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Neutrosophic graph (NG) is a powerful tool in graph theory, which is capable of modeling many real-life problems with
uncertainty due to unclear, varying, and indeterminate information. Meanwhile, the fuzzy graphs (FGs) and intuitionistic fuzzy
graphs (IFGs) may not handle these problems as efficiently as NGs. It is difficult to model uncertainty due to imprecise in-
formation and vagueness in real-world scenarios. Many real-life optimization problems are modeled and solved using the well-
known fuzzy graph theory.0e concepts of covering, matching, and paired domination play amajor role in theoretical and applied
neutrosophic environments of graph theory. Henceforth, the current study covers this void by introducing the notions of
covering, matching, and paired domination in single-valued neutrosophic graph (SVNG) using the strong edges. Also, many
attention-grabbing properties of these concepts are studied.Moreover, the strong covering number, strongmatching number, and
the strong paired domination number of complete SVNG, complete single-valued neutrosophic cycle (SVNC), and complete
bipartite SVNG are worked out along with their fascinating properties.

1. Introduction

0ere are several techniques and methods to model real-life
events. But, in practicality, the information is sometimes
uncertain, unclear, varying, and indeterminate, which is
difficult to model using usual methods. Different theories are
proposed for modeling uncertainty. Smarandache [1] gave a
novel concept of expressing and solving uncertainty. He
initiated the neutrosophic sets (NSs), which are the exten-
sions of fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs).
FSs proposed by Zadeh [2] and their generalizations are used
to model the uncertainty. FSs involve the membership grade
for each object whose value lies in the unit interval [0, 1].0e
concept of IFSs was proposed and introduced by Atanassov
in 1983 [3–5]. 0ese are the generalization of FSs. 0e ex-
tension in IFSs is that in these sets the members of IFSs are
assigned the membership grade as well as the nonmem-
bership grade, provided that the sum of both grades lies in
the unit interval [0, 1]. Atanassov also discussed the types,

properties, and applications of IFSs. But these concepts are
unable to model many real-life problems, so Smarandache
[6] devised the notion of NSs that can deal with such
problems. In NS, the object carries three independent
grades: membership, abstinence, and nonmembership. Each
of these grades lies in nonstandard unit interval ]−0, 1+[ and
their sum lies in nonstandard interval ]−0, 3+[. Later the
concept of single-valued neutrosophic set (SVNS) was in-
troduced by Wang et al. [7], which is the subclass of NSs.
0is is even more practical and applies to a wide range of
problems.

Graph theory is one of the major branches of mathe-
matics and combinatorics. It has many applications in
numerous fields such as computer science, networking,
geometry, algebra, set theory, economics, medicine, engi-
neering, and chemistry. Hence, it has a wide range of ap-
plications in real world. Cantor presented the notion of crisp
graphs, which uses the concepts of classical set theory. 0ese
graphs cannot model the problems associated with
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uncertainty because, in crisp graph, there are only two
possibilities for a vertex and an edge, that is, whether it
belongs to the graph or does not. In other words, it only
conveys that the objects are related or not but does not
indicate the strength and weakness of the relationship. So, an
extension of crisp graphs is a fuzzy graph (FG), which was
introduced by Rosenfeld in 1975 [8]. 0e idea of fuzziness in
graph theory was given by Kauffman [9] in 1973 by using the
fuzzy relations. Rosenfeld [8] further introduced the con-
cepts related to FG such as connectedness, paths, cycles,
trees, and bridges. Moreover, he also described some of the
properties of FGs. Later on, the work of Rosenfeld was
extended by many researchers who discussed its types,
properties, and applications in real life, such as regular fuzzy
graphs [10], fuzzy tolerance graphs [11], bipolar fuzzy graphs
[12–14], interval-valued fuzzy graphs, balanced interval-
valued fuzzy graphs [15, 16], fuzzy planar graphs [17, 18],
bipolar fuzzy hypergraphs [19, 20], and completeness and
regularity of generalized fuzzy graphs [21].

One of the generalizations of FGs is intuitionistic
fuzzy graph (IFG). 0e notion of IFG was presented by
Shannon and Atanassov who also developed the idea of
IFS relation, which was used in defining the IFGs [22].
0ey also discussed the many properties, theorems, and
proofs regarding IFSs and IFGs. 0e work of Atanassov
and Shannon was extended by many researchers who
presented its properties, types, and applications; for ex-
ample, join, union, and product of two IFGs were defined
by Parvathi et al., and strong products, direct products,
and lexicographic products of two IFGs were presented by
Rashmanlou et al. 0e concepts of strong IFGs and
intuitionistic fuzzy hypergraphs along with their appli-
cations were discussed by Akram and Davvaz [23, 24].
Karunambigai et al. discussed the balanced intuitionistic
fuzzy graphs [25], covering and paired domination in
IFGs [26], and intuitionistic fuzzy tolerance graph along
with its applications was discussed by Sahoo and Pal
[27, 28]. Even though the FGS and IFGs are great tools to
model real-world problems, some of the problems with
uncertain, indeterminate, and varying information cannot
be handled by FGs and IFGs. 0erefore, some more ef-
ficient tool was required to tackle such problems, and this
requirement led to the idea of NSs and NGs.

FSs and FGs discuss only the membership grades of the
objects, while IFSs and IFGs discuss both the membership
and nonmembership grades of an object, which do not
totally model the human opinions, as human opinion can
also be abstentious. Moreover, in IFSs and IFGs, the
membership and nonmembership grades cannot be chosen
independently.0eir summust be restricted to be in the unit
interval. 0erefore, this void created the space for the in-
troduction of NSs and NGs. Smarandache, after initiating
the concept of NSs, proposed four main categories of NGs:
I-vertex NG and I-edge NG are based on literal indeter-
minacy (I), while (t, I, f )-vertex NG and (t, I, f )-edge NG are
based on (t, I, f ) components [29–33]. In NSs and NGs, the
membership, abstinence, and nonmembership grades can be
chosen independently from the unit interval, which provides
comfort and ease to a decision-maker. Lately, NGs caught

the attention of many researchers [34–40]. In addition, Garg
[41–43] introduced aggregation operators and multiple
decision-making techniques via SVNSs.

0is study focuses on the concepts of SVNGs, which
were initiated by Broumi and Smarandache by applying the
concept of SVNS to graphs [44]. 0ey also discussed dif-
ferent types of SVNGs, bipolar SVNGs [45], grade, order,
and size [46] and investigated many properties with proofs
and examples. Recently, some researchers have worked on
SVNGs, for instance, operations on SVNGs presented by
Akram and Shahzadi [47], applications of operations on
SVNGs given by Naz et al. [36], and properties of SVNGs
discussed by Karaaslan and Davvaz [48].

Since the domain of SVNG is greater than that of FGs
and IFGs, it expands the range of applications of graphs. Like
all other graphs, SVNGs also model the relations. So, it is
applied to all sorts of problems consisting of relationships. It
is capable of modeling the problems with uncertain and
varying information in real world, where FGs and IFGs fail.
0is article introduces the notions of covering, matching,
and paired domination in SVNG, complete SVNGs, and
complete bipartite SVNGs. Moreover, strong coverings, that
is, strong vertex cover and strong edge cover, the strong
vertex covering number, and strong edge covering numbers
are defined using the strong edge. In addition, the strong
independent sets, the strong independent number, strong
matching, and strong matching number are also discussed
along with some interesting properties, theorems, proofs,
and examples. 0e paired domination in SVNGs is also
explained with examples and theorems.

0e paper is organized as follows: Section 2 reviews some
basic definitions and examples of FGs, IFSs, IFRs, IFGs,
SVNSs, SVNRs, and SVNGs. Section 3 defines the strong
covering of vertices and edges, strong independent sets (SIS),
and strong matchings (SM) using strong edges (SEs) along
with suitable examples and several interesting properties.
Section 4 introduces the paired domination (PD), strong
paired domination (SPD), and perfect paired domination.
Finally, the research is concluded in Section 5.

2. Preliminaries

0is section recalls some basic definitions of fuzzy graph
(FG), intuitionistic fuzzy set (IFS), intuitionistic fuzzy re-
lation (IFR), intuitionistic fuzzy graph (IFG), single-valued
neutrosophic set (SVNS), single-valued neutrosophic rela-
tion (SVNR), and single-valued neutrosophic graph
(SVNG). In addition, the examples of graphs are also given
for better understanding.

Definition 1 (see [8]). A pair G � (V, E) is said to be an FG,
where V is an FS in universe Ẍ defined as
V � v1, v2, v3, . . . , vn􏼈 􏼉 and called the collection of vertices
possessing the grade of membership m1: V⟶ [0, 1] and
the collection E on Ẍ is defined as

E⊆V × V � (vi, vj)|vi, vj ∈ V, i, j � 1, 2, 3, . . . , n􏽮 􏽯 and
called the collection of edges possessing the grade of
membership m2: V × V⟶ [0, 1], such that
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m2 vi, vj􏼐 􏼑≤min m1 vi( 􏼁, m1 vj􏼐 􏼑􏽮 􏽯, ∀vi, vj ∈ V, vi, vj􏼐 􏼑 ∈ E.

(1)

Example 1. An illustration of an FG G � (V, E) is given in
Figure 1. Here, the collections of vertices and edges are V �

v1, v2, v3, v4, v5􏼈 􏼉 and E � (v1, v2),􏼈 (v1, v3), (v1, v 4), (v1,

v5), (v2, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v5), (v4, v5)},
respectively.

Definition 2 (see [3]). A nonempty collection A in universe
Ẍ of the following form is called an IFS:

A � <m( €x), n( €x)> , €x ∈ A{ }, (2)

where the mapping m: A⟶ [0, 1] represents the grade of
membership and the mapping n: A⟶ [0, 1] represents the
nonmembership of A, such that

m( €x ) + n( €x ) ∈ [0, 1]. (3)

Definition 3 (see [3]). Let A1 � (m1, n1) and A2 � (m2, n2)

be two IFSs such that m1: A1⟶ [0, 1] and
n1: A1⟶ [0, 1] are mappings representing the member-
ship and nonmembership grades of A1, respectively, and
m2: A2⟶ [0, 1] and n2: A2⟶ [0, 1] are mappings rep-
resenting the membership and nonmembership grades of
A2, respectively; then the intuitionistic fuzzy relation (IFR)
denoted by Ṝ is a collection of the form

R _ � A1 × A2 � <( €x, €y), m( €x, €y), n( €x, €y)> | €x ∈ A1, €y∈ A2􏼈 􏼉.

(4)

0e mapping m: A1 × A2⟶ [0, 1] represents the
membership grade and the mapping n: A1 × A2⟶ [0, 1]

represents the nonmembership grade of R
_
, where

m(x, €y ) ≤min m1( €x), m1( €y)􏼈 􏼉,

n(x, €y
)≤max n1( €x), n1( €y)􏼈 􏼉.

(5)

0is is provided that m(x, €y) + n(x, €y) ∈ [0, 1].

Definition 4 (see [22]). An IFG is a pair G � (V, E), where V

is an IFS in universe Ẍ defined as
V � v1, v2, v3, . . . , vn􏼈 􏼉 and called the collection of ver-

tices possessing the membership grade m1: V⟶ [0, 1] and
nonmembership grade n1: V⟶ [0, 1], such that

m1 vi( 􏼁 + n1 vi( 􏼁 ∈ [0, 1], ∀vi ∈ V, (6)

and the collection E on Ẍ is defined as
E⊆V × V � (vi, vj)|vi, vj ∈ V, i, j � 1, 2, 3, . . . , n􏽮 􏽯 and called
the collection of edges possessing the membership grade
m2: V × V⟶ [0, 1] and the nonmembership grade
n2: V × V⟶ [0, 1], such that

m2 vi, vj􏼐 􏼑≤min m1 vi( 􏼁, m1 vj􏼐 􏼑􏽮 􏽯,

n2 vi, vj􏼐 􏼑≤max n1 vi( 􏼁, n1 vj􏼐 􏼑􏽮 􏽯.
(7)

0is is provided that m2(vi, vj) + n2(vi, vj) ∈ [0, 1],

∀(vi, vj) ∈ E.

Example 2. In Figure 2, the collection of vertices and the
collection of edges for an IFG G are V � v1, v2, v3, v4􏼈 􏼉 and
E � (v1, v2), (v1, v3), (v2, v4), (v3, v4)􏼈 􏼉, respectively.

Definition 5 (see [7]). A nonempty collection A in universe
Ẍ of the following form is called an SVNS:

A � <m( €x), α( €x), n( €x)> , €x ∈ A{ }, (8)

where the mapping m: A⟶ [0, 1] represents the mem-
bership grade, α: A⟶ [0, 1] represents the abstinence
grade, and n: A⟶ [0, 1] represents the nonmembership
grade such that

m( €x ) + α( €x ) + n( €x) ∈ [0, 3]. (9)

Definition 6 (see [46]). Let A1 � (m1, α1, n1) and
A2 � (m2, α2, n2) be two SVNSs; then, A1 is said to be the
SVNR on A2, if ∀€x, €y∈ A1,

m(x, €y )≤min m1( €x), m1( €y)􏼈 􏼉,

α(x, €y)≤min α1( €x), α1( €y)􏼈 􏼉,

n(x, €y)≤max n1( €x), n1( €y)􏼈 􏼉.

(10)

0is is provided that m( €x, €y) + α( €x, €y) + n( €x, €y) ∈
[0, 3], where m1, α1, and n1 are the membership, abstinence,
and nonmembership grades of A1, respectively, and m2, α2,
and n2 are the membership, abstinence, and nonmember-
ship grades of A2, respectively.

Definition 7 (see [44]). An SVNG is a pair G � (V, E), where
V is an SVNS in Ẍ defined as V � v1, v2, v3, . . . , vn􏼈 􏼉 and
called the collection of vertices possessing the membership
grade m1: V⟶ [0, 1], abstinence grade α1: V⟶ [0, 1],
and nonmembership grade n1: V⟶ [0, 1], such that

m1 vi( 􏼁 + α1 vi( 􏼁 + n1 vi( 􏼁 ∈ [0, 3], ∀vi ∈ V, (11)

and E⊆V × V � (vi, vj)|vi, vj ∈ V, i, j � 1, 2, 3, . . . , n􏽮 􏽯 is
called the collection of edges possessing the membership
grade m2: V × V⟶ [0, 1], abstinence grade
α2: V × V⟶ [0, 1], and nonmembership grade
n2: V × V⟶ [0, 1], such that

m2 vi, vj􏼐 􏼑≤min m1 vi( 􏼁, m1 vj􏼐 􏼑􏽮 􏽯,

α2 vi, vj􏼐 􏼑≤min α1 vi( 􏼁, α1 vj􏼐 􏼑􏽮 􏽯,

n2 vi, vj􏼐 􏼑≤max n1 vi( 􏼁, n1 vj􏼐 􏼑􏽮 􏽯.

(12)

0is is provided thatm2(vi, vj) + α2(vi, vj) + n2(vi, vj) ∈
[0, 1], ∀(vi, vj) ∈ E.

Example 3. An SVNG G � (V, E) is constructed in Figure 3
using the collection of vertices V � v1, v2, v3, v4􏼈 􏼉 and the
collection of edges E � (v1, v2), (v1, v3), (v2, v4), (v3, v4)􏼈 􏼉.
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3. Covering and Matching in Single-Valued
Neutrosophic Graphs

0is section presents the definitions and examples of strong
covering of vertices and edges, strong independent sets (SIS),
and strong matchings (SM) using strong edges (SEs). Some
interesting theorems are also proved for covering and
matching in complete SVNG, SVNC, and complete bipartite
SVNG.

Definition 8. Let G � (V, E) be an SVNG. A vertex and an
SE incident to it are said to strongly cover each other. 0e
collection of vertices Ṩ which covers all the SEs of an SVNG
G is known as strong vertex cover (SVC) in G. M1(

_S
_
) �

􏽐u∈ _S_
m2(u, v) is the membership grade, M2(

_S
_
) � 􏽐u∈ _S_

α2(u, v) is the abstinence grade, and M3(
_S
_
) � 􏽐u∈ _S_

n2(u, v)

is the nonmembership grade values of the SVC Ṩ, where

m2(u, v) and α2(u, v) are the minimum of the membership
and the abstinence values, respectively, and n2(u, v) is the
maximum value among the collection of the nonmember-
ship values of the strong edges incident on u. Let C10 and C20
denote the minimum values of membership and abstinence,
and letC30 denote themaximum value of nonmembership of
the SVC of G. 0en the strong vertex covering number of G

is defined and denoted by C0(G) � C0 � (C10, C20, C30). An
SVC with minimum membership value, minimum absti-
nence value, and maximum nonmembership value in an
SVNG G is said to be a minimum SVC.

Theorem 1. Let G � (V, E) be a complete SVNG; then,
C10, C20, and C30 are defined as

C10 � (n − 1)m2(u, v),

C20 � (n − 1)α2(u, v),

C30 � (n − 1)n2(u, v),

(13)

where m2(u, v) is the membership value, α2(u, v) the absti-
nence value, and n2(u, v) is the nonmembership value of the
weakest edge in G, and n is the number of vertices inG.

Proof. Since G � (V, E) is a complete SVNG, each of its
vertices is connected to every other vertex in G and all of its
edges are strong. Hence, a strong cover vertex of G is formed
by any collection of (n − 1) vertices. Let u be a minimum
SVC, and u is connected to the vertices v1, v2, v3, . . . , vn−1.
0en, the edges (u, v1), (u, v2), (u, v3), . . . , (u, vn−1) are all
the weakest edges of G with m2(u, v) as the membership
strength, α2(u, v) as the abstinence strength, and n2(u, v) as
the nonmembership strength, where the collection
_S
_
∈ v1, v2, v3, . . . , vn−1􏼈 􏼉 of n − 1 vertices forms an SVC of G

with

M1
_S
_

􏼒 􏼓 � 􏽘

vi∈ _S

_m2 u, vi( 􏼁, i � 1, 2, 3, . . . , (n − 1), (14)

where m2(u, vi) is the minimum of the membership value of
the SEs incident on vi. If the value of membership for the
weakest edge of graph G is represented by m2(u, v), then

C10 � m2(u, v) + m2(u, v) + m2(u, v)

+ · · · + m2(u, v)[(n − 1)times].
(15)

0erefore, C10 � (n − 1)m2(u, v).
Now,

M2
_S
_

􏼒 􏼓 � 􏽘

vi∈ _S

_α2 u, vi( 􏼁, i � 1, 2, 3, . . . , (n − 1), (16)

where m2(u, vi) is the minimum of the abstinence value of
the SE incident on vi. If the value of abstinence for the
weakest edge of graph G is represented by α2(u, v), then

C20 � α2(u, v) + α2(u, v) + α2(u, v)

+ · · · + α2(u, v)[(n − 1)times].
(17)

0erefore, C20 � (n − 1)α2(u, v).
In the same way,
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Figure 3: Single-valued neutrosophic graph.

ΰ1 (0.5)

(0.1)

(0.1)(0.2)

(0.4)

(0.2)

(0.1)

(0.1)

(0.5)

(0.5)
(0.3)

ΰ2 (0.6) ΰ3 (0.9)

ΰ5 (0.2)ΰ4 (0.3)

Figure 1: Fuzzy graph.
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Figure 2: Intuitionistic fuzzy graph.
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M3
_S
_

􏼒 􏼓 � 􏽘

vi∈ _S

_n2 u, vi( 􏼁, i � 1, 2, 3, . . . , (n − 1), (18)

where n2(u, vi) is the maximum of the nonmembership
value of the SE incident on vi. If the value of abstinence for
the weakest edge of graph G is represented by n2(u, v), then

C30 � n2(u, v) + n2(u, v) + n2(u, v) + · · · + n2(u, v)[(n − 1)times].

(19)

0erefore, C30 � (n − 1)n2(u, v). □

Theorem 2. If K is a complete bipartite SVNG with V1 and
V2 as partite sets, then

C10(K) � min M1 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

C20(K) � min M2 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

C30(K) � max M3 V1( 􏼁, M3 V2( 􏼁􏼈 􏼉.

(20)

Proof. Since K is a complete bipartite SVNG, all of its edges
are strong. Moreover, each of the vertices in V1 is connected
to all the vertices in V2 and each of the vertices in V2 is
connected to all the vertices of V1. 0e collection of all edges
of K is the union of the collection of all edges incident to
every vertex in V1 and the collection of all edges incident to
each vertex in V2. 0erefore, V1, V2, and V1 ∪V1 are the
SVCs in K. It is obvious that

M1 V1 ∪V2( 􏼁>M1 V1( 􏼁,

M1 V1 ∪V2( 􏼁>M1 V2( 􏼁.
(21)

0erefore, C10(K) � min M1(V1), M1(V2)􏼈 􏼉.
And, M2(V1 ∪V2)>M2(V1) and M2(V1 ∪V2)>

M2(V2).
0erefore, C20(K) � min M2(V1), M1(V2)􏼈 􏼉.
Similarly, M3(V1 ∪V2)<M3(V1) and M3(V1 ∪V2)>

M3(V2).
0erefore, C30(K) � max M3(V1), M3(V2)􏼈 􏼉. □

Theorem 3. If G � (V, E) is a single-valued neutrosophic
cycle (SVNC) and g is a crisp cycle (CC), then

C10(G) � min M1
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛,

C20(G) � min M2
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛,

C30(G) � max M3
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛.

(22)

Proof. As every edge in an SVNC is strong, the SVC number
of G is (n/2), since the number of strong vertices in SVNG
and the crisp cycle g are the same because each edge is strong
in both graphs [49]. 0erefore, in the SVC of G, (n/2) is the
least number of vertices. So,

C10(G) � min M1
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛,

C20(G) � min M2
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛,

C30(G) � max M3
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥

n

2
􏼚 􏼛.

(23)□

Definition 9. Two vertices are said to be strongly inde-
pendent in an SVNG G � (V, E) if they are not connected by
an SE. If any collection in G contains any two strongly
independent vertices, then such a collection is known as
strong independent set (SIS).

Definition 10. Let S_
_ be an SIS in an SVNG G � (V, E). 0en

the values of membership, abstinence, and nonmembership
of S_

_ are defined as M1(
_S
_
) � 􏽐u∈ _S_

m2(u, v), M2(
_S
_
) � 􏽐u∈ _S_

α2
(u, v), and M3(

_S
_
) � 􏽐u∈ _S_

n2(u, v), respectively, where
m2(u, v) and α2(u, v) represent the least value among the
values of membership and the least value among the values
of abstinence of the SEs incident on u. Similarly, the non-
membership value of S_

_ is defined, where n2(u, v) represents
the greatest value among the values of nonmembership of
the SEs incident on u.

D0(G) � D0 � (D10, D20, D30) denotes and defines the
strong independent number of an SVNG G � (V, E), where
D10 andD20 are greatest values of membership and greatest
values of abstinence of S_

_ in G, respectively, and D30 is the
least value of nonmembership of S_

_ in G. 0e SIS with
maximum membership value, maximum abstinence value,
and minimum nonmembership value in an SVNG G is
known as a maximum SIS of vertices.

Theorem 4. If G � (V, E) is a complete SVNG, then
D10 � m2(u, v), D20 � α2(u, v), and D30 � n2(u, v), where
m2(u, v), α2(u, v), and n2(u, v) are the membership, absti-
nence, and nonmembership values of the weakest edge in G.

Proof. Since G � (V, E) is a complete SVNG, each of its
vertices is connected to every other vertex in G and all of its
edges are strong. 0erefore, there is only single SIS, that is,
_S
_

� u{ }. Hence, the result follows. □

Theorem 5. If K is a complete bipartite SVNG with V1 and
V2 as partite sets, then

D10(K) � max M1 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

D20(K) � max M2 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

D30(K) � min M3 V1( 􏼁, M3 V2( 􏼁􏼈 􏼉.

(24)

Proof. Since K is a complete bipartite SVNG, all of its edges
are strong. Moreover, each of the vertices in V1 is connected
to all the vertices in V2, and each of the vertices in V2 is
connected to all the vertices of V1. 0erefore, V1 and V2 are
the SISs in K. Hence,
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D10(K) � max M1 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

D20(K) � max M2 V1( 􏼁, M1 V2( 􏼁􏼈 􏼉,

D30(K) � min M3 V1( 􏼁, M3 V2( 􏼁􏼈 􏼉.

(25)

□

Theorem 6. Let G � (V, E) be an SVNC and g denotes a CC,
then

D10(G) � max M1
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛,

D20(G) � max M2
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛,

D30(G) � min M3
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛.

(26)

Proof. As every edge in an SVNC is strong, the SVC number
of G is n/2, since the number of vertices in a SISs in g and G

are the same because each edge is strong in both graphs [49].
So, in the SVC of G, n/2 is the greatest number of vertices.
0us,

D10(G) � max M1
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛,

D20(G) � max M2
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛,

D30(G) � min M3
_S
_

􏼒 􏼓| _S_is an SVC inGwith _S
_

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

n

2
􏼚 􏼛.

(27)

□

Definition 11. Let G � (V, E) be a connected SVNG. 0e
collection Ṫ of SEs which covers all the vertices of an SVNG
G is known as strong edge cover in G.
M1(

_T) � 􏽐(u,v)∈ _Tm2(u, v), M2(
_T) � 􏽐(u,v)∈ _Tα2(u, v), and

M3(
_T) � 􏽐(u,v)∈ _Tn2(u, v) are the membership, abstinence,

and nonmembership values of SEC Ṫ, respectively. C1(G) �

C1 � (C11, C21, C31) is the SEC number of an SVNG G,
where C11 and C21 are the minimum membership and
abstinence values of the SEC of SVNG G, whereas C31 is the
greatest value of nonmembership. An SEC with minimum
membership value, minimum abstinence value, and maxi-
mum nonmembership value in an SVNG G is said to be a
minimum SEC.

Theorem 7. If G � (V, E) is a complete SVNG, then

C11(G) � min M1(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛,

C21(G) � min M2(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛,

C31(G) � max M3(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛.

(28)

Proof. As each of the vertices in a complete SVNG G is
connected to every other vertex of G and all of its edges are
strong, the SEC number of G is n/2, since each edge is strong
in a complete SVNG and crisp graph; therefore, the numbers
of strong edges in both graphs are the same [49]. Hence, the
least number of edges in an SEC in G is n/2. Hence,

C11(G) � min M1(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛,

C21(G) � min M2(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛,

C31(G) � max M3(
_T)| _Tis an SEC inGwith| _T|≥

n

2
􏼚 􏼛.

(29)

□
Theorem 8. If K is a complete bipartite SVNG with V1 and
V2 as partite sets, then

C11(K) � min M1(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯,

C21(K) � min M2(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯,

C31(K) � max M3(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯.

(30)
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Proof. Since K is complete bipartite SVNG, all of its edges
are strong. Moreover, each of the vertices in V1 is connected
to all the vertices in V2 and vice versa. 0e edge covering
number of K is |V1|, |V2|􏼈 􏼉, since each edge is strong in a

complete bipartite SVNG and g; therefore, the number of
SEs in both graphs is the same [49]. Hence, the least number
of edges in the SEC in K is |V1|, |V2|􏼈 􏼉. 0us,

C11(K) � min M1(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯,

C21(K) � min M2(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯,

C31(K) � max M3(
_T)| _Tis an SEC inKwith| _T|≥max V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏽮 􏽯.

(31)

□
Theorem 9. Let G � (V, E) be an SVNC and g is a CC, then

C11(G) � min M1(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛,

C21(G) � min M2(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛,

C31(G) � max M3(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛.

(32)

Proof. Since every edge in an SVNC is strong, the SEC
number of G is n/2, as the number of SEs in SVNG and the
crisp cycle g are the same because each edge is strong in both
graphs [49]. So, in the SEC of G, n/2 is the least number of
edges. 0us,

C11(G) � min M1(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛,

C21(G) � min M2(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛,

C31(G) � max M3(
_T)| _Tis an SEC inKwith| _T|≥

n

2
􏼚 􏼛.

(33)

□

Definition 12. A collection of SEs denoted byṎ in an SVNG
G � (V, E) is said to be an SIS of edges if all of its edges do
not share a vertex.Ṏ is also known as strong matching (SM)
in G � (V, E).

Definition 13. If (u, v) ∈ €􏽥O, where 􏽥O is an SM in an SVNG
G � (V, E), then it is said that u is strongly matched to v by
􏽥O. M1(

€􏽥O) � 􏽐
(u,v)∈

€􏽥O
m2(u, v), M2(

€􏽥O) � 􏽐
(u,v)∈

€􏽥O
α2(u, v),

and M3(
€􏽥O) � 􏽐

(u,v)∈
€􏽥O
n2(u, v) are the membership, absti-

nence, and nonmembership values of the SEC 􏽥O,
respectively.

C1(G) � C1 � (C11, C21, C31) is the strong edge inde-
pendent number or SM number of an SVNG G, where C11
and C21 are the maximum membership and abstinence

values of the SMs of G, and C31 denotes the minimum
nonmembership value. An SM with maximum membership
value, maximum abstinence value, and minimum non-
membership value in an SVNG G is said to be a maximum
SM.

Theorem 10. Let G � (V, E) be an SVNG; then

D11(G) � max M1(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

(34)

where n denotes the number of vertices in G � (V, E).

Proof. As each vertex of a complete SVNG G is connected to
every other vertex in G and all of its edges are strong, the SM
number of G is n/2, since each edge is strong in a complete
SVNG and crisp graph; therefore the SM numbers in both
graphs are the same [49]. So, in the SM of G, n/2 is the
greatest number of edges. 0us,

D11(G) � max M1(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛.

(35)□

Theorem 11. If K is a complete bipartite SVNG with V1 and
V2 as partite sets, then

Mathematical Problems in Engineering 7



D11(G) � max M1(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛.

(36)

Proof. Since K is a complete bipartite SVNG, all of its edges
are strong. Moreover, each of the vertices in V1 is connected
to all the vertices in V2 and each of the vertices in V2 is
connected to all the vertices in V1. 0e matching number of
K is |V1|, |V2|􏼈 􏼉, since each edge is strong in a complete

bipartite SVNG and complete bipartite crisp graph; there-
fore, the SM numbers in both graphs are the same [49]. So, in
the SM of K, |V1|, |V2|􏼈 􏼉 is the greatest number of edges.
0us,

D11(G) � max M1(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inKwith|€􏽥O|≤min V1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, V2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯􏼚 􏼛.

(37)

□
Theorem 12. If G � (V, E) is SVNC and g is a CC, then

D(G) � max M1(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛.

(38)

Proof. Every edge of an SVNC G is strong. Moreover, n/2 is
the SM number of G, and since each edge is strong in both of
G and g, both graphs possess the same number of edges in
SM [49]. So, in the SM of G, n/2 is the greatest number of
edges. 0us,

D11(G) � max M1(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D21(G) � max M2(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛,

D31(G) � min M3(
€􏽥O)|€􏽥Ois an SM inGwith|€􏽥O|≤

n

2
􏼚 􏼛.

(39)

□

Example 4. Figure 4 displays an SVNG G � (V, E). In G, the
edges represented by solid lines (a, β), (a, c), and (c, d) are
the SEs, while (β, d) is not an SE, which is represented by
dotted line. So, the SVCs are _S_1 � a, c{ }, _S_2 � a, d{ },
_S_3 � β, c􏼈 􏼉, _S_4 � a, β, c􏼈 􏼉, _S_5 � a, c, d{ }, _S_6 � a, β, d􏼈 􏼉,
_S_7 � β, c, d􏼈 􏼉, and _S_8 � a, β, c, d􏼈 􏼉.

Now, by the definition of the value of SVC,

M _S
_

􏼒 􏼓 � M1
_S
_

􏼒 􏼓, M2
_S
_

􏼒 􏼓, M3
_S
_

􏼒 􏼓􏼒 􏼓

� 􏽘

u∈ _S_

m2(u, v), 􏽘

u∈ _S_

α2(u, v), 􏽘

u∈ _S_

n2(u, v)⎛⎜⎜⎝ ⎞⎟⎟⎠,

(40)

the following results are obtained for each SVC:
M( _S_1) � (0.2 + 0.2, 0.4 + 0.4, 0.7 + 0.8) � (0.4, 0.8, 1.5);
similarly,

M _S_2􏼐 􏼑 � (0.5, 0.9, 1.5),

M _S_3􏼐 􏼑 � (0.8, 1.1, 1.0),

M _S_4􏼐 􏼑 � (1.0, 1.5, 1.7),

M _S_5􏼐 􏼑 � (0.7, 1.3, 2.3),

M _S_6􏼐 􏼑 � (1.1, 1.6, 1.7),

M _S_7􏼐 􏼑 � (1.1, 1.6, 1.8),

M _S_8􏼐 􏼑 � (1.3, 2.0, 2.5).

(41)

0e SVC number of G is
C0 � (C10, C20, C30) � (0.4, 0.8, 2.5). In this case, there is no
minimum strong independent cover. In this case, there is no
minimum SVC.

0e vertices a and d are strongly independent since they
are not linked by an SE. But they are not independent
because are they adjacent.

0e SISs are _S_1 � a, d{ }, _S_2 � β, d􏼈 􏼉, and _S_3 � β, c􏼈 􏼉.
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Now, the value of strong independent cover is calculated
by using

M _S
_

􏼒 􏼓 � M1
_S
_

􏼒 􏼓, M2
_S
_

􏼒 􏼓, M3
_S
_

􏼒 􏼓􏼒 􏼓

� 􏽘

u∈ _S_

m2(u, v), 􏽘

u∈ _S_

α2(u, v), 􏽘

u∈ _S_

n2(u, v)⎛⎜⎜⎝ ⎞⎟⎟⎠.

(42)

0us,
M( _S_1) � (0.2 + 0.3, 0.4 + 0.5, 0.7 + 0.8) � (0.5, 0.9, 1.5);
similarly,

M _S_2􏼐 􏼑 � (0.8, 1.1, 1.0),

M _S_3􏼐 􏼑 � (0.9, 1.2, 1.0).
(43)

0e strong independent number of G is
D0 � (D10, D20, D30) � (0.9, 1.2, 1.0). 0e maximum SIS is
_S
_ 3

with M( _S_3) � D0.
0e SECs are _T1 � (a, β), (c, d)􏼈 􏼉 and _T2 � (a, β), (a,􏼈

c), (c, d)}.
0e value of SEC is calculated by

M( _T) � M1(
_T), M2(

_T), M3(
_T)􏼐 􏼑

� 􏽘

(u,v)∈ _T

m2(u, v), 􏽘

(u,v)∈ _T

α2(u, v), 􏽘

(u,v)∈ _T

n2(u, v)⎛⎜⎝ ⎞⎟⎠.

(44)
Consequently,

M( _T1) � (0.6 + 0.3, 0.7 + 0.5, 0.2 + 0.8) � (0.9, 1.2, 1.0) and
M( _T2) � (1.1, 1.6, 1.7) are the values of SECs _T1 and _T2,
respectively. So, the SEC number is C1 � (C11, C, C31) �

(0.9, 1.2, 1.7). None of the strong covers is a minimum SEC.
0e only SM of G is €􏽥O � (a, β), (c, d)􏼈 􏼉. 0e SM number

is defined by

M(€􏽥O) � M1(
€􏽥O), M2(

€􏽥O), M3(
€􏽥O)􏼒 􏼓

� 􏽘

(u,v)∈
€􏽥O

m(u, v), 􏽘

(u,v)∈
€􏽥O

α2(u, v), 􏽘

(u,v)∈
€􏽥O

n2(u, v)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(45)

0us,
M(€􏽥O) � (0.6 + 0.3, 0.7 + 0.5, 0.2 + 0.8) � (0.9, 1.2, 1.0) is
the SM number.

Theorem 13. Let G � (V, E) be an SVNG of order (m, n)

which does not contain any isolated vertices; then, for every
such graph,

(i) C0 + D0 � M(V)≤m

(ii) C1 + D1 ≥ n

Proof. Let _Y0 be the minimum SVC of G and C0 � M( _Y0).
0en V − _Y0 is an SIS of vertices. 0at means V − _Y0
contains such vertices that are incident on SEs of G. So,
D0 ≥M(V − _Y0) � M(V) − C0.

i.e. C0 + D0 ≥M(V). (46)

Let 􏽢Z0 be the maximum SIS of vertices in G and
D0 � M(􏽢Z0). It means 􏽢Z0 does not contain any vertices that
are connected to each other via SE and therefore all the SEs
of G are strongly covered by the vertex in V − 􏽢Z0. Hence,
V − 􏽢Z0 is an SVC of G with smallest value C0. 0erefore,
C0 ≤M(V − 􏽢Z0) � M(V) − D0.

i.e. C + D0 ≤M(V). (47)

Using (46) and (47),

C0 + D0 � M(V). (48)

By definition, M(V) is as follows:

M(V)≤m. (49)

Hence,
C0 + D0 � M(V)≤m. (50)

As C1 andD1 are determined by considering the value of
the SEs and the sum of the vertex values is represented by m,
the second inequality follows directly. □

Definition 14. Suppose that €􏽥O is an SM in an SVNG G �

(V, E) and if €􏽥O strongly matches all vertices of G to some
vertices of G, then €􏽥O is said to be perfect strong matching
(PSM).

Example 5. All of the edges of an SVNG G � (V, E) are
strong and are represented by solid lines, as shown in
Figure 5. 0erefore, the SMs are the collection of
€􏽥O1 � (a, β), (c, d)􏼈 􏼉, €􏽥O2 � (a, c), (β, d)􏼈 􏼉, and
€􏽥O3 � (a, d), (β, c)􏼈 􏼉. Moreover, each of the collections
€􏽥O1,

€􏽥O2, and
€􏽥O3 is also a PSM. 0e SM number is calculated

by

M(€􏽥O) � M1(
€􏽥O), M2(

€􏽥O), M3(
€􏽥O)􏼒 􏼓

� 􏽘

(u,v)∈
€􏽥O

m2(u, v), 􏽘

(u,v)∈
€􏽥O

α2(u, v), 􏽘

(u,v)∈
€􏽥O

n2(u, v)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(51)

β (0.7, 0.8, 0.4)

ɗ (0.4, 0.7, 0.9)α (0.3, 0.5, 0.2)

ɕ (0.5, 0.6, 0.8)

(0.3, 0.5, 0.8)(0.2, 0.4, 0.7)

(0.6, 0.7, 0.2) (0.1, 0.2, 0.9)

Figure 4: Strong covering in SVNG.
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Hence, the SM numbers are

M €􏽥O1􏼒 􏼓 � (0.4 + 0.3, 0.3 + 0.2, 0.8 + 0.6) � (0.7, 0.5, 1.4).

(52)

Similarly, M(€􏽥O2) � (0.4, 0.7, 1.5) and M(€􏽥O3) �

(0.4, 0.5, 1.5).

4. Paired Domination in Single-Valued
Neutrosophic Graph

0is section introduces the concept of paired domination
(PD), strong paired domination (SPD), and perfect paired
domination. A couple of theorems are proved, and examples
are also given to explain the concepts.

Definition 15. Suppose that G denotes an SVNG and v is a
vertex in G; then, each of the neighbors of v and v itself is
strongly dominated by v, which means that the vertices in
_Y[v] are strongly dominated by v. If every vertex of V(G) − _S

_is a strong neighbor of some vertex in _S
_
of vertices of G, then

_S
_
is a strong dominating collection of G.

Definition 16. M1(
_S
_
) � 􏽐u∈ _S_

m2(u, v) is the membership
value, M2(

_S
_
) � 􏽐u∈ _S_

α2(u, v) is the abstinence value, and
M3(

_S
_
) � 􏽐u∈ _S_

n2(u, v) is the nonmembership value of the
strong dominating collection _S

_
, where m2(u, v) and α2(u, v)

represent the minimum of membership values and mini-
mum of abstinence values of the SEs incident on u, while
n2(u, v) represents the maximum of the values of non-
membership of such edges.

B(G) � B � (B1, B2, B3) denotes and defines the strong
domination number of an SVNG G, where B1 and B2
represent the minimum membership value and minimum
abstinence value of strong dominating collections of G, while
B3 represents the maximum nonmembership value of such
collections.

Definition 17. If a collection _S
_
⊆V of vertices of an SVNG

G � (V, E) such that _S
_
is a strong dominating collection and

the induced single-valued neutrosophic subgraph (SVNSG)
_S
_
has a perfect strong matching, then _S

_
is called a strong

paired dominating collection. M1(
_S
_
) � 􏽐u∈ _S_

m2(u, v) and

M2(
_S
_
) � 􏽐u∈ _S_

α2(u, v) are the membership value and ab-
stinence value of the strong paired dominating collection _S

_
,

while M3(
_S
_
) � 􏽐u∈ _S_

n2(u, v) is the nonmembership value of
_S
_
, where m2(u, v) and α2(u, v) represent the minimum
values of the membership and minimum values of the ab-
stinence of SEs incident on u, while n2(u, v) represents the
maximum values of the nonmembership of such edges.

δ(G) � δ � (δ1, δ2, δ3) denotes and defines the SPD
number of an SVNG G, where δ1 and δ2 represent the
minimum membership value and minimum abstinence
value of strong paired dominating collections of G, while δ3
represents the greatest nonmembership value of such sets.

Example 6. Figure 6 displays an SVNG G � (V, E). In G, the
edges represented by solid lines (a, β), (a, c), and (c, d) are
the SEs, while (β, d) is not a SE, which is represented by a
dotted line. So, the strong dominating collections are
_S_1 � a, β􏼈 􏼉, _S_2 � c, d{ }, and _S_3 � a, β, c, d􏼈 􏼉.

Now, the values of strong dominating collections are to
be found by

M _S
_

􏼒 􏼓 � M1
_S
_

􏼒 􏼓, M2
_S
_

􏼒 􏼓, M3
_S
_

􏼒 􏼓􏼒 􏼓

� 􏽘

u∈ _S_

m2(u, v), 􏽘

u∈ _S_

α2(u, v), 􏽘

u∈ _S_

n2(u, v)⎛⎜⎜⎝ ⎞⎟⎟⎠.

(53)

0erefore,
M( _S_1) � (0.2 + 0.6, 0.4 + 0.7, 0.7 + 0.2) � (0.8, 1.1, 0.9).

Similarly, M( _S_2) � (0.5, 0.9, 1.6) and
M( _S_3) � (1.3, 2.0, 2.5).

0e SPD number is defined as

δ(G) � δ1, δ2, δ3( 􏼁. (54)

0us, δ(G) � (0.5, 0.9, 2.5) is the SPD number of SVNG
in Figure 6.

Theorem 14. If G � (V, E) is a complete SVNG, then
δ1(G) � 2m2(u, v), δ2(G) � 2α2(u, v), and
δ3(G) � 2n2(u, v), where m2(u, v), α2(u, v), and n2(u, v) are
the membership, abstinence, and nonmembership values of
the weakest edge in G.

Proof. Since, by definition of a complete SVNG G, each
vertex of G is connected to every other vertex in G and all of
its edges are strong, let u, v{ } be two vertices in any collection
ofG, then a strong paired dominating collection is formed by
such set. 0us, δ1(G) � m2(u, v) + m2(u, v) � 2m2(u, v),
δ2(G) � α2(u, v) + α2(u, v) � 2α2(u, v), and
δ3(G) � n2(u, v) + n2(u, v) � 2n2(u, v). □

Theorem 15. >e SPD numbers for a complete bipartite
SVNG K are δ1(K) � 2m2(u, v), δ2(K) � 2α2(u, v), and
δ3(K) � 2n2(u, v), where m2(u, v), α2(u, v), and n2(u, v) are
the membership, abstinence, and nonmembership values of
the weakest edge in K.

Proof. By definition of K, all of its edges are strong.
Moreover, each of the vertices in V1 is connected to all the

β (0.9, 0.5, 0.7)

(0.1, 0.3, 0.8)
ɗ (0.1, 0.6, 0.5)α (0.4, 0.3, 0.8)

ɕ (0.3, 0.2, 0.6)

(0.3, 0.2, 0.7)

(0.
4, 

0.3
, 0

.8)

(0.
1, 

0.2
, 0

.6)

(0.1, 0.5, 0.7)

(0.3, 0.2, 0.8)

Figure 5: Perfect strong matching in SVNG.
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vertices in V2. 0erefore, any collection in K which contains
two vertices, one in V1 and the other in V2, is a strong paired
dominating collection. Let u, v{ } be the end vertices of any
weakest edge (u, v) in K such that u ∈ V1 and v ∈ V2; then
u, v{ } makes a strong paired dominating collection.

0us, δ1(K) � m2(u, v) + m2(u, v) � 2m2(u, v), δ2(K) �

α2(u, v) +α2(u, v) � 2α2(u, v), and δ3(K) � n2(u,

v) + n2(u, v) � 2n2(u, v). □

5. Conclusion

Single-valued neutrosophic sets are characterized by three
independent fuzzy-valued mappings, that is, membership
grade, abstinence grade, and nonmembership grade. 0is
research presented the notions of covering, matching, and
paired domination using the strong edges in the neu-
trosophic environment. Furthermore, this paper discussed
the concepts of strong vertices, strong edges, strong vertex
cover, strong edge cover, strong vertex covering number,
strong edge covering number, strong independent number,
strong matching, and strong paired domination number in
SVNG by strong edges with suitable examples. Moreover,
the strong independent number, the strong matching, and
the strong paired domination number of complete SVNG
and complete bipartite are determined. 0e relations
among these notions and numerous interesting properties
are also proposed. Many interesting results of covering,
matching, and paired domination are obtained and proved
for SVNGs, complete SVNGs, SVNC, and complete bi-
partite SVNGs.
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