self centered m−PSVNG and self median m−PSVNG of
the given m−PSVNG introduced here. The weak isomorphism, co weak isomorphism and
isomorphism properties of antipodal m−PSVNG, eccentric m−PSVNG and self centered
m−PSVNG discussed in this article.
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