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Abstract: In this paper, a new concept of the triangular neutrosophic cubic fuzzy numbers (TNCFNs),
their score and accuracy functions are introduced. Based on TNCFNs, some new Einstein aggregation
operators, such as the triangular neutrosophic cubic fuzzy Einstein weighted averaging (TNCFEWA),
triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging (TNCFEOWA) and
triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging (TNCFEHWA) operators
are developed. Furthermore, their application to multiple-attribute decision-making with triangular
neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a practical example is given to
verify the developed approach and to demonstrate its practicality and effectiveness.

Keywords: triangular neutrosophic cubic fuzzy number; Einstein t-norm; arithmetic averaging
operator; Multi-attribute decision making; numerical application

1. Introduction

Atanassov [1] introduced the IFS, which is a generalization of FS. Atanassov [2] introduced
operations and relations over IFSs taking as a point of departure respective definitions of relations and
operations over fuzzy sets. Bustince et al. [3] introduced the characterization of certain structures of
intuitionistic relations according to the structures of two concrete fuzzy relations. Deschrijver et al. [4]
established the relationships between intuitionistic fuzzy sets (Atanassov, VII ITKR’s Session, Sofia,
June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)),
L-fuzzy sets. Deschrijver et al. [5] defined the mathematical relationship between intuitionistic fuzzy
sets and other models of imprecision. Jun et al. [6] introduced the cubic set. Mohiuddin et al. [7]
showed that the union of two internal cubic soft sets might not be internal. Turksen [8] showed that the
proposed representation (1) exists for certain families of the conjugate pairs of t-norms and t-norms,
and (2) resolves some of the difficulties associated with particular interpretations of conjunction,
disjunction, and implication in fuzzy set theories.

Xu [9] developed some aggregation operators, such as the intuitionistic fuzzy weighted averaging
operator, intuitionistic fuzzy ordered weighted averaging operator, and intuitionistic fuzzy hybrid
aggregation operator, to aggregate intuitionistic fuzzy values. Xu et al. [10] developed some new
geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator
and the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator. Xu et al. [11] provided
a survey of the aggregation techniques of intuitionistic fuzzy information and their applications
in various fields, such as decision making, cluster analysis, medical diagnosis, forecasting, and
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manufacturing grid. Liu et al. [12] introduced and discussed the concept of intuitionistic fuzzy point
operators. Zeng et al. [13] defined the situation with intuitionistic fuzzy information and developed
an intuitionistic fuzzy ordered weighted distance (IFOWD) operator. The fuzzy set was introduced
by Zadeh [14]. Zadeh [15] introduced the interval-valued fuzzy set Li et al. [16] proposed group
decision-making methods of the interval-valued intuitionistic uncertain linguistic variable based on
Archimedean t-norm and Choquet integral. Zhao et al. [17] developed some hesitant triangular fuzzy
aggregation operators based on the Einstein operation: the hesitant triangular fuzzy Einstein weighted
averaging (HTFEWA) operator. Xu et al. [18] introduced two new aggregation operators: dynamic
intuitionistic fuzzy weighted averaging (DIFWA) operator and uncertain dynamic intuitionistic fuzzy
weighted averaging (UDIFWA) operator.

The Neutrosophic Set (NS) was projected by Smarandache [19,20]. Neutrosophic sets are
characterized by fact participation, an indeterminacy-enrollment work and misrepresentation
participation, which are inside the ordinary or nonstandard unit interim ]−0, 1+[ in order to apply NS
to genuine applications. In order to apply NS to real-world applications, Aliya et al. [21] introduced
the concept of the triangular cubic fuzzy number. Aliya et al. [22] introduced the triangular cubic
hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy
Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy
Einstein hybrid weighted averaging (TCHFEHWA) operator.

Beg et al. [23] introduced a computational means to manage situations in which experts assess
alternatives in possible membership and non-membership values. Przemyslaw et al. [24] introduced a
simple test that sometimes might be helpful in detecting non-separability at a glance.

The differences between Reference 21, 22 and the current paper are as Table 1:

Table 1. Difference between references 21, 22 and current paper.

Reference 21 Reference 22 Current Paper

Defines a new extension of the
triangular cubic fuzzy number by
using a cubic set.

Defines a new extension of the
triangular cubic hesitant fuzzy
number by using a cubic set.

Defines a new extension of the
triangular neutrosophic cubic
fuzzy number by using a
neutrosophic set.

Introduced the triangular cubic
fuzzy number, operational laws,
and their score and accuracy
functions.

Introduced the triangular cubic
hesitant fuzzy number,
operational laws, and their score,
accuracy functions, membership
uncertainty index and hesitation
index.

Introduced the triangular cubic
fuzzy number, operational laws,
and their score and accuracy
functions, membership
uncertainty index and hesitation
index.

Introduced the triangular cubic
fuzzy hybrid aggregation operator.

Introduced three Einstein
aggregation operators, such as the
triangular cubic fuzzy hybrid
aggregation operator, and the
TCHFEWA, TCHFEOWA and
TCHFEHWA operators

Introduced three Einstein
aggregation operators, such as the
triangular neutrosophic cubic
fuzzy hybrid aggregation operator,
and the TNCFEWA, TNCFEOWA
and TNCFEHWA operators

Based on the above analysis, in this paper we develop TNCFNs, which is the generalization of the
triangular neutrosophic intuitionistic fuzzy number and triangular neutrosophic interval fuzzy number.
We perform some operations based on Einstein T-norm and Einstein T-conorm for TNCFNs. We also
develop score and accuracy functions to compare two TNCFNs. Due to the developed operation, we
propose the TNCFEWA operator, TNCFEOWA operator, and TNCFEHWA operator, to aggregate a
collection of TNCFNs.

This paper is organized as follows. In Section 2, we define some concepts of FS, CS, and TNCFNs.
In Section 3, we discuss some Einstein operations on TNCFNs and their properties. In Section 4, we
first develop some novel arithmetic averaging operators, such as the TNCFEWA operator, TNCFEOWA
operator, and TNCFEHWA operator, for aggregating a group of TNCFNs. In Section 5, we apply the
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TNCFEHWA operator to MADM with TNCFNs material. In Section 6, we offer a numerical example
consistent with our approach. In Section 7, we discuss comparison analysis. In Section 8, we present
a conclusion.

2. Preliminaries

Definition 1. [15]. Let H be a fixed set, a FS F in H is defined as:F = {(h, ΓF(h)|h ∈ H} where ΓF(h) is a
mapping from h to the closed interval [0, 1] and for each h ∈ H, ΓF(h) is called the degree of membership of h
in H.

Definition 2. Let H is a fixed set and an interval-valued fuzzy set I in H is defined as I ={
h, R−I (h), R+

I (h)
∣∣h ∈ H

}
, where R−I : H → [0, 1] and R+

I : H → [0, 1]. The R−I (h) is lower
membership and R+

I (h) is upper membership such that 0 ≤ R−I (h) ≤ R+
I (h)≤ 1.

Definition 3. [1]. An IFS Ð in H is given by Ð ={(h, RÐ(h), ΩÐ(h)|h ∈ H}, where RÐ : H → [0, 1]
and ΩÐ : H → [0, 1] , with the condition 0 ≤ RÐ(h) + ΩÐ(h) ≤ 1.

The numbers RÐ(h) and ΩÐ(h) represent, respectively, the membership degree and non-membership degree
of the element h to the set Ð.

Triangular Neutrosophic Cubic Fuzzy Number

Definition 4. Let A1 =



[p1(h), q1(h),
r1(h)],〈
[Υ−1 (h),

R−1 (h), δ−1 (h)],
[Υ+

1 (h),
R+

1 (h), δ+1 (h)],
[Υ1(h),

R1(h), δ1(h)]〉
|h ∈ H



and A2 =



[p2(h), q2(h),
r2(h)],〈
[Υ−2 (h),

R−2 (h), δ−2 (h)],
[Υ+

2 (h),
R+

2 (h), δ+2 (h)],
[Υ2(h),

R2(h), δ2(h)]〉
|h ∈ H



are two TNCFNs, some

operations on TNCFNs are defined as follows:
(a) A1 ⊆ A2 iff ∀h ∈ H, p1(h)) ≥ p2(h) q1(h) ≥ q2(h), r1(h)≥ r2(h), Υ−1 (h) ≥ Υ−2 (h), R−1 (h)≥

R−2 (h), δ−1 (h)≥ δ−1 (h), Υ+
1 (h) ≥ Υ+

2 (h) R+
1 (h) ≥ R+

2 (h),, δ+1 (h) ≥ δ+2 (h) and Υ1(h) ≥ Υ2(h) δ1(h) ≤
δ2(h).

(b) A1 ∩T, S A2 = T[p1(h), p2(h)], T[q1(h), q2(h)], T[r1(h), r2(h)],
〈

T[Υ−1 (h), Υ−2 (h)],
T[R−1 (h), R−2 (h)], T[δ−1 (h), δ−2 (h)], T[Υ+

1 (h),Υ
+
2 (h)], T[R+

1 (h), R+
2 (h)], T[δ+1 (h), δ+2 (h)], S[Υ1(h), Υ2(h)],

S[R1(h), R2(h)], S[δ1(h), δ2(h)]〉

Example 1. Let
..
A1 =


〈[0.1, 0.2, 0.3],
[0.2, 0.4, 0.6],
[0.4, 0.6, 0.8],
[0.3, 0.5, 0.7]〉

 and
..
A2 =


〈[0.103, 0.104, 0.105],
[0.100, 0.102, 0.104],
[0.102, 0.104, 0.106],
[0.101, 0.103, 0.105]〉

 be two TNCFSs

(a)
..
A1 ⊆

..
A2, if ∀...

z ∈ Z, 0.1 ≥ 0.103, 0.2 ≥ 0.104, 0.3 ≥ 0.105, 0.2 ≥ 0.100, 0.4 ≥ 0.102, 0.6 ≥ 0.104,
0.4 ≥ 0.102, 0.6 ≥ 0.104, 0.8 ≥ 0.106 and 0.3 ≤ 0.101, 0.5 ≤ 0.103, 0.7 ≤ 0.105.

(b)
..
A1 ∩T, S

..
A2 = T[0.1, 0.103], T[0.2, 0.104], T[0.3, 0.105], [T[0.2, 0.10], T[0.4, 0.12], T[0.6, 0.14],

T[0.4, 0.12], T[0.6, 0.14], T[0.8, 0.16] and S[0.3, 0.11], S[0.7, 0.15].
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Definition 5. Let C =


[pC(h), qC(h), rC(h)]〈
[A−C (h), R−C (h), Ũ−C (h)],

[A+
C (h), R+

C (h), Ũ+
C (h)],

[AC(h), RC(h), ŨC(h)]
〉∣∣∣h ∈ H

 be a TNCFN and then the score function

S(C), accuracy function N(C), membership uncertainty index T(C) and hesitation uncertainty index G(C) of
a TNCFN C are defined by

S(C) =

〈
[pC(h) + qC(h) + rC(h)][[A−C (h) + R−C (h) + Ũ−C (h)]

+[A+
C (h) + R+

C (h) + Ũ+
C (h)]]

−[AC(h) + RC(h) + ŨC(h)]
〉

27 ,

N(C) =

〈
[pC(h) + qC(h) + rC(h)][[A−C (h) + R−C (h) + Ũ−C (h)]

+[A+
C (h) + R+

C (h) + Ũ+
C (h)]] + [AC(h) + RC(h) + ŨC(h)]

〉
27

T(C) =
〈
[pC(h) + qC(h) + rC(h)][[A+

C (h) + R+
C (h) + Ũ+

C (h)]+

[AC(h) + RC(h) + ŨC(h)]− [A−C (h) + R−C (h) + Ũ−C (h)]
〉

,

G(C) =
〈
[pC(h) + qC(h) + rC(h)][[A+

C (h) + R+
C (h) + Ũ+

C (h)]

+[A−C (h) + R−C (h) + Ũ−C (h)]− [AC(h) + RC(h) + ŨC(h)]
〉

.

Example 2. Let C =


〈[0.101, 0.102,

0.103], [0.5, 0.7, 0.9],
[0.7, 0.9, 0.11], [0.6,

0.8, 0.10]〉

 be a TNCFN. Then the score function S(C), accuracy

function H(C), membership uncertainty index T(C) and hesitation uncertainty index G(C) of a TNCFN C are
defined by

S(C) =

〈[0.101 + 0.102 + 0.103][0.5 + 0.7 + 0.9]]
+[0.7 + 0.9 + 0.11]− [0.6 + 0.8 + 0.10]〉

27
=

0.306(3.81− 1.5)
27

=
0.7068

27
= 0.0261,

H(C) =

〈[0.101 + 0.102 + 0.103][0.5 + 0.7 + 0.9]]
+[0.7 + 0.9 + 0.11] + [0.6 + 0.8 + 0.10]〉

27
=

0.306(3.81 + 1.5)
27

=
1.6248

27
= 0.0601,

T(C) =

{
[0.101 + 0.102 + 0.103]〈[0.7 + 0.9 + 0.11]
+[0.6 + 0.8 + 0.10]− [0.5 + 0.7 + 0.9]〉

}
= 0.6(1.71 + 1.5− 2.1) = 0.306(3.21− 2.1) = 0.3396,

G(C) =

{
〈[0.101 + 0.102 + 0.103][0.7 + 0.9 + 0.11]
+[0.5 + 0.7 + 0.9]− [0.6 + 0.8 + 0.10]〉

}
= 0.306(1.71 + 2.1− 1.5) = 0.7068.

See Figure 1.
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3. Some Einstein Operations on TNCFNs

Definition 6. Let C =



[ą(h), ę(h),
G, (h)], 〈[Y =− (h),

k, −(h), Γ−(h)],
[Y =+ (h), k, +(h),
Γ+(h)], [Y = (h),

k, (h), Γ(h)]〉
|h ∈ H


, C1 =



[ą1(h), ę1(h),
G, 1(h)]

〈
[Y =−1 (h),

k, −1 (h), Γ−1 (h)],
[Y =+

1 (h), k, +1 (h),
Γ+

1 (h)], [Y =1 (h),
k, 1(h), Γ1(h)]〉
|h ∈ H


and

C2 =



[ą2(h), ę2(h),
G, 2(h)]

〈
[Y =−2 (h),

k, −2 (h), Γ−2 (h)],
[Y =+

2 (h), k, +2 (h),
Γ+

2 (h)], [Y =2 (h),
k, 2(h), Γ2(h)]〉
|h ∈ H


be any three TNCFNs. Then some Einstein operations of C1

and C2 can be defined as: C1 + C2 =

〈
ą1(h)+ą2(h)

1+ą1(h)(1−ą2(h))
,

ę1(h)+ę2(h)
1+ę1(h)(1−ę2(h))

,
G, 1(h)+G, 2(h)

1+G, 1(h)(1−G, 2(h))

,



Y=−1 (h)+Y=−2 (h)
1+Y=−1 (h)(1−Y=−2 (h))

,
Y=+

1 (h)+Y=+
2 (h)

1+Y=+
1 (h)(1−Y=+

2 (h))

,

k, −1 (h)+k, −2 (h)
1+k, −1 (h)(1−k, −2 (h))

,
k, +1 (h)+k, +2 (h)

1+k, +1 (h)(1−k, +2 (h))

,

Γ−1 (h)+Γ−2 (h)
1+Γ−1 (h)(1−Γ−2 (h))

,
Γ+

1 (h)+Γ+
2 (h)

1+Γ+
1 (h)(1−Γ+

2 (h))


,
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
Y=1(h)Y=2(h)

(1+(1−Y=1(h)) (1−Y=2(h)))
,

k, 1(h)k, 2(h)
(1+(1−k, 1(h)) (1−k, 2(h)))

,
Γ1(h)Γ2(h)

(1+((1−Γ1(h)) (1−Γ2(h)))


〉

, λC =

〈
[1+ąC(h)]

λ−[1−ąC(h)]
λ

[1+ąC(h)]
λ+[1−ą(h)]λ

,

[1+ęC(h)]
λ−[1−ęC(h)]

λ

[1+ęC(h)]
λ+[1−ę(h)]λ

,

[1+G, C(h)]
λ−[1−G, C(h)]

λ

[1+G, C(h)]
λ+[1−G, (h)]λ

,



[1+Y=−C (h)]λ−[1−Y=−C (h)]λ

[1+Y=−C (h)]λ+[1−Y=−C (h)]λ
,

[1+Y=+
C (h)]λ−[1−Y=+

C (h)]λ

[1+Y=+
C (h)]λ+[1−Y=+

C (h)]λ
,

[1+k, −C (h)]λ−[1−k, −C (h)]λ

[1+k, −C (h)]λ+[1−k, −C (h)]λ
,

[1+k, +C (h)]λ−[1−k, +C (h)]λ

[1+k, +C (h)]λ+[1−k, +C (h)]λ
,

[1+Γ−C (h)]λ−[1−Γ−C (h)]λ

[1+Γ−C (h)]λ+[1−Γ−C (h)]λ
,

[1+Γ+
C (h)]λ−[1−Γ+

C (h)]λ

[1+Γ+
C (h)]λ+[1−Γ+

C (h)]λ



,


2[Y=C(h)]

λ

[(2−Y=C(h)]
λ+[Y=C(h)]

λ ,

2[k, C(h)]
λ

[(2−k, C(h)]
λ+[k, C(h)]

λ ,

2[ΓC(h)]
λ

[(2−ΓC(h)]
λ+[ΓC(h)]

λ


〉

.

Proposition 1. Let
..
A,

..
A1 and

..
A2 be three TNCFNs, λ, λ1, λ2 > 0, then we have:

(1)
..
A1 +

..
A2 =

..
A2 +

..
A1,

(2) λ(
..
A1 +

..
A2) = λ

..
A2 + λ

..
A1,

(3) λ1
..
A + λ2

..
A = (λ1 + λ2)

..
A.

Proof. The proof of these propositions is provided in Appendix A. �

Remark 1. If α1 ≤LTNCFN α2, then α1 ≤ α2, the total order is the partial order on LTNCFN, see Figure 2.
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4. Triangular Neutrosophic Cubic Fuzzy Averaging Operators Based on Einstein Operations

In this section, we define the aggregation operators.
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4.1. Triangular Neutrosophic Cubic Fuzzy Einstein Weighted Averaging Operator

Definition 7. Let
..
A =



[α(h), β(h),
∆(h)]

〈
[ξ−1 (h),

ξ−2 (h), ξ−3 (h)],
[ξ+1 (h), ξ+2 (h),
ξ+3 (h)], [ξ1(h),
ξ2(h), ξ3(h)]〉
|h ∈ H


be a collection of TNCFNs in LTNCFN and

..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T be the weight vector, with
..
ω j ∈ [0, 1],

n
∑

j=1

..
ω j = 1. Hence TNCFEWA

operator of dimension n is a mapping TNCFEWA : Ln
TNCFN → LTNCFN and defined by

TNCFEWA(
..
A1,

..
A2, . . . ,

..
An) =

..
ω1

..
A1 +

..
ω2

..
A2, . . . ,

..
ωn

..
An.

If
..
ω = ( 1

n , 1
n , . . . , 1

n )
T

. Hence the TNCFEWA operator is reduced to TNCFEA operator of dimension n.
It can be defined as follows: TNCFEA(

..
A1,

..
A2, . . . ,

..
An) =

1
n (

..
A1,

..
A2, . . . ,

..
An).

Theorem 1. Let
..
A =



[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H


be a collection of TNCFNs in LTNCFN. The amassed an

incentive by utilizing the TNCFEWA operator is additionally a TNCFN and TNCFEWA.

(
..
A1,

..
A2, . . . ,

..
An) =

〈



n
∏
j=1

[1+α1(h)]
”
ω−

n
∏
j=1

[1−α1(h)]
”
ω

n
∏
j=1

[1+α1(h)]
”
ω+

n
∏
j=1

[1−α1(h)]
”
ω

,

n
∏
j=1

[1+β1(h)]
”
ω−

n
∏
j=1

[1−β1(h)]
”
ω

n
∏
j=1

[1+β1(h)]
”
ω+

n
∏
j=1

[1−β1(h)]
”
ω

,

n
∏
j=1

[1+∆1(h)]
”
ω−

n
∏
j=1

[1−∆1(h)]
”
ω

n
∏
j=1

[1+∆1(h)]
”
ω+

n
∏
j=1

[1−∆1(h)]
”
ω

,


,



n
∏
j=1

[1+p−1 (h)]
”
ω−

n
∏
j=1

[1−p−1 (h)]
”
ω

n
∏
j=1

[1+p−1 (h)]
”
ω
+

n
∏
j=1

[1−p−1 (h)]
”
ω

,

n
∏
j=1

[1+q−2 (h)]
”
ω−

n
∏
j=1

[1−q−2 (h)]
”
ω

n
∏
j=1

[1+q−2 (h)]
”
ω
+

n
∏
j=1

[1−q−2 (h)]
”
ω

,

n
∏
j=1

[1+r−3 (h)]
”
ω−

n
∏
j=1

[1−r−3 (h)]
”
ω

n
∏
j=1

[1+r−3 (h)]
”
ω
+

n
∏
j=1

[1−r−3 (h)]
”
ω



,



n
∏
j=1

[1+p+1 (h)]
”
ω−

n
∏
j=1

[1−p+1 (h)]
”
ω

n
∏
j=1

[1+p+1 (h)]
”
ω
+

n
∏
j=1

[1−p+1 (h)]
”
ω

,

n
∏
j=1

[1+q+2 (h)]
”
ω−

n
∏
j=1

[1−q+2 (h)]
”
ω

n
∏
j=1

[1+q+2 (h)]
”
ω
+

n
∏
j=1

[1−q+2 (h)]
”
ω

,

n
∏
j=1

[1+r+3 (h)]
”
ω−

n
∏
j=1

[1−r+3 (h)]
”
ω

n
∏
j=1

[1+r+3 (h)]
”
ω
+

n
∏
j=1

[1−r+3 (h)]
”
ω


,



2
n
∏
j=1

[p1(h)]
”
ω

n
∏
j=1

[(2−p1(h)]
”
ω+

n
∏
j=1

[p1(h)]
”
ω

,
2

n
∏
j=1

[q2(h)]
”
ω

n
∏
j=1

[(2−q2(h)]
”
ω+

n
∏
j=1

[q2(h)]
”
ω

,

,
2

n
∏
j=1

[r3(h)]
”
ω

n
∏
j=1

[(2−r3(h)]
”
ω+

n
∏
j=1

[r3(h)]
”
ω


〉

where
..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T be the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1. If α1(h) = α1(h), β1(h) = β1(h), ∆1(h) = ∆1(h), p−1 (h) = p−1 (h), q−2 (h) = q−2 (h),

r−3 (h) = r−3 (h), p+1 (h) = p+1 (h), q+2 (h) = q+2 (h), r+3 (h) = r+3 (h) and p1(h) = p1(h), q2(h) = q2(h),
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r3(h) = r3(h). Then the TNCFN
..
A =



[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H


are reduced to the triangular neutrosophic

cubic fuzzy numbers
..
A =



[α1(h), β1(h),
∆1(h)],

〈
[p−1 (h),

q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h),
r+1 (h)], [p1(h),
q1(h), r1(h)]〉
|h ∈ H


and the TNCFEWA operator is reduced to the TNCFEWA

operator.

Proof. The proof of this theorem is provided in Appendix B. �

Example 3. Let C1 =


〈[0.02, 0.03, 0.04],
[0.02, 0.04, 0.06],
[0.04, 0.06, 0.08],
[0.03, 0.05, 0.07]〉

, C2 =


〈[0.205, 0.207, 0.209],
[0.211, 0.213, 0.215],
[0.213, 0.215, 0.217],
[0.212, 0.214, 0.216]〉

 and

C3 =


〈[0.004, 0.005, 0.006],
[0.102, 0.104, 0.106],
[0.104, 0.106, 0.108],
[0.103, 0.105, 0.107]〉

 be a TNCFN. Then the score function is defined by S(C1) =



〈[0.02 + 0.03 + 0.04],
[0.02 + 0.04 + 0.06]+
[0.04 + 0.06 + 0.08]−
[0.03 + 0.05 + 0.07]〉


27 = 0.0005, S(C2) =



〈[0.205 + 0.207 + 0.209],
[0.211 + 0.213 + 0.215]+
[0.213 + 0.215 + 0.217]−
[0.212 + 0.214 + 0.216]〉


27 = 0.0147, S(C3) =

〈[0.004, 0.005, 0.006],
[0.102, 0.104, 0.106],
[0.104, 0.106, 0.108],
[0.103, 0.105, 0.107]〉


27 = 0.015(0.63−0.315)

27 = 0.0001.
See Figure 3.
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Example 4. Let C1 =


〈[0.04, 0.05, 0.06],
[0.01, 0.03, 0.05],
[0.03, 0.05, 0.07],
[0.02, 0.04, 0.06]〉

, C2 =


〈[0.05, 0.07, 0.09],
[0.11, 0.13, 0.15],
[0.13, 0.15, 0.17],
[0.12, 0.14, 0.16]〉

 and C3 =


〈[0.2004, 0.2005, 0.2006],
[0.2102, 0.2104, 0.2106],
[0.2104, 0.2106, 0.2108],
[0.2103, 0.2105, 0.2107]〉

 be a TNCFN. Then the accuracy function is defined by H(C1) =



〈[0.04 + 0.05 + 0.06],
[0.01 + 0.03 + 0.05]+
[0.03 + 0.05 + 0.07]+
[0.02 + 0.04 + 0.06]〉


27 = 0.002, H(C2) =



〈[0 + 05 + 0.07 + 0.09],
[0.11 + 0.13 + 0.15]+
[0.13 + 0.15 + 0.17]+
[0.12 + 0.14 + 0.16]〉


27 = 0.0098, H(C3) =

〈[0.2004 + 0.2005 + 0.2006],
[0.2102 + 0.2104 + 0.2106]+
[0.2104 + 0.2106 + 0.2108]+
[0.2103 + 0.2105 + 0.2107]〉


27 = 0.0422.

See Figure 4.
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score value.

Proposition 2. Let
..
A =



[α1(h), β1(h), ∆1(h)]〈
[p−1 (h), q−1 (h), r−1 (h)],
[p+1 (h), q+1 (h), r+1 (h)],
[p1(h), q1(h), r1(h)]〉

|h ∈ H


be a collection of TNCFNs in LTNCFN and where

..
ω

= (
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) with

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1.

Then (1) (Idempotency): If all Aj, j = 1, 2, . . . , n are equal, i.e., Aj = A, for all j = 1, 2, . . . , n, then
TNCFEWA (A1, A2, . . . , An) = A.

(2) (Boundary): If αmin = min1≤j≤nαj, βmin = min1≤j≤nβ j, ∆min = min1≤j≤n∆j,
p−min = min1≤j≤n p−j , q−min = min1≤j≤nq−j , r−min = min1≤j≤nr−j , p+min = min1≤j≤n p+j , q+min =

min1≤j≤nq+j , r+min = min1≤j≤nr+j , pmax = max1≤j≤n pj, qmax = max1≤j≤nqj, rmax = max1≤j≤nrj,

µmax = max1≤j≤nµj, p−max = max1≤j≤n p−j , q−max = max1≤j≤nq−j , r−max = max1≤j≤nr−j , µ−max =

max1≤j≤nµ−j , p+max = max1≤j≤n p+j , q+max = max1≤j≤nq+j , r+max = max1≤j≤nr+j , pmin = min1≤j≤n pj,
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qmin = min1≤j≤nqj, rmin = min1≤j≤nrj, µmin = min1≤j≤nµj for all j = 1, 2, .., n, we can determine that

[αmin(h),
βmin(h), ∆min(h)]〈

[p−min(h),
q−min(h), r−min(h)]

[p+min(h),
q+min(h), r+min(h)]
[pmax(h), qmax(h),
rmax(h), smax(h)]〉|

h ∈ H



≤ TNCFEWA(A1, A2, . . . , An) ≤



[αmax(h), βmax(h),
∆max(h)], 〈[p−max(h),

q−max(h), r−max(h)],
[p+max(h), q+max(h),
r+max(h)], [pmin(h),
qmin(h), rmin(h)]〉|

h ∈ H



(3) (Monotonicity): A =



[αA(h),
βA(h), ∆A(h)],〈

[
{

p−A(h),
q−A(h), r−A(h)]

, [p+A(h),
q+A(h), r+A(h)]

, [pA(h),
qA(h), rA(h)]〉|

h ∈ H



and B =



[αB(h),
βB(h), ∆B(h)],〈

[p−B (h),
q−B (h), r−B (h)]

[p+B (h),
q+B (h), r+B (h)]

[pB(h),
qB(h), rB(h)〉
|h ∈ H



be two collection

of TNCFNs in LTNCFN and Aj ≤ LTNCFNBj i.e., αA(h) ≤ αB(h), βA(h) ≤ βB(h), ∆A(h) ≤ ∆B(h),
p−A(h) ≤ p−B (h), q−A(h) ≤ q−B (h), r−A(h) ≤ r−B (h), p+A(h) ≤ p+B (h), q+A(h) ≤ q+B (h), r+A(h) ≤ r+B (h)
and pA(h) ≤ pB(h), qA(h) ≤ qB(h), rA(h) ≤ rB(h) then TNCFEWA (A1, A2, . . . , An) ≤ TNCFEWA
(B1, B2, . . . , Bn).

4.2. Triangular Neutrosophic Cubic Fuzzy Einstein Ordered Weighted Averaging Operator

Definition 8. Let
..
A =



[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


be a collection of TNCFNs in LTNCFN, a TNCFEOWA

operator of dimension n is a mapping TNCFEOWA: Ln
TNCFN → LTNCFN , that has an associated vector w =

(w1, w2, . . . , wn)
T such that wj ∈ [0, 1] and

n
∑

j=1
wj = 1. TNCFEOWA (

..
A1,

..
A2, . . . ,

..
An) = ð1

..
A(σ)1 +

ð2
..
A(σ)2, . . . ,+ðn

..
A(σ)n, where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that

..
Aσ(1) ≤

..
Aσ(j−1) for all j = 2, 3, . . . , n (i.e.,

..
Aσ(j) is the j the largest value in the collection (

..
A1,

..
A2, . . . ,

..
An). If

w = (w1, w2, . . . , wn)
T = ( 1

n , 1
n , . . . , 1

n )
T

. Then the TNCFEOWA operator is reduced to the TCFA operator
(2) of dimension n.
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Theorem 2. Let
..
A =



[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


be a collection of TNCFNs in LTNCFN. Then their aggregated

value by using the TNCFEOWA operator is also a TNCFN and TNCFEOWA

(
..
A1,

..
A2, . . . ,

..
An) =

〈



n
∏
j=1

[1+α1(h)]
”
ω−

n
∏
j=1

[1−α1(h)]
”
ω

n
∏
j=1

[1+α1(h)]
”
ω+

n
∏
j=1

[1−α1(h)]
”
ω

,

n
∏
j=1

[1+β1(h)]
”
ω−

n
∏
j=1

[1−β1(h)]
”
ω

n
∏
j=1

[1+β1(h)]
”
ω+

n
∏
j=1

[1−β1(h)]
”
ω

,

n
∏
j=1

[1+∆1(h)]
”
ω−

n
∏
j=1

[1−∆1(h)]
”
ω

n
∏
j=1

[1+∆1(h)]
”
ω+

n
∏
j=1

[1−∆1(h)]
”
ω

,


,



n
∏
j=1

[1+p−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−p−
σ(j)(h)]

”
ω

n
∏
j=1

[1+p−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−p−
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+q−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−q−
σ(j)(h)]

”
ω

n
∏
j=1

[1+q−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−q−
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+r−
σ(j)(h)]

”
ω−

n
∏
j=1

[1−r−
σ(j)(h)]

”
ω

n
∏
j=1

[1+r−
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−r−
σ(j)(h)]

”
ω



,



n
∏
j=1

[1+p+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−p+
σ(j)(h)]

”
ω

n
∏
j=1

[1+p+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−p+
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+q+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−q+
σ(j)(h)]

”
ω

n
∏
j=1

[1+q+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−q+
σ(j)(h)]

”
ω

,

n
∏
j=1

[1+r+
σ(j)(h)]

”
ω−

n
∏
j=1

[1−r+
σ(j)(h)]

”
ω

n
∏
j=1

[1+r+
σ(j)(h)]

”
ω
+

n
∏
j=1

[1−r+
σ(j)(h)]

”
ω


,



2
n
∏
j=1

[pσ(j)(h)]
”
ω

n
∏
j=1

[(2−pσ(j)(h)]
”
ω+

n
∏
j=1

[pσ(j)(h)]
”
ω

,
2

n
∏
j=1

[qσ(j)(h)]
”
ω

n
∏
j=1

[(2−qσ(j)(h)]
”
ω+

n
∏
j=1

[qσ(j)(h)]
”
ω

,

2
n
∏
j=1

[rσ(j)(h)]
”
ω

n
∏
j=1

[(2−rσ(j)(h)]
”
ω+

n
∏
j=1

[rσ(j)(h)]
”
ω


〉

where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) with
..
Aσ(1) ≤

..
Aσ(j−1) for all j = 2, 3, . . . , n,

..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1], and

n
∑

j=1

..
ω j = 1.

If
..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T
= ( 1

n , 1
n , . . . , 1

n )
T

. Then the TNCFEOWA operator is reduced to the TNCFA
operator of dimension n. Where

..
ω = (

..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such

that
..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1. If α1(h) = α1(h), β1(h) = β1(h), ∆1(h) = ∆1(h), p−..

A
(h) = p−..

A
(h),

q−..
A
(h) = q−..

A
(h), r−..

A
(h) = r−..

A
(h), p+..

A
(h) = p+..

A
(h), q+..

A
(h) = q+..

A
(h), r+..

A
(h) = r+..

A
(h) and p ..

A
(h) = p ..

A
(h),
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q ..
A
(h) = q ..

A
(h), r ..

A
(h) = r ..

A
(h). The TNCFN

..
A =



[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)]

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


are reduced to the triangular

neutrosophic cubic fuzzy numbers
..
A =



[α ..
A
(h), β ..

A
(h),

∆ ..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


. Then the TNCFEWA operator is reduced to

the triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging operator.

Proof. The process of this proof is the same as Theorem 1. �

Example 5. Let C1 =


〈[0.01, 0.02, 0.03],
[0.103, 0.105, 0.107],
[0.105, 0.107, 0.109],
[0.104, 0.106, 0.108]〉

, C2 =


〈[0.306, 0.308, 0.310],
[0.310, 0.313, 0.315],
[0.313, 0.315, 0.317],
[0.312, 0.314, 0.316]〉

 and

C3 =


〈[0.44, 0.55, 0.66],
[0.122, 0.124, 0.126],
[0.124, 0.126, 0.128],
[0.123, 0.125, 0.127]〉

 be a TNCFN. Then the score function is defined by S(C1) =



〈[0.01 + 0.02 + 0.03],
[0.103 + 0.105 + 0.107]+
[0.105 + 0.107 + 0.109]−
[0.104 + 0.106 + 0.108]〉


27 = 0.00004, S(C2) =



〈[0.306 + 0.308 + 0.310],
[0.310 + 0.313 + 0.315]+
[0.313 + 0.315 + 0.317]−
[0.312 + 0.314 + 0.316]〉


27 = 0.0322, S(C3) =

〈[0.44 + 0.55 + 0.66],
[0.122 + 0.124 + 0.126]+
[0.124 + 0.126 + 0.128]−
[0.123 + 0.125 + 0.127]〉


27 = 0.0229.

See Figure 5.
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Example 6. Let C1 =


〈[0.02, 0.03, 0.04],
[0.06, 0.08, 0.010],
[0.08, 0.010, 0.012],
[0.07, 0.09, 0.011]〉

, C2 =


〈[0.1105, 0.1107, 0.1109],
[0.1111, 0.1113, 0.1115],
[0.1113, 0.1115, 0.1117],
[0.1112, 0.1114, 0.1116]〉

 and C3 =


〈[0.214, 0.215, 0.216],
[0.2202, 0.2204, 0.2206],
[0.2204, 0.2206, 0.2208],
[0.2203, 0.2205, 0.2207]〉

 be a TNCFN. Then the accuracy function is defined by H(C1) =



〈[0.02, 0.03, 0.04],
[0.06, 0.08, 0.010],
[0.08, 0.010, 0.012],
[0.07, 0.09, 0.011]〉


27 = −0.0021, H(C2) =



〈[0.1105, 0.1107, 0.1109],
[0.1111, 0.1113, 0.1115],
[0.1113, 0.1115, 0.1117],
[0.1112, 0.1114, 0.1116]〉


27 = 0.0041, H(C3) =

〈[0.214, 0.215, 0.216],
[0.2202, 0.2204, 0.2206],
[0.2204, 0.2206, 0.2208],
[0.2203, 0.2205, 0.2207]〉


27 = 0.0158.

See Figure 6.
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4.3. Triangular Neutrosophic Cubic Fuzzy Einstein Hybrid Weighted Averaging Operator

Definition 9. Let
..
A =



[Γ ..
A
(h), Ω ..

A
(h),

..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q−..

A
(h),

r−..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


be a collection of TNCFNs in LTNCFN and

..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector of
..
Aj(j = 1, 2, . . . , n) such that

..
ω j ∈ [0, 1] and

n
∑

j=1

..
ω j = 1.

Then TNCFEHWA operator of dimension n is a mapping TNCFEHWA : Ln
TNCFN → LTNCFN , that is

an associated vector w = (w1, w2, . . . , wn)
T such that wj ∈ [0, 1] and

n
∑

j=1
wj = 1. TNCFEHWA

(
..
A1,

..
A2, . . . ,

..
An) = p1

..
Aσ(1) + p2

..
Aσ(1), . . . , pn

..
Aσ(1). If p = θ

..
ωσ(j) + (1 − θ)wσ(j) with a balancing

coefficient θ ∈ [0, 1], (σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such that
..
Aσ(j) ≤

..
Aσ(j−1) for

all j = 2, 3, . . . , n (i.e.,
..
Aσ(j) is the j th largest value in the collection (

..
A1,

..
A2, . . . ,

..
An).

Example 7. Let C1 =


〈[0.11, 0.13, 0.14],
[0.62, 0.64, 0.66],
[0.64, 0.66, 0.68],
[0.63, 0.65, 0.67]〉

, C2 =


〈[0.51, 0.52, 0.53],
[0.311, 0.313, 0.315],
[0.313, 0.315, 0.317],
[0.312, 0.314, 0.316]〉

 and C3 =


〈[0.1004, 0.1005, 0.1006],
[0.3102, 0.3104, 0.3106],
[0.3104, 0.3106, 0.3108],
[0.3103, 0.3105, 0.3107]〉

 be a TNCFN. Then the score function is defined by S(C1) =



〈[0.11 + 0.13 + 0.14],
[0.62 + 0.64 + 0.66]+
[0.64 + 0.66 + 0.68]−
[0.63 + 0.65 + 0.67]〉


27 = 0.0281, S(C2) =



〈[0.51 + 0.52 + 0.53],
[0.311 + 0.313 + 0.315]+
[0.313 + 0.315 + 0.317]−
[0.312 + 0.314 + 0.316]〉


27 = 0.0543, S(C3) =

〈[0.1004, 0.1005, 0.1006],
[0.3102, 0.3104, 0.3106],
[0.3104, 0.3106, 0.3108],
[0.3103, 0.3105, 0.3107]〉


27 = 0.0104.

See Figure 7.
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Example 8. Let C1 =


〈[0.112, 0.113, 0.114],

[0.21, 0.24, 0.28],
[0.24, 0.28, 0.32],
[0.23, 0.26, 0.30]〉

, C2 =


〈[0.0019, 0.0021, 0.0034],
[0.1231, 0.1233, 0.1235],
[0.1233, 0.1235, 0.1237],
[0.1232, 0.1234, 0.1236]〉

 and

C3 =


〈[0.2554, 0.2555, 0.2556],
[0.2662, 0.2664, 0.2666],
[0.2664, 0.2666, 0.2668],
[0.2663, 0.2665, 0.2667]〉

 be a TNCFN. Then the accuracy function is defined by H(C1) =



〈[0.112 + 0.113 + 0.114],
[0.21 + 0.24 + 0.28]+
[0.24 + 0.28 + 0.32]−
[0.23 + 0.26 + 0.30]〉


27 = 0.0111, H(C2) =



〈[0.0019 + 0.0021 + 0.0034]
[0.1231 + 0.1233 + 0.1235]+
[0.1233 + 0.1235 + 0.1237]−
[0.1232 + 0.1234 + 0.1236]〉


27 = 0.1124,

H(C3) =



〈[0.2554, 0.2555, 0.2556],
[0.2662, 0.2664, 0.2666],
[0.2664, 0.2666, 0.2668],
[0.2663, 0.2665, 0.2667]〉


27 = 0.0226.

See Figure 8.
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5. An Approach to MADM with TNCF Data

Let us suppose the discrete set is h = {h1, h2, . . . , hn} and G = {g1, g2, . . . , gn} are the attributes.
Consider that the value of alternatives hi (i = 1, 2, . . . , n) on attributes gj (j = 1, 2, . . . , m) given by

decision maker are TNCFNs in LTNCFN :
..
A =



[Γ ..
A
(h), Ω ..

A
(h),

..
A
(h)],

〈
[p−..

A
(h),

q−..
A
(h), r−..

A
(h)],

[p+..
A
(h), q+..

A
(h),

r+..
A
(h)], p ..

A
(h),

q ..
A
(h), r ..

A
(h)
〉

|h ∈ H


, a MADM problem is expressed

in the TNCF-decision matrix
...
D = (

..
Aij)m×n =



[Γ ..
A
(h), Ω ..

A
(h), ..

A
(h)],〈

[p−..
A
(h), q−..

A
(h), r−..

A
(h)],

[p+..
A
(h), q+..

A
(h), r+..

A
(h)],

p ..
A
(h), q ..

A
(h), r ..

A
(h)
〉

|h ∈ H


.

Step 1: Calculate the TNCF decision matrix.
Step 2: Utilize the TNCFEWA operator to mix all values

..
βij (j = 1, 2, . . . , m) and

..
ω =

(
..
ω1,

..
ω2, . . . ,

..
ωn)

T is the weight vector.
Step 3: Calculate the score function.
Step 4: Find the ranking.
See Figure 9.
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6. Numerical Application

The inspiration structure is designed to be dependent upon an assessment that has been devised
for the purpose of a stimulus/influencing technique of a twofold entire traveler dispersion to work
over the Lahore in Faisalabad by lessening the adventure stage in extraordinarily brimful waterway
movement. Inspiration structure choices are sure the settled of options A = {A1, A2, A3, A4}

A1 : Old-style propeller and high trundle
A2 : Get-up-and-go,
A3 : Cyclonical propeller,
A4 : Outmoded
See Figure 10.
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The ideal is prepared on the possibility of lone zone and four issue characteristics, which are
as follows:

c1 : Theory rate
c2 : Reparation and support uses
c3 : Agility
c4 : Tremor and unrest.
See Figure 11.
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The weight vector is
..
ω = (0.25, 0.50, 0.25). So, the triangular neutrosophic cubic fuzzy MADM

issue is intended to choose the appropriate energy structure from between 3 choices.
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Step 1: Calculate the TNCF decision matrix.
The TNCF decision matrix is as Table 2

Table 2. Triangular Neutrosophic Cubic Fuzzy Decision Matrix.

c1 c2

A1

〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉

A2

〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉 〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉

A3

〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉 〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉

A4

〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉 〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉

c3 c4

A1

〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉 〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉

A2

〈 [0 .3, 0.4, 0 .5],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .15, 0.16, 0 .17],
[0 .12, 0.14, 0 .16],
[0 .14, 0.16, 0 .18],
[0 .13, 0.15, 0 .17]

〉

A3

〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0 .9]

〉 〈 [0 .3, 0.4, 0 .5],
[0 .2, 0.4, 0 .6],
[0 .4, 0.6, 0 .8],
[0 .3, 0.5, 0 .7]

〉

A4

〈 [0 .21, 0.22, 0 .23],
[0 .5, 0.7, 0 .9],
[0 .7, 0.9, 0 .11],
[0 .6, 0.8, 0 .10]

〉 〈 [0 .1, 0.2, 0 .3],
[0 .4, 0.6, 0 .8],
[0 .6, 0.8, 0 .10],
[0 .5, 0.7, 0.9]

〉

Step 2: Calculate the TNCFEWA operator to total all the rating values and w = (0.1, 0.2, 0.4, 0.3)T .
The TNCFEWA operator are defined in Table 3.

Table 3. TNCFEWA Operator.

A1

{〈
[0 .2539, 0.2751, 0 .2965], [0 .1628, 0.2513, 0 .3973],
[0 .2513, 0.3973, 0 .0503], [0 .7335, 0.8054, 0 .6003]

〉}
A2

{〈
[0 .1536, 0.1995, 0 .2477], [0 .2944, 0.3597, 0 .6447],
[0 .3597, 0.6447, 0 .0988], [0 .4838, 0.6067, 0 .4831]

〉}
A3

{〈
[0 .3481, 0.4499, 0 .5594], [0 .3626, 0.5867, 0 .7852],
[0 .5867, 0.7852, 0 .7582], [0 .1049, 0.2122, 0 .3571]

〉}
A4

{〈
[0 .2282, 0.2945, 0 .3622], [0 .3704, 0.5631, 0 .7729],
[0 .5631, 0.7729, 0 .4197], [0 .2593, 0.3985, 0 .2735]

〉}

Step 3: The score value are calculated as s1 = −0.0192, s2 = 0.0184, s3 = 0.1603, s4 = 0.0829.
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Step 4: Ranking
..
s3 >

..
s4 >

..
s2 >

..
s1.

See Figure 12.
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7. Comparsion Analysis

So as to check the legitimacy and viability of the proposed methodology, a near report is led
utilizing the techniques triangular cubic fuzzy number [21], which are unique instances of TNCFNs, to
the equivalent illustrative model.

A Comparison Analysis with the Existing MCDM Method Triangular Cubic Fuzzy Number

Aliya et al [21] after transformation, the triangular cubic fuzzy information is given in Table 4.

Table 4. Triangular cubic fuzzy decision matrix.

c1 c2 c3 c4

A1

{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}
A2

{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}
A3

{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.5〉

}
A4

{
[0 .3, 0.4, 0 .5],
〈[0 .2, 0 .6], 0.4〉

}{
[0 .15, 0.16, 0 .17],
〈[0 .12, 0 .16], 0.15〉

}{
[0 .21, 0.22, 0 .23],
〈[0 .5, 0 .9], 0.8〉

}{
[0 .1, 0.2, 0 .3],
〈[0 .4, 0 .8], 0.7〉

}

Calculate the TCFA operator and w = (0.1, 0.2, 0.4, 0.3)T .
The TCFA operator is presented in Table 5.

Table 5. TCFA operator.

A1 〈[0 .067, 0.081, 0 .093], [0 .1833, 0 .4721], 0.1384〉
A2 〈[0 .152, 0.196, 0 .24], [0 .2672, 0 .6329], 0.5073〉
A3 〈[0 .42, 0.464, 0 .588], [0 .4631, 0 .7646], 0.2132〉
A4 〈[0 .228, 0.294, 0 .36], [0 .3727, 0 .7771], 0.3613〉

Calculate the score function s1 = 0.0138, s2 = 0.0256, s3 = 0.1659, s4 = 0.0772.
See Figure 13.
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Figure 13. s3 is the first ranking, s4 is the 2nd ranking, s2 is the third ranking and s1 is the 4th ranking
in the TCFN.

The existing Table 6 is as

Table 6. Comparison method with existing methods.

Method Ranking

TNCFNs
..
s3 >

..
s4 >

..
s2 >

..
s1

TCFN [21]
..
s3 >

..
s4 >

..
s2 >

..
s1

See Figure 14.
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The comparison method of score function is presented in Table 7.

Table 7. Comparison method with score function.

Score function Ranking

TNCFEWA operator S(C3) > S(C2) > S(C1)
TNCFEOWA operator S(C1) > S(C2) > S(C3)
TNCFEHWA operator S(C2) > S(C1) > S(C3)

See Figure 15.
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8. Conclusions

In this paper, we introduce a new concept of TNCFNs and operational laws. We introduce
three aggregation operators, namely, the TNCFEWA operator, TNCFEOWA operator and TNCFEWA
operator. We introduce group decision making under TNCFNs. Finally, a numerical example
is provided to demonstrate the utility of the established approach. In cluster decision-making
issues, consultants sometimes return from completely different specialty fields and have different
backgrounds and levels of data; as such, they sometimes have branching opinions. These operators
may be applied to several different fields, like data fusion, data processing, and pattern recognition,
triangular neutrosophic cube like linguistic fuzzy Vikor methodology and quadrangle neutrosophic
cube linguistic fuzzy Vikor methodology, which may be a suitable topic for longer term analysis, see
Figure 16.
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Appendix A: Proof of Proposition 1 

(1)  1 2 2 1;A A A A+ = +   

1 2 1 2 1 2

1 2 1 2 1 2
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Appendix A. Proof of Proposition 1

(1) A1 + A2 = A2 + A1;

A1 + A2 =



〈
[ α1(h)+α2(h)
(1+α1(h))(1−α2(h))

, β1(h)+β2(h)
(1+β1(h))(1−β2(h))

, ∆1(h)+∆2(h)
(1+∆1(h))(1−∆2(h))

], [
p−1 (h)+p−2 (h)

(1+p−1 (h))(1−p−2 (h))
, q−1 (h)+q−2 (h)
(1+q−1 (h))(1−q−2 (h))

, r−1 (h)+r−2 (h)
(1+r−1 (h))(1−r−2 (h))

],

[
p+1 (h)+p+2 (h)

(1+p+1 (h))(1−p+2 (h))
, q+1 (h)+q+2 (h)
(1+q+1 (h))(1−q+2 (h))

, r+1 (h)+r+2 (h)
(1+r+1 (h))(1−r+2 (h))

]

,

[
[ p1(h)p2(h)

1+((1−p1(h)) (1−p2(h)))
, q1(h)q2(h)

1+((1−q1(h)) (1−q2(h)))
, r1(h)r2(h)

1+((1−r1(h)) (1−r2(h)))
]
] 〉


=



〈
[ α2(h)+α1(h)
(1+α2(h))(1−α1(h))

, β2(h)+β1(h)
(1+β2(h))(1−β1(h))

, ∆2(h)+∆1(h)
(1+∆2(h))(1−∆1(h))

], [
p−2 (h)+p−1 (h)

(1+p−2 (h))(1−p−1 (h))
, q−2 (h)+q−1 (h)
(1+q−2 (h))(1−q−1 (h))

, r−2 (h)+r−1 (h)
(1+r−2 (h))(1−r−1 (h))

],

[
p+2 (h)+p+1 (h)

(1+p+2 (h))(1−p+1 (h))
, q+2 (h)+q+1 (h)
(1+q+2 (h))(1−q+1 (h))

, r+2 (h)+r+1 (h)
(1+r+2 (h))(1−r+1 (h))

],

,

[
[ p2(h)p1(h)

1+((1−p2(h)) (1−p1(h)))
, q2(h)q1(h)

1+((1−q2(h)) (1−q1(h)))
, r2(h).r1(h)

1+((1−r2(h)) (1−r1(h)))
]
] 〉


= A2 + A1

Hence A1 + A2 = A2 + A1.
(2) λ(A1 + A2) = λA2 + λA1

λ(A1 + A2) =

〈
[(1+α1(h))(1−α1(h))]

λ [((1+α2(h))(1−α2(h))]
λ

[(1+α1(h))(1−α1(h))]
λ [(1+α2(h))(1−α2(h))]

λ ,

[(1+β1(h))(1−β1(h))]
λ [((1+β2(h))(1−β2(h))]

λ

[(1+β1(h))(1−β1(h))]
λ [(1+β2(h))(1−β2(h))]

λ ,

[(1+∆1(h))(1−∆1(h))]
λ [((1+∆2(h))(1−∆2(h))]

λ

[(1+∆1(h))(1−∆1(h))]
λ [(1+∆2(h))(1−∆2(h))]

λ

,



[
[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ

[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ
,

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ
,

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ
]

[
[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ

[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ
,

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ
,

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ
]



,


[ 2[p1(h)p2(h)]

λ

[(4−2p1(h)−2p2(h)−p1(h)p2(h)]
λ+[p1(h)p2(h)]

λ ,

2[q1(h)q2(h)]
λ

[(4−2q1(h)−2q2(h)−q1(h)q2(h)]
λ+[q1(h)q2(h)]

λ ,

2[r1(h)r2(h)]
λ

[(4−2r1(h)−2r2(h)−r1(h)r2(h)]
λ+[r1(h)r2(h)]

λ ]

]〉

and we have

λA1 =
〈


[(1+α1(h))]
λ−[(1−α1(h))]

λ

[(1+α1(h))]
λ+[(1−α1(h))]

λ ,

[(1+β1(h))]
λ−[(1−β1(h))]

λ

[(1+β1(h))]
λ+[(1−β1(h))]

λ ,

[(1+∆1(h))]
λ−[(1−∆1(h))]

λ

[(1+∆1(h))]
λ+[(1−∆1(h))]

λ

,



[
[(1+p−1 (h))λ−(1−p−1 (h))λ

]

[(1+p−1 (h))λ
+(1−p−1 (h))λ

]
,

[(1+q−1 (h))λ−(1−q−1 (h))λ
]

[(1+q−1 (h))λ
+(1−q−1 (h))λ

]
, [(1+r−1 (h))λ−(1−r−1 (h))λ

]

[(1+r−1 (h))λ
+(1−r−1 (h))λ

]
]

[
[(1+p+1 (h))λ−(1−p+1 (h))λ

]

[(1+p+1 (h))λ
+(1−p+1 (h))λ

]
,

[(1+q+1 (h))λ−(1−q+1 (h))λ
]

[(1+q+1 (h))λ
+(1−q+1 (h))λ

]
, [(1+r+1 (h))λ−(1−r+1 (h))λ

]

[(1+r+1 (h))λ
+(1−r+1 (h))λ

]
]


,

 [
2pλ

1 (h)

[(2−p1(h)]
λ+[p1(h)]

λ ,
2qλ

1 (h)

[(2−q1(h)]
λ+[q1(h)]

λ , 2rλ
1 (h)

[(2−r1(h)]
λ+[r1(h)]

λ ]

〉
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λA2 =
〈


[(1+α2(h))]
λ−[(1−α2(h))]

λ

[(1+α2(h))]
λ+[(1−α2(h))]

λ ,

[(1+β2(h))]
λ−[(1−β2(h))]

λ

[(1+β2(h))]
λ+[(1−β2(h))]

λ ,

[(1+∆2(h))]
λ−[(1−∆2(h))]

λ

[(1+∆2(h))]
λ+[(1−∆2(h))]

λ

,



[
[(1+p−2 (h))λ−(1−p−2 (h))λ

]

[(1+p−2 (h))λ
+(1−p−2 (h))λ

]
,

[(1+q−2 (h))λ−(1−q−2 (h))λ
]

[(1+q−2 (h))λ
+(1−q−2 (h))λ

]
, [(1+r−2 (h))λ−(1−r−2 (h))λ

]

[(1+r−2 (h))λ
+(1−r−2 (h))λ

]
],

[
[(1+p+2 (h))λ−(1−p+2 (h))λ

]

[(1+p+2 (h))λ
+(1−p+2 (h))λ

]
,

[(1+q+2 (h))λ−(1−q+2 (h))λ
]

[(1+q+2 (h))λ
+(1−q+2 (h))λ

]
, [(1+r+2 (h))λ−(1−r+2 (h))λ

]

[(1+r+2 (h))λ
+(1−r+2 (h))λ

]
]


,

 [
2pλ

2 (h)
[(2−p2(h)]

λ+[p2(h)]
λ ,

2qλ
2 (h)

[(2−q2(h)]
λ+[q2(h)]

λ , 2rλ
2 (h)

[(2−r2(h)]
λ+[r2(h)]

λ ]

〉

λA2 + λA1 =
〈


[(1+α2(h))(1−α2(h))]
λ [((1+α1(h))(1−α1(h))]

λ

[(1+α2(h))(1−α2(h))]
λ [(1+α1(h))(1−α1(h))]

λ ,

[(1+β2(h))(1−β2(h))]
λ [((1+β1(h))(1−β1(h))]

λ

[(1+β2(h))(1−β2(h))]
λ [(1+β1(h))(1−β1(h))]

λ ,

[(1+∆2(h))(1−∆2(h))]
λ [((1+∆1(h))(1−∆1(h))]

λ

[(1+∆2(h))(1−∆2(h))]
λ [(1+∆1(h))(1−∆1(h))]

λ

,



[
[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ

[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ
,

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ
,

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ
]

[
[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ

[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ
,

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ
,

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ
]



,


[ 2[p2(h)p1(h)]

λ

[(4−2p2(h)−2p1(h)−p2(h)p1(h)]
λ+[p2(h)p1(h)]

λ ,

2[q2(h)q1(h)]
λ

[(4−2q2(h)−2q1(h)−q2(h)q1(h)]
λ+[q2(h)q1(h)]

λ ,

2[r2(h)r1(h)]
λ

[(4−2r2(h)−2r1(h)−r2(h)r1(h)]
λ+[r2(h)r1(h)]

λ ]


〉

so, we have λ(A1 + A2) = λA2 + λA1.
(3) λ1 A + λ2 A = (λ1 + λ2)A

λ1 A =
〈


[(1+αA(h))]
λ1−[(1−αA(h))]

λ1

[(1+αA(h))]
λ1+[(1−αA(h))]

λ1
,

[(1+βA(h))]
λ1−[(1−βA(h))]

λ1

[(1+βA(h))]
λ1+[(1−βA(h))]

λ1
,

[(1+∆A(h))]
λ1−[(1−∆A(h))]

λ1

[(1+∆A(h))]
λ1+[(1−∆A(h))]

λ1

,



[
[1+p−A(h)]

λ1−[1−p−A(h)]
λ1

[1+p−A(h)]
λ1+[1−p−A(h)]

λ1
,

[1+q−A(h)]
λ1−[1−q−A(h)]

λ1

[1+q−A(h)]
λ1+[1−q−A(h)]

λ1
, [1+r−A (h)]

λ1−[1−r−A (h)]
λ1

[1+r−A (h)]
λ1+[1−r−A (h)]

λ1
]

[
[1+p+A(h)]

λ1−[1−p+A(h)]
λ1

[1+p+A(h)]
λ1+[1−p+A(h)]

λ1
,

[1+q+A(h)]
λ1−[1−q+A(h)]

λ1

[1+q+A(h)]
λ1+[1−q+A(h)]

λ1
, [1+r+A (h)]

λ1−[1−r+A (h)]
λ1

[1+r+A (h)]
λ1+[1−r+A (h)]

λ1
]

,


 [ 2[pA(h)]

λ1

[(2−pA(h)]
λ1+[pA(h)]

λ1
,

2[qA(h)]
λ1

[(2−qA(h)]
λ1+[qA(h)]

λ1
, 2[rA(h)]

λ1

[(2−rA(h)]
λ1+[rA(h)]

λ1
]

〉

and λ2 A =

〈
[(1+αA(h))]

λ2−[(1−αA(h))]
λ2

[(1+αA(h))]
λ2+[(1−αA(h))]

λ2
,

[(1+βA(h))]
λ2−[(1−βA(h))]

λ2

[(1+βA(h))]
λ2+[(1−βA(h))]

λ2
,

[(1+∆A(h))]
λ2−[(1−∆A(h))]

λ2

[(1+∆A(h))]
λ2+[(1−∆A(h))]

λ2

,


[
[1+p−A(h)]

λ2−[1−p−A(h)]
λ2

[1+p−A(h)]
λ2+[1−p−A(h)]

λ2
, [1+q−A(h)]

λ2−[1−q−A(h)]
λ2

[1+q−A(h)]
λ2+[1−q−A(h)]

λ2
,

[1+r−A (h)]
λ2−[1−r−A (h)]

λ2

[1+r−A (h)]
λ2+[1−r−A (h)]

λ2
], [ [1+p+A(h)]

λ2−[1−p+A(h)]
λ2

[1+p+A(h)]
λ2+[1−p+A(h)]

λ2
,

[1+q+A(h)]
λ2−[1−q+A(h)]

λ2

[1+q+A(h)]
λ2+[1−q+A(h)]

λ2
, [1+r+A (h)]

λ2−[1−r+A (h)]
λ2

[1+r+A (h)]
λ2+[1−r+A (h)]

λ2
]

,

[
[ 2[pA(h)]

λ2

[(2−pA(h)]
λ2+[pA(h)]

λ2
, 2[qA(h)]

λ2

[(2−qA(h)]
λ2+[qA(h)]

λ2
, 2[rA(h)]

λ2

[(2−rA(h)]
λ2+[rA(h)]

λ2
]

]〉
=
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〈 [1+αA(h)]
λ1+λ2−[1−αA(h)]

λ1+λ2

[1+αA(h)]
λ1+λ2+[1−αA(h)]

λ1+λ2
, [1+βA(h)]

λ1+λ2−[1−βA(h)]
λ1+λ2

[1+βA(h)]
λ1+λ2+[1−βA(h)]

λ1+λ2
,

[1+∆A(h)]
λ1+λ2−[1−∆A(h)]

λ1+λ2

[1+∆A(h)]
λ1+λ2+[1−∆A(h)]

λ1+λ2

,


[
[1+p−A(h)]

λ1+λ2−[1−p−A(h)]
λ1+λ2

[1+p−A(h)]
λ1+λ2+[1−p−A(h)]

λ1+λ2
, [1+q−A(h)]

λ1+λ2−[1−q−A(h)]
λ1+λ2

[1+q−A(h)]
λ1+λ2+[1−q−A(h)]

λ1+λ2
,

[1+r−A (h)]
λ1+λ2−[1−r−A (h)]

λ1+λ2

[1+r−A (h)]
λ1+λ2+[1−r−A (h)]

λ1+λ2
], [ [1+p+A(h)]

λ1+λ2−[1−p+A(h)]
λ1+λ2

[1+p+A(h)]
λ1+λ2+[1−p+A(h)]

λ1+λ2
,

[1+q+A(h)]
λ1+λ2−[1−q+A(h)]

λ1+λ2

[1+q+A(h)]
λ1+λ2+[1−q+A(h)]

λ1+λ2
, [1+r+A (h)]

λ1+λ2−[1−r+A (h)]
λ1+λ2

[1+r+A (h)]
λ1+λ2+[1−r+A (h)]

λ1+λ2
]

,

 [ 2[pA(h)]
λ1+λ2

[(2−pA(h)]
λ1+λ2+[pA(h)]

λ1+λ2
,

2[qA(h)]
λ1+λ2

[(2−qA(h)]
λ1+λ2+[qA(h)]

λ1+λ2
, 2[rA(h)]

λ1+λ2

[(2−rA(h)]
λ1+λ2+[rA(h)]

λ1+λ2
]

〉 = (λ1 + λ2)A.

Appendix B. Proof of Theorem 1

Assume that n = 1, TCFEWA (A1, A2, . . . , An) =
k
⊕

j=1
w1 A1 〈(λ(A1 + A2) = λA2 + λA1

λ(A1 + A2) =


[(1+α1(h))(1−α1(h))]

λ [((1+α2(h))(1−α2(h))]
λ

[(1+α1(h))(1−α1(h))]
λ [(1+α2(h))(1−α2(h))]

λ ,

[(1+β1(h))(1−β1(h))]
λ [((1+β2(h))(1−β2(h))]

λ

[(1+β1(h))(1−β1(h))]
λ [(1+β2(h))(1−β2(h))]

λ ,

[(1+∆1(h))(1−∆1(h))]
λ [((1+∆2(h))(1−∆2(h))]

λ

[(1+∆1(h))(1−∆1(h))]
λ [(1+∆2(h))(1−∆2(h))]

λ

,
〈



[
[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ

[(1+p−1 (h))(1−p−1 (h))]λ [(1+p−2 (h))(1−p−2 (h))]λ
,

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ

[(1+q−1 (h))(1−q−1 (h))]λ [(1+q−2 (h))(1−q−2 (h))]λ
,

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ

[(1+r−1 (h))(1−r−1 (h))]λ [(1+r−2 (h))(1−r−2 (h))]λ
]

, [ [(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ

[(1+p+1 (h))(1−p+1 (h))]λ [(1+p+2 (h))(1−p+2 (h))]λ
,

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ

[(1+q+1 (h))(1−q+1 (h))]λ [(1+q+2 (h))(1−q+2 (h))]λ
,

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ

[(1+r+1 (h))(1−r+1 (h))]λ [(1+r+2 (h))(1−r+2 (h))]λ
]



,


[ 2[p1(h)p2(h)]

λ

[(4−2p1(h)−2p2(h)−p1(h)p2(h)]
λ+[p1(h)p2(h)]

λ ,

2[q1(h)q2(h)]
λ

[(4−2q1(h)−2q2(h)−q1(h)q2(h)]
λ+[q1(h)q2(h)]

λ ,

2[r1(h)r2(h)]
λ

[(4−2r1(h)−2r2(h)−r1(h)r2(h)]
λ+[r1(h)r2(h)]

λ ]


〉
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and we have

λA1 =
〈


[(1+α1(h))]
λ−[(1−α1(h))]

λ

[(1+α1(h))]
λ+[(1−α1(h))]

λ ,

[(1+β1(h))]
λ−[(1−β1(h))]

λ

[(1+β1(h))]
λ+[(1−β1(h))]

λ ,

[(1+∆1(h))]
λ−[(1−∆1(h))]

λ

[(1+∆1(h))]
λ+[(1−∆1(h))]

λ

,



[
[(1+p−1 (h))λ−(1−p−1 (h))λ

]

[(1+p−1 (h))λ
+(1−p−1 (h))λ

]
,

[(1+q−1 (h))λ−(1−q−1 (h))λ
]

[(1+q−1 (h))λ
+(1−q−1 (h))λ

]
, [(1+r−1 (h))λ−(1−r−1 (h))λ

]

[(1+r−1 (h))λ
+(1−r−1 (h))λ

]
]

[
[(1+p+1 (h))λ−(1−p+1 (h))λ

]

[(1+p+1 (h))λ
+(1−p+1 (h))λ

]
,

[(1+q+1 (h))λ−(1−q+1 (h))λ
]

[(1+q+1 (h))λ
+(1−q+1 (h))λ

]
, [(1+r+1 (h))λ−(1−r+1 (h))λ

]

[(1+r+1 (h))λ
+(1−r+1 (h))λ

]
]


,


[

2pλ
1 (h)

[(2−p1(h)]
λ+[p1(h)]

λ ,
2qλ

1 (h)

[(2−q1(h)]
λ+[q1(h)]

λ ,
2rλ

1 (h)

[(2−r1(h)]
λ+[r1(h)]

λ ]


〉

λA2 =
〈


[(1+α2(h))]
λ−[(1−α2(h))]

λ

[(1+α2(h))]
λ+[(1−α2(h))]

λ ,

[(1+β2(h))]
λ−[(1−β2(h))]

λ

[(1+β2(h))]
λ+[(1−β2(h))]

λ ,

[(1+∆2(h))]
λ−[(1−∆2(h))]

λ

[(1+∆2(h))]
λ+[(1−∆2(h))]

λ

,



[
[(1+p−2 (h))λ−(1−p−2 (h))λ

]

[(1+p−2 (h))λ
+(1−p−2 (h))λ

]
,

[(1+q−2 (h))λ−(1−q−2 (h))λ
]

[(1+q−2 (h))λ
+(1−q−2 (h))λ

]
, [(1+r−2 (h))λ−(1−r−2 (h))λ

]

[(1+r−2 (h))λ
+(1−r−2 (h))λ

]
]

[
[(1+p+2 (h))λ−(1−p+2 (h))λ

]

[(1+p+2 (h))λ
+(1−p+2 (h))λ

]
,

[(1+q+2 (h))λ−(1−q+2 (h))λ
]

[(1+q+2 (h))λ
+(1−q+2 (h))λ

]
, [(1+r+2 (h))λ−(1−r+2 (h))λ

]

[(1+r+2 (h))λ
+(1−r+2 (h))λ

]
]


,

 [
2pλ

2 (h)
[(2−p2(h)]

λ+[p2(h)]
λ , 2qλ

2 (h)
[(2−q2(h)]

λ+[q2(h)]
λ ,

2rλ
2 (h)

[(2−r2(h)]
λ+[r2(h)]

λ ]

〉

λA2 + λA1 =
〈


[(1+α2(h))(1−α2(h))]
λ [((1+α1(h))(1−α1(h))]

λ

[(1+α2(h))(1−α2(h))]
λ [(1+α1(h))(1−α1(h))]

λ ,

[(1+β2(h))(1−β2(h))]
λ [((1+β1(h))(1−β1(h))]

λ

[(1+β2(h))(1−β2(h))]
λ [(1+β1(h))(1−β1(h))]

λ ,

[(1+∆2(h))(1−∆2(h))]
λ [((1+∆1(h))(1−∆1(h))]

λ

[(1+∆2(h))(1−∆2(h))]
λ [(1+∆1(h))(1−∆1(h))]

λ

,



[
[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ

[(1+p−2 (h))(1−p−2 (h))]λ [(1+p−1 (h))(1−p−1 (h))]λ
,

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ

[(1+q−2 (h))(1−q−2 (h))]λ [(1+q−1 (h))(1−q−1 (h))]λ
,

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ

[(1+r−2 (h))(1−r−2 (h))]λ [(1+r−1 (h))(1−r−1 (h))]λ
]

[
[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ

[(1+p+2 (h))(1−p+2 (h))]λ [(1+p+1 (h))(1−p+1 (h))]λ
,

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ

[(1+q+2 (h))(1−q+2 (h))]λ [(1+q+1 (h))(1−q+1 (h))]λ
,

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ

[(1+r+2 (h))(1−r+2 (h))]λ [(1+r+1 (h))(1−r+1 (h))]λ
]



,


[ 2[p2(h)p1(h)]

λ

[(4−2p2(h)−2p1(h)−p2(h)p1(h)]
λ+[p2(h)p1(h)]

λ ,

2[q2(h)q1(h)]
λ

[(4−2q2(h)−2q1(h)−q2(h)q1(h)]
λ+[q2(h)q1(h)]

λ ,

2[r2(h)r1(h)]
λ

[(4−2r2(h)−2r1(h)−r2(h)r1(h)]
λ+[s2(h)s1(h)]

λ ]


〉

so, we have λ(A1 + A2) = λA2 + λA1.
λ1 A + λ2 A = (λ1 + λ2)A

λ1 A =
〈 [1+αA(h)]

λ1−[1−αA(h)]
λ1

[1+αA(h)]
λ1+[1−αA(h)]

λ1
, [1+βA(h)]

λ1−[1−βA(h)]
λ1

[1+βA(h)]
λ1+[1−βA(h)]

λ1
,

[1+∆A(h)]
λ1−[1−∆A(h)]

λ1

[1+∆A(h)]
λ1+[1−∆A(h)]

λ1

,

 [
[1+p−A(h)]

λ1−[1−p−A(h)]
λ1

[1+p−A(h)]
λ1+[1−p−A(h)]

λ1
, [1+q−A(h)]

λ1−[1−q−A(h)]
λ1

[1+q−A(h)]
λ1+[1−q−A(h)]

λ1
, [1+r−A (h)]

λ1−[1−r−A (h)]
λ1

[1+r−A (h)]
λ1+[1−r−A (h)]

λ1
]

[
[1+p+A(h)]

λ1−[1−p+A(h)]
λ1

[1+p+A(h)]
λ1+[1−p+A(h)]

λ1
, [1+q+A(h)]

λ1−[1−q+A(h)]
λ1

[1+q+A(h)]
λ1+[1−q+A(h)]

λ1
, [1+r+A (h)]

λ1−[1−r+A (h)]
λ1

[1+r+A (h)]
λ1+[1−r+A (h)]

λ1
]

,

[
2[pA(h)]

λ1

[(2−pA(h)]
λ1+[pA(h)]

λ1
, 2[qA(h)]

λ1

[(2−qA(h)]
λ1+[qA(h)]

λ1
, 2[rA(h)]

λ1

[(2−rA(h)]
λ1+[rA(h)]

λ1

] 〉

and λ2 A =

〈
[1+αA(h)]

λ2−[1−αA(h)]
λ2

[1+αA(h)]
λ2+[1−αA(h)]

λ2
,

[1+βA(h)]
λ2−[1−βA(h)]

λ2

[1+βA(h)]
λ2+[1−βA(h)]

λ2
,

[1+∆A(h)]
λ2−[1−∆A(h)]

λ2

[1+∆A(h)]
λ2+[1−∆A(h)]

λ2

,


[
[1+p−A(h)]

λ2−[1−p−A(h)]
λ2

[1+p−A(h)]
λ2+[1−p−A(h)]

λ2
, [1+q−A(h)]

λ2−[1−q−A(h)]
λ2

[1+q−A(h)]
λ2+[1−q−A(h)]

λ2
,

[1+r−A (h)]
λ2−[1−r−A (h)]

λ2

[1+r−A (h)]
λ2+[1−r−A (h)]

λ2
], [ [1+p+A(h)]

λ2−[1−p+A(h)]
λ2

[1+p+A(h)]
λ2+[1−p+A(h)]

λ2
,

[1+q+A(h)]
λ2−[1−q+A(h)]

λ2

[1+q+A(h)]
λ2+[1−q+A(h)]

λ2
, [1+r+A (h)]

λ2−[1−r+A (h)]
λ2

[1+r+A (h)]
λ2+[1−r+A (h)]

λ2
]

,
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 [ 2[pA(h)]
λ2

[(2−pA(h)]
λ2+[pA(h)]

λ2
,

2[qA(h)]
λ2

[(2−qA(h)]
λ2+[qA(h)]

λ2
, 2[rA(h)]

λ2

[(2−rA(h)]
λ2+[rA(h)]

λ2
]

〉 =

〈 [1+αA(h)]
λ1+λ2−[1−αA(h)]

λ1+λ2

[1+αA(h)]
λ1+λ2+[1−αA(h)]

λ1+λ2
, [βA(h)]

λ1+λ2−[1−βA(h)]
λ1+λ2

[1+βA(h)]
λ1+λ2+[1−βA(h)]

λ1+λ2
,

[1+∆A(h)]
λ1+λ2−[1−∆A(h)]

λ1+λ2

[1+∆A(h)]
λ1+λ2+[1−∆A(h)]

λ1+λ2

,


[
[1+p−A(h)]

λ1+λ2−[1−p−A(h)]
λ1+λ2

[1+p−A(h)]
λ1+λ2+[1−p−A(h)]

λ1+λ2
, [1+q−A(h)]

λ1+λ2−[1−q−A(h)]
λ1+λ2

[1+q−A(h)]
λ1+λ2+[1−q−A(h)]

λ1+λ2
,

[1+r−A (h)]
λ1+λ2−[1−r−A (h)]

λ1+λ2

[1+r−A (h)]
λ1+λ2+[1−r−A (h)]

λ1+λ2
], [ [1+p+A(h)]

λ1+λ2−[1−p+A(h)]
λ1+λ2

[1+p+A(h)]
λ1+λ2+[1−p+A(h)]

λ1+λ2
,

[1+q+A(h)]
λ1+λ2−[1−q+A(h)]

λ1+λ2

[1+q+A(h)]
λ1+λ2+[1−q+A(h)]

λ1+λ2
, [1+r+A (h)]

λ1+λ2−[1−r+A (h)]
λ1+λ2

[1+r+A (h)]
λ1+λ2+[1−r+A (h)]

λ1+λ2
]

,

 [ 2[pA(h)]
λ1+λ2

[(2−pA(h)]
λ1+λ2+[pA(h)]

λ1+λ2
,

2[qA(h)]
λ1+λ2

[(2−qA(h)]
λ1+λ2+[qA(h)]

λ1+λ2
, 2[rA(h)]

λ1+λ2

[(2−rA(h)]
λ1+λ2+[rA(h)]

λ1+λ2
]

〉 =

[
[[1+α1(h)]

λ1−[1−α1(h)]
λ1

[1+α1(h)]
λ1

+[1−α1(h)]
λ1

, [[1+β1(h)]
λ1−[1−β1(h)]

λ1

[1+β1(h)]
λ1

+[1−β1(h)]
λ1

, [[1+∆1(h)]
λ1−[1−∆1(h)]

λ1

[1+∆1(h)]
λ1

+[1−∆1(h)]
λ1

]


[[1+p−1 (h)]λ1−[1−p−1 (h)]
λ1

[1+p−1 (h)]
λ1

+[1−p−1 (h)]
λ1

, [1+q−1 (h)]
λ1−[1−q−1 (h)]

λ1

[1+q−1 (h)]
λ1

+[1−q−1 (h)]
λ1

,

[1+r−1 (h)]
λ1−[1−r−1 (h)]

λ1

[1+r−1 (h)]
λ1

+[1−r−1 (h)]
λ1

;


[1+p+1 (h)]

λ1−[1−p+1 (h)]
λ1

[1+p+1 (h)]
λ1

+[1−p+1 (h)]
λ1

, [1+q+1 (h)]
λ1−[1−q+1 (h)]

λ1

[1+q+1 (h)]
λ1

+[1−q+1 (h)]
λ1

,

[1+r+1 (h)]
λ1−[1−r+1 (h)]

λ1

[1+r+1 (h)]
λ1

+[1−r+1 (h)]
λ1

;


2[p1(h)]

λ1

[(2−p1(h)]
λ1

+[p1(h)]
λ1

, 2[q1(h)]
λ1

[(2−q1(h)]
λ1

+[q1(h)]
λ1

,

2[r1(h)]
λ1

[(2−r1(h)]
λ1

+[r1(h)]
λ1

.

Assume that n = k, TCFEWA (A1, A2, . . . , An) =
k
⊕

j=1
wj Aj

〈 [
k

∏
j=1

[1+α1(h)]
v−

k
∏
j=1

[1−α1(h)]
v

k
∏
j=1

[1+α1(h)]
v
+

k
∏
j=1

[1−α1(h)]
v

,
[

k
∏
j=1

[1+β1(h)]
v−

k
∏
j=1

[1−β1(h)]
v

k
∏
j=1

[1+β1(h)]
v
+

k
∏
j=1

[1−β1(h)]
v

,
[

k
∏
j=1

[1+∆1(h)]
v−

k
∏
j=1

[1−∆1(h)]
v

k
∏
j=1

[1+∆1(h)]
v
+

k
∏
j=1

[1−∆1(h)]
v


 [

k
∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v

,


k

∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v

;

 2
k

∏
j=1

[p1(h)]
v

k
∏
j=1

[(2−p1(h)]
v
+

k
∏
j=1

[p1(h)]
v

,
2

k
∏
j=1

[q1(h)]
v

k
∏
j=1

[(2−q1(h)]
v
+

k
∏
j=1

[q1(h)]
v

,
2

k
∏
j=1

[r1(h)]
v

k
∏
j=1

[(2−r1(h)]
v
+

k
∏
j=1

[r1(h)]
v

.

Then when n = k + 1, we have TCFEWA (A1, A2, . . . , Ak+1) = TCFEWA (A1, A2, . . . , Ak)⊕
Ak+1)
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〈 [
k

∏
j=1

[1+α1(h)]
v−

k
∏
j=1

[1−α1(h)]
v

k
∏
j=1

[1+α1(h)]
v
+

k
∏
j=1

[1−α1(h)]
v

,
[

k
∏
j=1

[1+β1(h)]
v−

k
∏
j=1

[1−β1(h)]
v

k
∏
j=1

[1+β1(h)]
v
+

k
∏
j=1

[1−β1(h)]
v

,
[

k
∏
j=1

[1+∆1(h)]
v−

k
∏
j=1

[1−∆1(h)]
v

k
∏
j=1

[1+∆1(h)]
v
+

k
∏
j=1

[1−∆1(h)]
v


 [

k
∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v

;


k

∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v

;

 2
k

∏
j=1

[p1(h)]
v

k
∏
j=1

[(2−p1(h)]
v
+

k
∏
j=1

[p1(h)]
v

,
2

k
∏
j=1

[q1(h)]
v

k
∏
j=1

[(2−q1(h)]
v
+

k
∏
j=1

[q1(h)]
v

,
2

k
∏
j=1

[r1(h)]
v

k
∏
j=1

[(2−r1(h)]
v
+

k
∏
j=1

[r1(h)]
v

⊕k+1

〈 [
k+1
∏
j=1

[1+α1(h)]
v−

k+1
∏
j=1

[1−α1(h)]
v

k+1
∏
j=1

[1+α1(h)]
v
+

k+1
∏
j=1

[1−α1(h)]
v

,
[
k+1
∏
j=1

[1+β1(h)]
v−

k+1
∏
j=1

[1−β1(h)]
v

k+1
∏
j=1

[1+β1(h)]
v
+

k+1
∏
j=1

[1−β1(h)]
v

,
[
k+1
∏
j=1

[1+∆1(h)]
v−

k+1
∏
j=1

[1−∆1(h)]
v

k+1
∏
j=1

[1+∆1(h)]
v
+

k+1
∏
j=1

[1−∆1(h)]
v


 [

k+1
∏
j=1

[1+p−1 (h)]v−
k+1
∏
j=1

[1−p−1 (h)]
v

k+1
∏
j=1

[1+p−1 (h)]
v
+

k+1
∏
j=1

[1−p−1 (h)]
v

,

k+1
∏
j=1

[1+q−1 (h)]
v
−

k+1
∏
j=1

[1−q−1 (h)]
v

k+1
∏
j=1

[1+q−1 (h)]
v
+

k+1
∏
j=1

[1−q−1 (h)]
v

,

k+1
∏
j=1

[1+r−1 (h)]
v
−

k+1
∏
j=1

[1−r−1 (h)]
v

k+1
∏
j=1

[1+r−1 (h)]
v
+

k+1
∏
j=1

[1−r−1 (h)]
v

;


k+1
∏
j=1

[1+p+1 (h)]
v
−

k+1
∏
j=1

[1−p+1 (h)]
v

k+1
∏
j=1

[1+p+1 (h)]
v
+

k+1
∏
j=1

[1−p+1 (h)]
v

,

k+1
∏
j=1

[1+q+1 (h)]
v
−

k+1
∏
j=1

[1−q+1 (h)]
v

k+1
∏
j=1

[1+q+1 (h)]
v
+

k+1
∏
j=1

[1−q+1 (h)]
v

,

k+1
∏
j=1

[1+r+1 (h)]
v
−

k+1
∏
j=1

[1−r+1 (h)]
v

k+1
∏
j=1

[1+r+1 (h)]
v
+

k+1
∏
j=1

[1−r+1 (h)]
v

;

 2
k+1
∏
j=1

[p1(h)]
v

k+1
∏
j=1

[(2−p1(h)]
v
+

k+1
∏
j=1

[p1(h)]
v

,
2

k+1
∏
j=1

[q1(h)]
v

k+1
∏
j=1

[(2−q1(h)]
v
+

k+1
∏
j=1

[q1(h)]
v

,
2

k+1
∏
j=1

[r1(h)]
v

k+1
∏
j=1

[(2−r1(h)]
v
+

k+1
∏
j=1

[r1(h)]
v


=

 [
k+1
∏
j=1

[1+p−1 (h)]v−
k

∏
j=1

[1−p−1 (h)]
v

k+1
∏
j=1

[1+p−1 (h)]
v
+

k
∏
j=1

[1−p−1 (h)]
v

,

k+1
∏
j=1

[1+q−1 (h)]
v
−

k
∏
j=1

[1−q−1 (h)]
v

k+1
∏
j=1

[1+q−1 (h)]
v
+

k
∏
j=1

[1−q−1 (h)]
v

,

k+1
∏
j=1

[1+r−1 (h)]
v
−

k
∏
j=1

[1−r−1 (h)]
v

k+1
∏
j=1

[1+r−1 (h)]
v
+

k
∏
j=1

[1−r−1 (h)]
v

,


k+1
∏
j=1

[1+p+1 (h)]
v
−

k
∏
j=1

[1−p+1 (h)]
v

k+1
∏
j=1

[1+p+1 (h)]
v
+

k
∏
j=1

[1−p+1 (h)]
v

,

k+1
∏
j=1

[1+q+1 (h)]
v
−

k
∏
j=1

[1−q+1 (h)]
v

k+1
∏
j=1

[1+q+1 (h)]
v
+

k
∏
j=1

[1−q+1 (h)]
v

,

k+1
∏
j=1

[1+r+1 (h)]
v
−

k
∏
j=1

[1−r+1 (h)]
v

k+1
∏
j=1

[1+r+1 (h)]
v
+

k
∏
j=1

[1−r+1 (h)]
v

,

 2
k+1
∏
j=1

[p1(h)]
v

k+1
∏
j=1

[(2−p1(h)]
v
+

k+1
∏
j=1

[p1(h)]
v

,
2

k+1
∏
j=1

[q1(h)]
v

k+1
∏
j=1

[(2−q1(h)]
v
+

k+1
∏
j=1

[q1(h)]
v

,
2

k+1
∏
j=1

[r1(h)]
v

k+1
∏
j=1

[(2−r1(h)]
v
+

k+1
∏
j=1

[r1(h)]
v

.
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Especially, if w = ( 1
n , 1

n , ...., 1
n )

T
, then the the TNCFEWA operator is reduced to the triangular

neutrosophic cubic fuzzy einstein averaging operator, which is shown as follows:

〈 [
n
∏
j=1

[1+α1(h)]
1
n −

n
∏
j=1

[1−α1(h)]
1
n

n
∏
j=1

[1+α1(h)]
1
n
+

n
∏
j=1

[1−α1(h)]
1
n

,
[

n
∏
j=1

[1+β1(h)]
1
n −

n
∏
j=1

[1−β1(h)]
1
n

n
∏
j=1

[1+β1(h)]
1
n
+

n
∏
j=1

[1−β1(h)]
1
n

,
[

n
∏
j=1

[1+∆1(h)]
1
n −

n
∏
j=1

[1−∆1(h)]
1
n

n
∏
j=1

[1+∆1(h)]
1
n
+

n
∏
j=1

[1−∆1(h)]
1
n


 [

n
∏
j=1

[1+p−1 (h)]
1
n −

n
∏
j=1

[1−p−1 (h)]
1
n

n
∏
j=1

[1+p−1 (h)]
1
n
+

n
∏
j=1

[1−p−1 (h)]
1
n

,

n
∏
j=1

[1+q−1 (h)]
1
n −

n
∏
j=1

[1−q−1 (h)]
1
n

n
∏
j=1

[1+q−1 (h)]
1
n
+

n
∏
j=1

[1−q−1 (h)]
1
n

,

n
∏
j=1

[1+r−1 (h)]
1
n −

n
∏
j=1

[1−r−1 (h)]
1
n

n
∏
j=1

[1+r−1 (h)]
1
n
+

n
∏
j=1

[1−r−1 (h)]
1
n

;


n
∏
j=1

[1+p+1 (h)]
1
n −

n
∏
j=1

[1−p+1 (h)]
1
n

n
∏
j=1

[1+p+1 (h)]
1
n
+

n
∏
j=1

[1−p+1 (h)]
1
n

,

n
∏
j=1

[1+q+1 (h)]
1
n −

n
∏
j=1

[1−q+1 (h)]
1
n

n
∏
j=1

[1+q+1 (h)]
1
n
+

n
∏
j=1

[1−q+1 (h)]
1
n

,

n
∏
j=1

[1+r+1 (h)]
1
n −

n
∏
j=1

[1−r+1 (h)]
1
n

n
∏
j=1

[1+r+1 (h)]
1
n
+

n
∏
j=1

[1−r+1 (h)]
1
n

;

 2
n
∏
j=1

[p1(h)]
1
n

n
∏
j=1

[(2−p1(h)]
1
n
+

n
∏
j=1

[p1(h)]
1
n

,
2

n
∏
j=1

[q1(h)]
1
n

n
∏
j=1

[(2−q1(h)]
1
n
+

n
∏
j=1

[q1(h)]
1
n

,
2

n
∏
j=1

[r1(h)]
1
n

n
∏
j=1

[(2−r1(h)]
1
n
+

n
∏
j=1

[r1(h)]
1
n

.
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