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Abstract: Smarandache defined a neutrosophic set to handle problems involving incompleteness, 

indeterminacy, and awareness of inconsistency knowledge, and have further developed it 

neutrosophic soft expert sets. In this paper, this concept is further expanded to generalized 

neutrosophic soft expert set (GNSES). We then define its basic operations of complement, union, 

intersection, AND, OR, and study some related properties, with supporting proofs. Subsequently, 

we define a GNSES-aggregation operator to construct an algorithm for a GNSES decision-making 

method, which allows for a more efficient decision process. Finally, we apply the algorithm to a 

decision-making problem, to illustrate the effectiveness and practicality of the proposed concept. A 

comparative analysis with existing methods is done and the result affirms the flexibility and 

precision of our proposed method. 
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1. Introduction 

For a proper description of objects in an uncertain and ambiguous environment, indeterminate 

and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced by 

Atanassov [1], followed by Molodtsov on soft sets [2] and neutrosophy logic [3] and neutrosophic 

sets [4] were introduced by Smarandache. The term neutro-sophy means knowledge of neutral 

thought and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic 

and a set. At present, work on the soft set theory is progressing rapidly. Various operations and 

applications of soft sets have been developed rapidly, including the possibility of fuzzy soft set [5], 

soft multiset theory [6], multiparameterized soft set [7], soft intuitionistic fuzzy sets [8], Q-fuzzy soft 

sets [9–11], multi Q-fuzzy sets [12–14], N-soft set [15], Hesitant N-soft set [16], and Fuzzy N-soft set 

[17], thereby, opening avenues to genetic applications [18,19]. Later, Maji [20] have introduced a more 

generalized concept—which is a combination of neutrosophic sets and soft sets—and have studied 

its properties. Alhazaymeh and Hassan [21,22] have studied the concept of vague soft set, which were 

later extended to vague soft expert set theory [23,24], bipolar fuzzy soft expert set [25], and multi Q-

fuzzy soft expert set [26]. Şahin et al. [27] introduced neutrosophic soft expert sets, while Al-Quran 

and Hassan [28,29] extended it further to neutrosophic vague soft expert set. Neutrosophic set theory 

has also been applied to multiple attribute decision-making [30–32]. Fuzzy modelling has long been 

widely applied to physical problems, which include intuitionistic hesitant fuzzy [33], t-concept 

lattices [34], fuzzy operators [35], medical image retrieval [36], and artificial bee colony [37] and multi 

criteria decision making [38,39]. Neutrosophic sets have also gained traction with recent publications 

on neutrosophic triplets [40,41], Q-neutrosophic soft relations [42], Q-neutrosophic soft sets [43], and 

Q-neutrosophic soft expert set [44].  
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Symmetry 2018, 10, 437 2 of 17 

 

This paper anticipates the neutrosophic set discussions to handle problems involving 

incompleteness, indeterminacy, and awareness of inconsistency of knowledge, which is further 

developed to neutrosophic soft expert sets. We intend to extend the discussion further, by proposing 

the concept of generalized neutrosophic soft expert set (GNSES) and its basic operations of 

complement, union, intersection, AND, and OR, along with a definition of GNSES-aggregation 

operator, to construct an algorithm of a GNSES decision method. Finally we provide an application 

of the constructed algorithm to solve a decision-making problem. 

2. Preliminaries 

In this section, we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft 

expert sets, neutrosophic soft expert sets, and neutrosophic parametrized (NP)-aggregation operator, 

which are required as preliminaries. 

Definition 1. [4] Let U be a universe of discourse, with a generic element in U denoted by u, then a 

neutrosophic (NS) set A is an object having the form 

A = {< u: 𝑇𝐴(𝑢), 𝐼𝐴(𝑢), 𝐹𝐴(𝑢)>,u ∈ U}  

where the functions T, I, F: U→ ]−0, 1+[ define, respectively, the degree of membership (or Truth) , the degree 

of indeterminacy, and the degree of non-membership (or Falsehood) of the element u ∈ U to the set A with the 

condition. 

−0 ≤ 𝑇𝐴(𝑢) + 𝐼𝐴(𝑢)+ 𝐹𝐴(𝑢) ≤ 3+  

Definition 2. [20] Let 𝑈 be an initial universe set and 𝐸 be a set of parameters. Consider 𝐴 𝐸. Let 𝑁𝑆(𝑈) 

denote the set of all neutrosophic sets of 𝑈. The collection (𝐹, 𝐴) is termed to be the neutrosophic soft set over 

𝑈, where F is a mapping given by 𝐹: 𝐴 → 𝑁𝑆(𝑈). 

Definition 3. [23] U is an initial universe, 𝐸 is a set of parameters, 𝑋 is a set of experts (agents), and 𝑂 =

{𝑎𝑔𝑟𝑒𝑒 = 1, 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒 = 0} a set of opinions. Let 𝑍 = 𝐸 × 𝑋 × 𝑂 and 𝐴 ⊆ 𝑍. A pair (𝐹, 𝐴) is called a soft 

expert set over 𝑈, where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑈) where 𝑃(𝑈) denoted the power set of 𝑈. 

Definition 4. [27] A pair (𝐹, 𝐴) is called a neutrosophic soft expert set over 𝑈, where 𝐹 is a mapping given 

by 𝐹: 𝐴 → 𝑃(𝑈) where 𝑃(𝑈) denotes the power neutrosophic set of  𝑈. 

Definition 5. [27] The complement of a neutrosophic soft expert set (𝐹, 𝐴) is denoted by (𝐹, 𝐴)𝑐 , and is 

defined as (𝐹, 𝐴)𝑐=(𝐹𝑐 , ¬A) where 𝐹𝑐 = ¬𝐴 → 𝑃(𝑈) is a mapping given by 𝐹𝑐(𝑥)= neutrosophic soft expert 

complement with   𝑇𝐹𝑐(𝑥) = 𝐹𝐹(𝑥),  𝐼𝐹𝑐(𝑥) = 𝐼𝐹(𝑥),  𝐹𝐹𝑐(𝑥) = 𝑇𝐹(𝑥). 

Definition 6. [27] The agree-neutrosophic soft expert set (𝐹, 𝐴)1 over 𝑈 is a neutrosophic soft expert subset 

of (𝐹, 𝐴) defined as 

(𝐹, 𝐴)1 = {𝐹1(𝑚):𝑚 ∈ 𝐸 𝑋 {1}}.  

Definition 7. [27] The disagree-neutrosophic soft expert set (𝐹, 𝐴)0 over 𝑈 is a neutrosophic soft expert 

subset of (𝐹, 𝐴), defined as 

(𝐹, 𝐴)0 = {𝐹0(𝑚):𝑚 ∈ 𝐸 𝑋 {0}}.  

Definition 8. [27] Let (𝐻, 𝐴) and (𝐺, 𝐵) be two neutrosophic soft expert sets (NSESs) over the common 

universe U. Then the union of (𝐻, 𝐴) and (𝐺, 𝐵) is denoted by “(𝐻, 𝐴) (𝐺, 𝐵)”, and is defined by (𝐻, 𝐴)

(𝐺, 𝐵) = (𝐾, 𝐶) , where 𝐶 = 𝐴 ∪ 𝐵  and the truth-membership, indeterminacy-membership, and falsity-

membership of (𝐾, 𝐶) are as follows: 

𝑇𝐾(𝑒)(𝑚) = {

𝑇𝐻(𝑒)(𝑚) ,    𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐺(𝑒)(𝑚) ,    𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑎𝑥 (𝑇𝐻(𝑒)(𝑚), 𝑇𝐺(𝑒)(𝑚)) , 𝑖𝑓 𝑒 ∈ 𝐴𝐵
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𝐼𝐾(𝑒)(𝑚) =

{
 
 

 
 𝐼𝐻(𝑒)(𝑚) ,     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐺(𝑒)(𝑚) ,    𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

 𝐼𝐻(𝑒)(𝑚) +  𝐼𝐺(𝑒)(𝑚)

2
,   𝑖𝑓 𝑒 ∈ 𝐴𝐵

 

𝐹𝐾(𝑒)(𝑚) = {

𝐹𝐻(𝑒)(𝑚) ,     𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐺(𝑒)(𝑚) ,    𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑖𝑛 (𝐹𝐻(𝑒)(𝑚), 𝐹𝐺(𝑒)(𝑚)) , 𝑖𝑓 𝑒 ∈ 𝐴𝐵

 

Definition 9. [27] Let (𝐻, 𝐴) and (𝐺, 𝐵) be two NSESs over the common universe  𝑈. Then the intersection 

of (𝐻, 𝐴) and (𝐺, 𝐵) is denoted by “(𝐻, 𝐴) (𝐺, 𝐵)” and is defined by (𝐻, 𝐴) (𝐺, 𝐵) = (𝐾, 𝐶), where 𝐶 =

𝐴 𝐵 and the truth-membership, indeterminacy-membership, and falsity-membership of (𝐾, 𝐶) are as follows: 

𝑇𝐾(𝑒)(𝑚) = min (𝑇𝐻(𝑒)(𝑚), 𝑇𝐺(𝑒)(𝑚)) 

 𝐼𝐾(𝑒)(𝑚) =
 𝐼𝐻(𝑒)(𝑚) +  𝐼𝐺(𝑒)(𝑚)

2
  

𝐹𝐾(𝑒)(𝑚) = max (𝐹𝐻(𝑒)(𝑚), 𝐹𝐺(𝑒)(𝑚)) , 𝑖𝑓 𝑒 ∈ 𝐴 𝐵. 

 

Definition 10. [45] Let 𝛹𝐾 ∈ NP-soft set. Then an NP-aggregation operator of 𝛹𝐾 , denoted by 𝛹𝐾
𝑎𝑔𝑔 , is 

defined by 

𝛹𝐾
𝑎𝑔𝑔

= {(〈𝑢, 𝜇𝐾
𝑎𝑔𝑔

, 𝜗𝐾
𝑎𝑔𝑔

, 𝜔𝐾
𝑎𝑔𝑔〉): 𝑢 ∈ 𝑈}, (1) 

which is a neutrosophic set over 𝑈, 

𝜇𝐾
𝑎𝑔𝑔(𝑢) =

1

|𝑈|
∑ 𝜇𝐾(𝑢). 𝜆𝑓𝐾(𝑥)(𝑢)𝑒∈𝐸
𝑢∈𝑈

, 𝜇𝐾
𝑎𝑔𝑔

: 𝑈 → [0,1] (2) 

𝜗𝐾
𝑎𝑔𝑔(𝑢) =

1

|𝑈|
∑ 𝜗𝐾(𝑢). 𝜆𝑓𝐾(𝑥)(𝑢),𝑒∈𝐸
𝑢∈𝑈

 𝜗𝐾
𝑎𝑔𝑔

: 𝑈 → [0,1] (3) 

        𝜔𝐾
𝑎𝑔𝑔

=
1

|𝑈|
∑ 𝜔𝐾(𝑢)𝑒∈𝐸
𝑢∈𝑈

. 𝜆𝑓𝐾(𝑥)(𝑢), 𝜔𝐾
𝑎𝑔𝑔

: 𝑈 → [0,1] (4) 

and where, 

𝜆𝑓𝐾(𝑥)(𝑢) = {
1, 𝑥 ∈ 𝑓𝐾(𝑥)(𝑢),

0, otherwise,
  

such that |𝑈| is the cardinality of 𝑈. 

3. Generalized Neutrosophic Soft Expert Set 

In this section, we introduce the concept of generalized neutrosophic soft expert set (GNSES) 

and define some of its properties. Throughout this paper, 𝑈 is an initial universe, 𝐸  is a set of 

parameters,  𝑋 is a set of experts (agents), and 𝑂 = {agree = 1, disagree = 0} a set of opinions. Let 

𝑍 = 𝐸 × 𝑋 × 𝑂 and  𝐴 ⊆ 𝑍 and µ is a fuzzy set of 𝐴; that is, µ: 𝐴 → 𝛪 = [0,1]. 

Definition 11. A pair (𝐹µ, 𝐴) is called a generalized neutrosophic soft expert set (GNSES) over 𝑈, where 𝐹µ 

is a mapping given by 

𝐹µ: 𝐴 → 𝒩(𝑈) × 𝛪,  

with 𝒩(𝑈) being the set of all neutrosophic soft expert subsets of 𝑈. For any parameter 𝑒 ∈ 𝐴, 𝐹(𝑒) is referred 

as the neutrosophic value set of parameter 𝑒, i.e., 

𝐹(𝑒) = {〈𝑢 𝑇𝐹(𝑒)(𝑢), 𝛪𝐹(𝑒)(𝑢), 𝐹𝐹(𝑒)(𝑢)⁄ 〉},  

where 𝑇, 𝛪, 𝐹: 𝑈 →]−0, 1+[ are the membership function of truth, indeterminacy, and falsity, respectively, of the 

element 𝑢 ∈ 𝑈. For any 𝑢 ∈ 𝑈 and 𝑒 ∈ 𝐴 

−0 ≤ 𝑇𝐹(𝑒)(𝑢) + 𝛪𝐹(𝑒)(𝑢) + 𝐹𝐹(𝑒)(𝑢) ≤ 3+  
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In fact, 𝐹µ is a parameterized family of neutrosophic soft expert sets on  𝑈, which has the degree 

of possibility of the approximate value set which is prepresented by µ(𝑒) for each parameter  𝑒, 

which can be written as follows: 

𝐹µ(𝑒) = {(
𝑢1

𝐹(𝑒)(𝑢1)
,

𝑢2
𝐹(𝑒)(𝑢2)

,
𝑢3

𝐹(𝑒)(𝑢3)
,⋯ ,

𝑢𝑛
𝐹(𝑒)(𝑢𝑛)

) , µ(𝑒)}.  

Example 1. Suppose that 𝑈 = {𝑢1, 𝑢2, 𝑢3} is a set of computers and 𝐸 = {𝑒1, 𝑒2, 𝑒3} is a set of decision 

parameters. Let 𝑋 = {𝑝, 𝑞, 𝑟} be set of experts. Suppose that 

𝐹µ(𝑒1, 𝑝, 1) = {(
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
) , 0.3} 

𝐹µ(𝑒1, 𝑞, 1) = {(
𝑢1

0.3,0.2,0.5
,

𝑢2
0.5,0.6,0.2

,
𝑢3

0.8,0.1,0.4
) , 0.4} 

𝐹µ(𝑒1, 𝑟, 1) = {(
𝑢1

0.8,0.4,0.3
,

𝑢2
0.7,0.3,0.5

,
𝑢3

0.2,0.6,0.5
, ) , 0.8} 

𝐹µ(𝑒2, 𝑝, 1) = {(
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.8,0.6,0.3
) , 0.2} 

𝐹µ(𝑒2, 𝑞, 1) = {(
𝑢1

0.6,0.7,0.1
,

𝑢2
0.8,0.4,0.7

,
𝑢3

0.5,0.1,0.7
) , 0.6} 

𝐹µ(𝑒2, 𝑟, 1) = {(
𝑢1

0.5,0.1,0.8
,

𝑢2
0.9,0.3,0.6

,
𝑢3

0.4,0.1,0.7
) , 0.5} 

𝐹µ(𝑒3, 𝑝, 1) = {(
𝑢1

0.6,0.3,0.2
,

𝑢2
0.5,0.6,0.7

,
𝑢3

0.8,0.1,0.4
) , 0.7} 

𝐹µ(𝑒3, 𝑞, 1) = {(
𝑢1

0.7,0.3,0.4
,

𝑢2
0.6,0.2,0.5

,
𝑢3

0.7,0.4,0.6
) , 0.4} 

𝐹µ(𝑒3, 𝑟, 1) = {(
𝑢1

0.8,0.4,0.3
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.1,0.4,0.2
) , 0.5} 

𝐹µ(𝑒1, 𝑝, 0) = {(
𝑢1

0.4,0.1,0.2
,

𝑢2
0.7,0.3,0.5

,
𝑢3

0.4,0.1,0.6
) , 0.1} 

𝐹µ(𝑒1, 𝑞, 0) = {(
𝑢1

0.7,0.3,0.5
,

𝑢2
0.6,0.2,0.4

,
𝑢3

0.4,0.5,0.1
) , 0.3} 

𝐹µ(𝑒1, 𝑟, 0) = {(
𝑢1

0.6,0.4,0.3
,

𝑢2
0.7,0.2,0.6

,
𝑢3

0.4,0.1,0.3
) , 0.2} 

𝐹µ(𝑒2, 𝑝, 0) = {(
𝑢1

0.5,0.1,0.7
,

𝑢2
0.4,0.5,0.1

,
𝑢3

0.7,0.1,0.4
) , 0.2} 

𝐹µ(𝑒2, 𝑞, 0) = {(
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
) , 0.6} 

𝐹µ(𝑒2, 𝑟, 0) = {(
𝑢1

0.3,0.2,0.6
,

𝑢2
0.4,0.3,0.5

,
𝑢3

0.5,0.1,0.4
) , 0.4} 

𝐹µ(𝑒3, 𝑝, 0) = {(
𝑢1

0.4,0.3,0.6
,

𝑢2
0.5,0.1,0.6

,
𝑢3

0.6,0.2,0.5
) , 0.5} 

𝐹µ(𝑒3, 𝑞, 0) = {(
𝑢1

0.6,0.2,0.7
,

𝑢2
0.8,0.1,0.4

,
𝑢3

0.5,0.3,0.4
) , 0.7} 

𝐹µ(𝑒3, 𝑟, 0) = {(
𝑢1

0.5,0.4,0.6
,

𝑢2
0.6,0.4,0.3

,
𝑢3

0.7,0.2,0.1
) , 0.2} 

 

The generalized neutrosophic soft expert set (GNSES) is a parameterized family {𝐹(𝑒𝑖), 𝑖 = 1,2, … } of all 

neutrosophic sets of 𝑈 and describes a collection of approximation of an object. 

Definition 12. Let (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) be two generalized neutrosophic soft expert sets (GNSESs) over 𝑈. 

Then (𝐹µ, 𝐴) is said to be a generalized neutrosophic soft expert subset of (𝐺𝜂 , 𝐵) if 

i.  𝐵 ⊆ 𝐴, and 

ii. 𝐺𝜂(𝜀) is a generalized neutrosophic soft expert subset 𝐹µ(𝜀), for all 𝜀 ∈ 𝐵, 

Example 2. Consider Example 1. Suppose that A and B are as follows. 

𝐴 = {(𝑒1, 𝑝, 1), (𝑒2, 𝑝, 1), (𝑒2, 𝑞, 0), (𝑒3, 𝑟, 1)} 

𝐵 = {(𝑒1, 𝑝, 1), (𝑒2, 𝑝, 1), (𝑒3, 𝑟, 1)}. 
 

Since 𝐵 is a neutrosophic soft expert subset of 𝐴, clearly 𝐵 ⊂ 𝐴. Let (𝐺𝜂 , 𝐵) and (𝐹µ, 𝐴) be defined as 

follows: 

(𝐹µ, 𝐴) = { [(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
) , 0.3],  
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[(𝑒2, 𝑝, 1), (
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.8,0.6,0.3
) , 0.2], 

[(𝑒2, 𝑞, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
) , 0.6], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.8,0.4,0.3
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.1,0.4,0.2
) , 0.5]}. 

(𝐺𝜂 , 𝐵)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
) , 0.3], 

[(𝑒2, 𝑝, 1), (
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.8,0.6,0.3
) , 0.2], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.8,0.4,0.3
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.1,0.4,0.2
) , 0.5]}. 

Therefore  (𝐺𝜂 , 𝐵) ⊆ (𝐹µ, 𝐴). 

Definition 13. Two GNSESs (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) over 𝑈 are said to be equal if (𝐹µ, 𝐴) is a GNSES subset 

of (𝐺𝜂 , 𝐵) and (𝐺𝜂 , 𝐵) is a GNSES subset of (𝐹µ, 𝐴). 

Definition 14. An agree-GNSESs (𝐹µ, 𝐴)1 over 𝑈 is a GNSES subset of (𝐹µ, 𝐴) defined as follows. 

(𝐹µ, 𝐴)1 = {𝐹1(∝): ∝∈ 𝐸 × 𝑋 × {1}}.  

Example 3. Consider Example 1. The agree-GNSES (𝐹µ, 𝑍)1 over 𝑈 is 

(𝐹µ, 𝑍)1 = {[(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
, ) , 0.3], 

[(𝑒1, 𝑞, 1), (
𝑢1

0.3,0.2,0.5
,

𝑢2
0.5,0.6,0.2

,
𝑢3

0.8,0.1,0.4
, ) , 0.4], 

[(𝑒1, 𝑟, 1), (
𝑢1

0.8,0.4,0.3
,

𝑢2
0.7,0.3,0.5

,
𝑢3

0.2,0.6,0.5
, ) , 0.8], 

[(𝑒2, 𝑝, 1), (
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.8,0.6,0.3
, ) , 0.2], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.6,0.7,0.1
,

𝑢2
0.8,0.4,0.7

,
𝑢3

0.5,0.1,0.7
, ) , 0.6], 

[(𝑒2, 𝑟, 1), (
𝑢1

0.5,0.1,0.8
,

𝑢2
0.9,0.3,0.6

,
𝑢3

0.4,0.1,0.7
, ) , 0.5], 

[(𝑒3, 𝑝, 1), (
𝑢1

0.6,0.3,0.2
,

𝑢2
0.5,0.6,0.7

,
𝑢3

0.8,0.1,0.4
, ) , 0.7], 

[(𝑒3, 𝑞, 1), (
𝑢1

0.7,0.3,0.4
,

𝑢2
0.6,0.2,0.5

,
𝑢3

0.7,0.4,0.6
, ) , 0.4], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.8,0.4,0.3
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.1,0.4,0.2
, ) , 0.5]}. 

 

Definition 15. A disagree-GNSESs (𝐹µ, 𝐴)0 over 𝑈 is a GNSES subset of (𝐹µ, 𝐴) is defined as follows: 

(𝐹µ, 𝐴)0 = {𝐹0(∝):∝∈ 𝐸 × 𝑋 × {0}}.  

Example 4. Consider Example 1. The disagree-GNSES (𝐹µ, 𝑍)0 over 𝑈 is 

(𝐹µ, 𝑍)0 = {[(𝑒1, 𝑝, 0), (
𝑢1

0.4,0.1,0.2
,

𝑢2
0.7,0.3,0.5

,
𝑢3

0.4,0.1,0.6
, ) , 0.1], 

[(𝑒1, 𝑞, 0), (
𝑢1

0.7,0.3,0.5
,

𝑢2
0.6,0.2,0.4

,
𝑢3

0.4,0.5,0.1
, ) , 0.3], 

[(𝑒1, 𝑟, 0), (
𝑢1

0.6,0.4,0.3
,

𝑢2
0.7,0.2,0.6

,
𝑢3

0.4,0.1,0.3
, ) , 0.2], 

[(𝑒2, 𝑝, 0), (
𝑢1

0.5,0.1,0.7
,

𝑢2
0.4,0.5,0.1

,
𝑢3

0.7,0.1,0.4
, ) , 0.2], 

[(𝑒2, 𝑞, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
, ) , 0.6], 

[(𝑒2, 𝑟, 0), (
𝑢1

0.3,0.2,0.6
,

𝑢2
0.4,0.3,0.5

,
𝑢3

0.5,0.1,0.4
, ) , 0.4], 
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[(𝑒3, 𝑝, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.5,0.1,0.6

,
𝑢3

0.6,0.2,0.5
, ) , 0.5], 

[(𝑒3, 𝑞, 0), (
𝑢1

0.6,0.2,0.7
,

𝑢2
0.8,0.1,0.4

,
𝑢3

0.5,0.3,0.4
, ) , 0.7], 

 [(𝑒3, 𝑟, 0), (
𝑢1

0.5,0.4,0.6
,

𝑢2
0.6,0.4,0.3

,
𝑢3

0.7,0.2,0.1
, ) , 0.2]}. 

Definition 16. The complement of a GNSES (𝐹µ, 𝐴),  denoted by (𝐹µ, 𝐴)𝑐 , is defined as (𝐹µ, 𝐴)𝑐 =

(𝐹µ(𝑐), ¬𝐴) where 𝐹µ(𝑐): ¬𝐴 → 𝒩(𝑈) × 𝛪 is a mapping given by 

𝐹µ(𝑐)(∝) =

{
 
 

 
 

 𝑇𝐹(∝)(𝑐) = 𝐹𝐹(∝),

𝛪 𝐹(∝)(𝑐) = 1 − 𝛪 𝐹(∝),

 𝐹𝐹(∝)(𝑐)  = 𝑇𝐹(∝),

 µ𝑐(∝) = 1 −  µ(∝) }
 
 

 
 

 for each ∝∈ 𝐸.  

Example 5. Consider Example 1. By using the definition of GNSES complement, the complement of 𝐹µ 

denoted by 𝐹µ(𝑐), is as follows: 

(𝐹µ(𝑐), 𝑍) = {[(¬𝑒1, 𝑝, 1), (
𝑢1

0.2,0.7,0.4
,

𝑢2
0.8,0.9,0.6

,
𝑢3

0.2,0.3,0.5
, ) , 0.7], 

[(¬𝑒1, 𝑞, 1), (
𝑢1

0.5,0.8,0.3
,

𝑢2
0.2,0.4,0.5

,
𝑢3

0.4,0.9,0.8
, ) , 0.6], 

[(¬𝑒1, 𝑟, 1), (
𝑢1

0.3,0.6,0.8
,

𝑢2
0.5,0.7,0.7

,
𝑢3

0.5,0.4,0.2
, ) , 0.2], 

[(¬𝑒2, 𝑝, 1), (
𝑢1

0.6,0.7,0.7
,

𝑢2
0.4,0.9,0.5

,
𝑢3

0.3,0.4,0.8
, ) , 0.8], 

[(¬𝑒2, 𝑞, 1), (
𝑢1

0.1,0.3,0.6
,

𝑢2
0.7,0.6,0.8

,
𝑢3

0.7,0.9,0.5
, ) , 0.4], 

[(¬𝑒2, 𝑟, 1), (
𝑢1

0.8,0.9,0.5
,

𝑢2
0.6,0.7,0.9

,
𝑢3

0.7,0.9,0.4
, ) , 0.5], 

[(¬𝑒3, 𝑝, 1), (
𝑢1

0.2,0.7,0.6
,

𝑢2
0.7,0.4,0.5

,
𝑢3

0.4,0.9,0.8
, ) , 0.3], 

[(¬𝑒3, 𝑞, 1), (
𝑢1

0.4,0.7,0.7
,

𝑢2
0.5,0.8,0.6

,
𝑢3

0.6,0.6,0.7
, ) , 0.6], 

[(¬𝑒3, 𝑟, 1), (
𝑢1

0.3,0.6,0.8
,

𝑢2
0.6,0.7,0.5

,
𝑢3

0.2,0.6,0.1
, ) , 0.5], 

[(¬𝑒1, 𝑝, 0), (
𝑢1

0.2,0.9,0.4
,

𝑢2
0.5,0.7,0.7

,
𝑢3

0.6,0.9,0.4
, ) , 0.9], 

[(¬𝑒1, 𝑞, 0), (
𝑢1

0.5,0.7,0.7
,

𝑢2
0.4,0.8,0.6

,
𝑢3

0.1,0.5,0.4
, ) , 0.7], 

[(¬𝑒1, 𝑟, 0), (
𝑢1

0.3,0.6,0.6
,

𝑢2
0.6,0.8,0.7

,
𝑢3

0.3,0.9,0.4
, ) , 0.8], 

[(¬𝑒2, 𝑝, 0), (
𝑢1

0.7,0.9,0.5
,

𝑢2
0.1,0.5,0.4

,
𝑢3

0.4,0.9,0.7
, ) , 0.8], 

[(¬𝑒2, 𝑞, 0), (
𝑢1

0.6,0.7,0.4
,

𝑢2
0.5,0.8,0.7

,
𝑢3

0.4,0.9,0.8
, ) , 0.4], 

[(¬𝑒2, 𝑟, 0), (
𝑢1

0.6,0.8,0.3
,

𝑢2
0.5,0.7,0.4

,
𝑢3

0.4,0.9,0.5
, ) , 0.6], 

[(¬𝑒3, 𝑝, 0), (
𝑢1

0.6,0.7,0.4
,

𝑢2
0.6,0.9,0.5

,
𝑢3

0.5,0.8,0.6
, ) , 0.5], 

[(¬𝑒3, 𝑞, 0), (
𝑢1

0.7,0.8,0.6
,

𝑢2
0.4,0.9,0.8

,
𝑢3

0.4,0.7,0.5
, ) , 0.3], 

 [(¬𝑒3, 𝑟, 0), (
𝑢1

0.6,0.6,0.5
,

𝑢2
0.3,0.6,0.6

,
𝑢3

0.1,0.8,0.7
, ) , 0.8]}. 

 

Proposition 1. If (𝐹µ, 𝐴) is a generalized neutrosophic soft expert set over 𝑈, then 

1.  ((𝐹µ, 𝐴)𝑐)𝑐 = (𝐹µ, 𝐴) 

2. ((𝐹µ, 𝐴)1)
𝑐 = (𝐹µ, 𝐴)0 

3. ((𝐹µ, 𝐴)0)
𝑐 = (𝐹µ, 𝐴)1 
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Proof. (1) From Definition 16, we have (𝐹µ, 𝐴)𝑐 = (𝐹µ(𝑐), ¬𝐴) , where 𝐹µ(𝑐)(∝) = 𝑇𝐹(∝)(𝑐) =

𝐹𝐹(∝), Ι 𝐹(∝)(𝑐) = 1 − Ι 𝐹(∝), 𝐹𝐹(∝)(𝑐) = 𝑇𝐹(∝) and µ𝑐(∝) = 1 −  µ(∝) for each ∝∈ 𝐸. 

Now  ((𝐹µ, 𝐴)𝑐)𝑐 = ((𝐹µ(𝑐))
𝑐
, 𝐴) where 

(𝐹µ(𝑐))
𝑐
(∝) = [

𝑇𝐹(∝)(𝑐) = 𝐹𝐹(∝), Ι 𝐹(∝)(𝑐) = 1 − Ι 𝐹(∝),

 𝐹𝐹(∝)(𝑐) = 𝑇𝐹(∝), µ
𝑐(∝) = 1 −  µ(∝)

]

𝑐

  

= [
𝑇𝐹(∝) = 𝐹𝐹(∝)(𝑐) , Ι 𝐹(∝) = 1 − Ι 𝐹(∝)(𝑐) ,

  𝐹𝐹(∝) = 𝑇𝐹(∝)(𝑐) , µ(∝) = 1 − µ𝑐(∝)
]  

= 1 − (1 − Ι 𝐹(∝))  = 1 − (1 − µ(∝))  =  Ι 𝐹(∝) 

=  µ(∝). 

 

Thus  ((𝐹µ, 𝐴)𝑐)𝑐 = ((𝐹µ(𝑐))
𝑐
, 𝐴) = (𝐹µ, 𝐴), for all ∝∈ 𝐸. 

The proofs of assertions (2) and (3) are obvious. □ 

Definition 17. The union of two GNSESs (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) over 𝑈, denoted by (𝐹µ, 𝐴) (𝐺𝜂, 𝐵), is the 

GNSESs (𝐻𝛺 , 𝐶),  where 𝐶 = 𝐴 ∪ 𝐵  and the truth-membership, indeterminacy-membership, and falsity-

membership of (𝐻𝛺 , 𝐶) are as follows: 

𝑇𝐻𝛺(𝑒) = {

𝑇𝐹µ(𝑒)(𝑚)      𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐺𝜂(𝑒) (𝑚)       𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑎𝑥 (𝑇𝐹µ(𝑒)(𝑚), 𝑇𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

𝛪𝐻𝛺(𝑒) = {

𝛪𝐹µ(𝑒)(𝑚)      𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝛪𝐺𝜂(𝑒) (𝑚)      𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑖𝑛 (𝛪𝐹µ(𝑒)(𝑚), 𝛪𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

𝐹𝐻𝛺(𝑒) = {

𝐹𝐹µ(𝑒)(𝑚)      𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐺𝜂(𝑒) (𝑚)      𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑖𝑛 (𝐹𝐹µ(𝑒)(𝑚), 𝐹𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

 

where 𝛺(𝑚) = 𝑚𝑎𝑥 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚)). 

Example 6. Suppose that (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over  𝑈, such that 

(𝐹µ, 𝐴) = {[(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
) , 0.3], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.7,0.6,0.3
) , 0.2], 

[(𝑒2, 𝑞, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
) , 0.6], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.8,0.4,0.3
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.1,0.4,0.2
) , 0.5]}. 

(𝐺𝜂 , 𝐵)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.6,0.5,0.1
,

𝑢2
0.8,0.2,0.3

,
𝑢3

0.9,0.2,0.3
) , 0.1], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.6,0.7,0.1
,

𝑢2
0.8,0.4,0.7

,
𝑢3

0.5,0.1,0.7
) , 0.4], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.4,0.1,0.2
,

𝑢2
0.5,0.4,0.2

,
𝑢3

0.3,0.6,0.4
) , 0.8]}. 

 

Then (𝐹µ, 𝐴) (𝐺𝜂, 𝐵) = (𝐻𝛺 , 𝐶) where 

(𝐻𝛺 , 𝐶) = {[(𝑒1, 𝑝, 1), (
𝑢1

0.6,0.3,0.1
,

𝑢2
0.8,0.1,0.3

,
𝑢3

0.9,0.2,0.2
) , 0.3], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.6,0.3,0.1
,

𝑢2
0.8,0.2,0.5

,
𝑢3

0.7,0.1,0.4
) , 0.4], 

[(𝑒2, 𝑞, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
) , 0.6], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.8,0.1,0.2
,

𝑢2
0.5,0.3,0.2

,
𝑢3

0.3,0.4,0.2
) , 0.8]}. 
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Proposition 2. If (𝐹µ, 𝐴), (𝐺𝜂 , 𝐵) and (𝐻𝛺 , 𝐶) are three GNSESs over 𝑈, then 

1. ((𝐹µ, 𝐴) (𝐺𝜂, 𝐵))  (𝐻𝛺 , 𝐶) = (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐻𝛺 , 𝐶)). 

2. (𝐹µ, 𝐴) (𝐹µ, 𝐴) ⊆ (𝐹µ, 𝐴). 

Proof. (1) We want to prove that 

((𝐹µ, 𝐴) (𝐺𝜂 , 𝐵))  (𝐻Ω, 𝐶) = (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐻𝛺 , 𝐶))  

By using Definition 17, we consider the case when 𝑒 ∈ 𝐴 ∩ 𝐵, as other cases are trivial. We will 

have 

(𝐹µ, 𝐴) (𝐺𝜂 , 𝐵) =

{
 
 
 

 
 
 

(

 
 
 
 

𝑢

𝑚𝑎𝑥 (
𝑇𝐹µ(𝑒)(𝑚),

𝑇𝐺𝜂(𝑒)(𝑚)
) ,

𝑚𝑖𝑛 (
Ι𝐹µ(𝑒)(𝑚),

Ι𝐺𝜂(𝑒)(𝑚)
) ,

𝑚𝑖𝑛 (
F𝐹µ(𝑒)(𝑚),

F𝐺𝜂(𝑒)(𝑚)
)

⁄

)

 
 
 
 

,
𝑚𝑎𝑥 (

µ(𝑒)(𝑚),

𝜂(𝑒)(𝑚)
) , 𝑢 ∈ 𝑈

}.  

Also consider the case when 𝑒 ∈ 𝐻, as the other cases are trivial. We will have 

((𝐹µ, 𝐴) (𝐺𝜂 , 𝐵))  (𝐻Ω, 𝐶) =

{
 
 

 
 

(

 
 
𝑢

𝑚𝑎𝑥 (𝑇𝐹µ(𝑒)(𝑚),𝑇𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (Ι𝐹µ(𝑒)(𝑚), Ι𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (F𝐹µ(𝑒)(𝑚), F𝐺𝜂(𝑒)(𝑚))

⁄

)

 
 
, 
 (𝑢 𝑇𝐻Ω(𝑒)(𝑚), Ι𝐻Ω(𝑒)(𝑚),𝐹𝐻Ω(𝑒)(𝑚)⁄ ) ,

𝑚𝑎𝑥 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚),Ω(𝑚)) , 𝑢 ∈ 𝑈
} 

=

{
 
 

 
 
(𝑢 𝑇𝐹Ω(𝑒)(𝑚), Ι𝐹Ω(𝑒)(𝑚), 𝐹𝐹Ω(𝑒)(𝑚)⁄ ),

(

 
 
𝑢

𝑚𝑎𝑥 (𝑇𝐺µ(𝑒)(𝑚), 𝑇𝐻𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (Ι𝐺µ(𝑒)(𝑚), Ι𝐻𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (F𝐺µ(𝑒)(𝑚), F𝐻𝜂(𝑒)(𝑚))

⁄

)

 
  𝑚𝑎𝑥 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚),Ω(𝑚)) , 𝑢 ∈ 𝑈} 

= (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐻𝛺 , 𝐶)). 

 

(2) The proof is straightforward. □ 

Definition 18. Let (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) be two GNSESs over a common universe  𝑈. Then the intersection 

of (𝐹µ, 𝐴)  and (𝐺𝜂 , 𝐵)  is denoted by (𝐹µ, 𝐴) (𝐺𝜂 , 𝐵) = (𝐾𝛿 , 𝐶),  where 𝐶 = 𝐴 ∩ 𝐵  and the truth-

membership, indeterminacy-membership, and falsity-membership of (𝐾𝛿 , 𝐶) are as follows: 

𝑇𝐾𝛿(𝑒) = {

𝑇𝐹µ(𝑒)(𝑚)      𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐺𝜂(𝑒) (𝑚)       𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑖𝑛 (𝑇𝐹µ(𝑒)(𝑚), 𝑇𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

𝛪𝐾𝛿(𝑒) = {

Ι𝐹µ(𝑒)(𝑚)        𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

Ι𝐺𝜂(𝑒) (𝑚)        𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑖𝑛 (Ι𝐹µ(𝑒)(𝑚), Ι𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

𝐹𝐾𝛿(𝑒) = {

F𝐹µ(𝑒)(𝑚)        𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵

F𝐺𝜂(𝑒) (𝑚)      𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴

𝑚𝑎𝑥 (F𝐹µ(𝑒)(𝑚), F𝐺𝜂(𝑒)(𝑚))  𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

 

where 𝛿(𝑚) = 𝑚𝑖𝑛 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚)). 

Example 7. Suppose that (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over 𝑈, such that 

(𝐹µ, 𝐴) = {[(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.7,0.2
, ) , 0.3], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.7,0.3,0.6
,

𝑢2
0.5,0.1,0.4

,
𝑢3

0.7,0.6,0.3
, ) , 0.2], 

 [(𝑒2, 𝑞, 0), (
𝑢1

0.4,0.3,0.6
,

𝑢2
0.7,0.2,0.5

,
𝑢3

0.8,0.1,0.4
, ) , 0.6]}. 
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(𝐺𝜂 , 𝐵)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.6,0.5,0.1
,

𝑢2
0.8,0.2,0.3

,
𝑢3

0.9,0.2,0.3
, ) , 0.1], 

 [(𝑒3, 𝑟, 1), (
𝑢1

0.4,0.1,0.2
,

𝑢2
0.5,0.4,0.2

,
𝑢3

0.3,0.6,0.4
, ) , 0.8]}. 

Then (𝐹µ, 𝐴) (𝐺𝜂 , 𝐵) = (𝐾𝛿 , 𝐶) where 

(𝐾𝛿 , 𝐶)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.4,0.3,0.2
,

𝑢2
0.6,0.1,0.8

,
𝑢3

0.5,0.2,0.3
, ) , 0.1]}.  

Proposition 3. If (𝐹µ, 𝐴), (𝐺𝜂 , 𝐵) and (𝐻𝛺 , 𝐶) are three GNSESs over 𝑈, then 

1. ((𝐹µ, 𝐴) (𝐺𝜂, 𝐵))  (𝐾𝛿 , 𝐶) = (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐾𝛿 , 𝐶)) 

2. (𝐹µ, 𝐴) (𝐹µ, 𝐴) ⊆ (𝐹µ, 𝐴). 

Proof. (1) We want to prove that 

((𝐹µ, 𝐴) (𝐺𝜂 , 𝐵))  (𝐾𝛿 , 𝐶) = (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐾𝛿 , 𝐶))  

By using Definition 18, consider the case when 𝑒 ∈ 𝐴 ∩ 𝐵, since other cases are trivial. We have 

(𝐹µ, 𝐴) (𝐺𝜂 , 𝐵) =

{
 
 

 
 

(

 
 
𝑢

𝑚𝑖𝑛 (𝑇𝐹µ(𝑒)(𝑚), 𝑇𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (Ι𝐹µ(𝑒)(𝑚), Ι𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑎𝑥 (F𝐹µ(𝑒)(𝑚), F𝐺𝜂(𝑒)(𝑚))

⁄

)

 
 
,  𝑚𝑖𝑛 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚)) , 𝑢 ∈ 𝑈}.  

Also consider the case when 𝑒 ∈ 𝐾, as the other cases are trivial. Then we have 

((𝐹µ, 𝐴) (𝐺𝜂 , 𝐵))  (𝐾𝛿 , 𝐶)  =

{
 
 

 
 

(

 
 
𝑢

𝑚𝑖𝑛 (𝑇𝐹µ(𝑒)(𝑚),𝑇𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (Ι𝐹µ(𝑒)(𝑚), Ι𝐺𝜂(𝑒)(𝑚)) ,

𝑚𝑎𝑥 (F𝐹µ(𝑒)(𝑚), F𝐺𝜂(𝑒)(𝑚))

⁄

)

 
 
,
 (𝑢 𝑇𝐾𝛿(𝑒)(𝑚), 𝛪𝐾𝛿(𝑒)(𝑚),𝐹𝐾𝛿(𝑒)(𝑚)⁄ ) ,

𝑚𝑖𝑛 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚), 𝛿(𝑚)) , 𝑢 ∈ 𝑈
}. 

=

{
 
 

 
 
(𝑢 𝑇𝐹Ω(𝑒)(𝑚), Ι𝐹Ω(𝑒)(𝑚), 𝐹𝐹Ω(𝑒)(𝑚)⁄ ),

(

 
 
𝑢

𝑚𝑖𝑛 (𝑇𝐺µ(𝑒)(𝑚), 𝑇𝐾𝛿(𝑒)(𝑚)) ,

𝑚𝑖𝑛 (𝛪𝐺µ(𝑒)(𝑚), 𝛪𝐾𝛿(𝑒)(𝑚)) ,

𝑚𝑎𝑥 (𝐹𝐺µ(𝑒)(𝑚), 𝐹𝐾𝛿(𝑒)(𝑚))

⁄

)

 
  𝑚𝑖𝑛 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚), 𝛿(𝑚)) , 𝑢 ∈ 𝑈} 

= (𝐹µ, 𝐴) ((𝐺𝜂 , 𝐵) (𝐾𝛿 , 𝐶)). 

 

(2) The proof is straightforward. □ 

Proposition 4. If  (𝐹µ, 𝐴), (𝐺𝜂 , 𝐵) and (𝐾𝛿 , 𝐶) are three GNSESs over 𝑈. Then 

1. ((𝐹µ, 𝐴) (𝐺𝜂, 𝐵))  (𝐾𝛿 , 𝐶) = ((𝐹µ, 𝐴) (𝐾𝛿 , 𝐶))  ((𝐺𝜂 , 𝐵) (𝐾𝛿 , 𝐶)). 

2. ((𝐹µ, 𝐴) (𝐺𝜂, 𝐵))  (𝐾𝛿 , 𝐶)  = ((𝐹µ, 𝐴) (𝐾𝛿 , 𝐶))  ((𝐺𝜂 , 𝐵) (𝐾𝛿 , 𝐶)). 

Proof. The proofs can be easily obtained from Definitions 17 and 18. □ 

Definition 19. If (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over 𝑈, then  “(𝐹µ, 𝐴) 𝐴𝑁𝐷 (𝐺𝜂 , 𝐵)” denoted by 

 (𝐹µ, 𝐴) ∧ (𝐺𝜂 , 𝐵), is defined by 

 (𝐹µ, 𝐴) ∧ (𝐺𝜂 , 𝐵) = (𝐻𝛺 , 𝐴 × 𝐵)  

such that, 𝐻𝛺(𝛼, 𝛽) =  𝐹µ(𝛼) ∩ 𝐺𝜂(𝛽) and the truth-membership, indeterminacy-membership, and falsity-

membership of (𝐻𝛺 , 𝐴 × 𝐵) are as follows. 

𝑇𝐻Ω(𝛼,𝛽)(𝑚) = 𝑚𝑖𝑛 (𝑇𝐹µ(𝛼)(𝑚), 𝑇𝐺𝜂(𝛽)(𝑚)), 

Ι𝐻Ω(𝛼,𝛽)(𝑚) = 𝑚𝑖𝑛 (Ι𝐹µ(𝛼)(𝑚), Ι𝐺𝜂(𝛽)(𝑚)), 

F𝐻Ω(𝛼,𝛽)(𝑚) = 𝑚𝑎𝑥 (F𝐹µ(𝛼)(𝑚), F𝐺𝜂(𝛽)(𝑚)) 

 

and 𝛺(𝑚) = 𝑚𝑖𝑛 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚)) , ∀𝛼 ∈ 𝐴, ∀𝛽 ∈ 𝐵. 
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Example 8. Suppose that (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over 𝑈, such that 

(𝐹µ, 𝐴) = {[(𝑒1, 𝑝, 1), (
𝑢1

0.2,0.3,0.5
,

𝑢2
0.4,0.1,0.2

,
𝑢3

0.6,0.3,0.7
, ) , 0.4], 

 [(𝑒3, 𝑟, 0), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.6,0.3,0.7

,
𝑢3

0.2,0.1,0.8
, ) , 0.3]} 

(𝐺𝜂 , 𝐵)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.3,0.2,0.6
,

𝑢2
0.6,0.3,0.2

,
𝑢3

0.8,0.1,0.2
, ) , 0.5], 

 [(𝑒2, 𝑞, 0), (
𝑢1

0.1,0.3,0.5
,

𝑢2
0.7,0.1,0.6

,
𝑢3

0.4,0.3,0.6
, ) , 0.6]}. 

 

Then (𝐹µ, 𝐴) ∧ (𝐺𝜂 , 𝐵) = (𝐻𝛺 , 𝐴 × 𝐵) where 

(𝐻𝛺 , 𝐴 × 𝐵) = {[(𝑒1, 𝑝, 1), (𝑒1, 𝑝, 1) (
𝑢1

0.2,0.2,0.6
,

𝑢2
0.4,0.1,0.2

,
𝑢3

0.6,0.1,0.7
, ) , 0.4], 

[(𝑒1, 𝑝, 1), (𝑒2, 𝑞, 0), (
𝑢1

0.1,0.3,0.5
,

𝑢2
0.4,0.1,0.6

,
𝑢3

0.4,0.3,0.7
, ) , 0.4], 

[(𝑒3, 𝑟, 0), (𝑒1, 𝑝, 1), (
𝑢1

0.3,0.2,0.6
,

𝑢2
0.6,0.3,0.7

,
𝑢3

0.2,0.1,0.8
, ) , 0.3], 

 [(𝑒3, 𝑟, 0), (𝑒2, 𝑞, 0), (
𝑢1

0.1,0.2,0.5
,

𝑢2
0.6,0.1,0.7

,
𝑢3

0.2,0.1,0.8
, ) , 0.3]}. 

 

Definition 20. If (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over  𝑈 , then  “(𝐹µ, 𝐴) 𝑂𝑅 (𝐺𝜂 , 𝐵)”  denoted by 

 (𝐹µ, 𝐴) ∨ (𝐺𝜂 , 𝐵), is defined by 

 (𝐹µ, 𝐴) ∨ (𝐺𝜂 , 𝐵) = (𝐾𝛿 , 𝐴 × 𝐵)  

such that 𝐾𝛿(𝛼, 𝛽) =  𝐹µ(𝛼) ∪ 𝐺𝜂(𝛽) and the truth-membership, indeterminacy-membership, and falsity-

membership of (𝐾𝛿 , 𝐴 × 𝐵) are as follows. 

𝑇𝐾𝛿(𝛼,𝛽)(𝑚) = 𝑚𝑎𝑥 (𝑇𝐹µ(𝛼)(𝑚), 𝑇𝐺𝜂(𝛽)(𝑚)), 

𝛪𝐾𝛿(𝛼,𝛽)(𝑚) = 𝑚𝑖𝑛 (𝛪𝐹µ(𝛼)(𝑚), 𝛪𝐺𝜂(𝛽)(𝑚)), 

 𝐹𝐾𝛿(𝛼,𝛽)(𝑚) = 𝑚𝑖𝑛 (𝐹𝐹µ(𝛼)(𝑚), 𝐹𝐺𝜂(𝛽)(𝑚)) 

 

and 𝛿(𝑚) = 𝑚𝑎𝑥 (µ(𝑒)(𝑚), 𝜂(𝑒)(𝑚)) , ∀𝛼 ∈ 𝐴, ∀𝛽 ∈ 𝐵. 

Example 9. Suppose that (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) are two GNSESs over 𝑈, such that 

(𝐹µ, 𝐴) = {[(𝑒1, 𝑝, 1), (
𝑢1

0.2,0.3,0.5
,

𝑢2
0.4,0.1,0.2

,
𝑢3

0.6,0.3,0.7
, ) , 0.4], 

 [(𝑒3, 𝑟, 0), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.6,0.3,0.7

,
𝑢3

0.2,0.1,0.8
, ) , 0.3]} 

(𝐺𝜂 , 𝐵)  = {[(𝑒1, 𝑝, 1), (
𝑢1

0.3,0.2,0.6
,

𝑢2
0.6,0.3,0.2

,
𝑢3

0.8,0.1,0.2
, ) , 0.5], 

 [(𝑒2, 𝑞, 0), (
𝑢1

0.1,0.3,0.5
,

𝑢2
0.7,0.1,0.6

,
𝑢3

0.4,0.3,0.6
, ) , 0.6]}. 

 

Then (𝐹µ, 𝐴) ∨ (𝐺𝜂 , 𝐵) = (𝐾𝛿 , 𝐴 × 𝐵) where 

(𝐾𝛿 , 𝐴 × 𝐵) = {[(𝑒1, 𝑝, 1), (𝑒1, 𝑝, 1) (
𝑢1

0.3,0.2,0.5
,

𝑢2
0.6,0.1,0.2

,
𝑢3

0.8,0.1,0.2
, ) , 0.5], 

[(𝑒1, 𝑝, 1), (𝑒2, 𝑞, 0), (
𝑢1

0.2,0.3,0.5
,

𝑢2
0.7,0.1,0.2

,
𝑢3

0.6,0.3,0.6
, ) , 0.6], 

[(𝑒3, 𝑟, 0), (𝑒1, 𝑝, 1), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.7,0.3,0.6

,
𝑢3

0.8,0.1,0.2
, ) , 0.5], 

 [(𝑒3, 𝑟, 0), (𝑒2, 𝑞, 0), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.7,0.1,0.6

,
𝑢3

0.4,0.1,0.6
, ) , 0.6]}. 

 

Proposition 5. Let (𝐹µ, 𝐴) and (𝐺𝜂 , 𝐵) be GNSESs over 𝑈. Then 

1. ((𝐹µ, 𝐴) ∧ (𝐺𝜂, 𝐵) )𝑐 = (𝐹µ, 𝐴)𝑐 ∨ (𝐺𝜂 , 𝐵)𝑐 

2. ((𝐹µ, 𝐴) ∨ (𝐺𝜂, 𝐵))𝑐 = (𝐹µ, 𝐴)𝑐 ∧ (𝐺𝜂 , 𝐵)𝑐 

Proof. The proofs can be easily obtained from Definitions 16, 19 and 20. □ 
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4. GNSES-Aggregation Operator 

In this section, we define a GNSES-aggregation operator of a GNSES to construct a decision 

method by which approximate functions of a soft expert set are combined to produce a neutrosophic 

set that can be used to evaluate each alternative. 

Definition 21. Let 𝛶𝐴 ∈  𝐺𝑁𝑆𝐸𝑆𝑠. Then a GNSES-aggregation operator of 𝛶𝐴, denoted by 𝛶𝐴
𝑎𝑔𝑔

, is defined 

by 

𝛶𝐴
𝑎𝑔𝑔

= {(〈𝑢, 𝑇𝐴
𝑎𝑔𝑔(𝑢), 𝐼𝐴

𝑎𝑔𝑔(𝑢), 𝐹𝐴
𝑎𝑔𝑔(𝑢)〉): 𝑢 ∈ 𝑈}, (5) 

which is a GNSES over 𝑈, 

     𝑇𝐴
𝑎𝑔𝑔

: 𝑈 → [0,1],   𝑇𝐴
𝑎𝑔𝑔(𝑢) =

1

|𝑈|
∑ 𝑇𝐴(𝑢). 𝜇𝑒∈𝐸
𝑢∈𝑈

,             (6) 

  𝐹𝐴
𝑎𝑔𝑔

: 𝑈 → [0,1], 𝐹𝐴
𝑎𝑔𝑔(𝑢) =

1

|𝑈|
∑ 𝐹𝐴(𝑢). 𝜇,𝑒∈𝐸
𝑢∈𝑈

   (7) 

𝐼𝐴
𝑎𝑔𝑔

: 𝑈 → [0,1], 𝐼𝐴
𝑎𝑔𝑔(𝑢) =

1

|𝑈|
∑ 𝐼𝐴(𝑢)𝑒∈𝐸
𝑢∈𝑈

. 𝜇, (8) 

where |𝑈| is the cardinality of 𝑈 and 𝜇 is defined below 

𝜇 =
1

𝑛
. ∑ 𝜇(𝑒𝑖)

𝑛
𝑖=1 .        (𝑒𝑖 , 𝑖 = 1,2,3, … , 𝑛). (9) 

Definition 22. Let 𝛶𝐴 ∈  𝐺𝑁𝑆𝐸𝑆𝑠, 𝛶𝐴
𝑎𝑔𝑔 be the corresponding GNSES aggregation operator. Then a reduced 

fuzzy set of  𝛶𝐴
𝑎𝑔𝑔 is a fuzzy set over 𝑈, denoted by 

𝛶𝐴
𝑎𝑔𝑔

= {
𝜏𝛶𝐴

𝑎𝑔𝑔(𝑢)

𝑢
: 𝑢 ∈ 𝑈},  (10) 

where 𝜏𝛶𝐴
𝑎𝑔𝑔(𝑢): 𝑈 → [0,1] and 𝑢𝑖 = |𝑇𝐴𝑖

𝑎𝑔𝑔
− 𝐹𝐴𝑖

𝑎𝑔𝑔
− 𝐼𝐴𝑖

𝑎𝑔𝑔
|. 

5. An Application of Generalized Neutrosophic Soft Expert Set 

In this section, we present an application of generalized neutrosophic soft expert set theory in a 

decision-making problem. Based on Definitions 21 and 22, we constructed an algorithm for the 

GNSES decision-making method as follows. 

Step 1—Choose a feasible subset of the set of parameters. 

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts. 

Step 3—Compute the aggregation operator GNSES 𝛶𝐴
𝑎𝑔𝑔  of 𝛶𝐴  and the reduced fuzzy set 

𝑇𝐴𝑖
𝑎𝑔𝑔

, 𝐹𝐴𝑖
𝑎𝑔𝑔

, 𝐼𝐴𝑖
𝑎𝑔𝑔 of 𝛶𝐴

𝑎𝑔𝑔. 

Step 4—Score(𝑢İ) = max 𝑎𝑔𝑟𝑒𝑒 (𝑢𝑖) − min 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒 (𝑢𝑖). 

Step 5—Choose the element of  𝑢𝑖 that has maximum score. This will be the optimal solution. 

Example 10. Suppose a company needs to employ a worker, which is to be decided by a few experts. The 

employee has to be chosen from five potential workers, 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}.  Suppose there are four 

parameters 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}  where the parameters 𝑒𝑖 (𝑖 = 1,2,3,4)  stand for “education,” “age,” 

“capability” and “experience”, respectively. Let 𝑋 = {𝑝, 𝑞, 𝑟} be a set of experts. After a serious discussion, the 

experts construct the following generalized neutrosophic soft expert set. 

Step 1—Choose a feasible subset of the set of parameters 

(𝐹µ, 𝑍) = { [(𝑒1, 𝑝, 1), (
𝑢1

0.2,0.3,0.4
,

𝑢2
0.8,0.2,0.6

,
𝑢3

0.6,0.3,0.5
,

𝑢4
0.4,0.2,0.3

,
𝑢5

0.6,0.3,0.1
, ) , 0.7], 

[(𝑒1, 𝑞, 1), (
𝑢1

0.3,0.1,0.4
,

𝑢2
0.2,0.1,0.5

,
𝑢3

0.4,0.2,0.3
,

𝑢4
0.4,0.2,0.3

,
𝑢5

0.7,0.2,0.5
, ) , 0.6], 

[(𝑒1, 𝑟, 1), (
𝑢1

0.3,0.5,0.1
,

𝑢2
0.6,0.2,0.5

,
𝑢3

0.1,0.4,0.2
,

𝑢4
0.5,0.2,0.3

,
𝑢5

0.4,0.3,0.2
, ) , 0.2], 
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[(𝑒2, 𝑝, 1), (
𝑢1

0.6,0.2,0.3
,

𝑢2
0.4,0.2,0.5

,
𝑢3

0.3,0.4,0.1
,

𝑢4
0.7,0.3,0.6

,
𝑢5

0.5,0.2,0.4
, ) , 0.8], 

[(𝑒2, 𝑞, 1), (
𝑢1

0.1,0.3,0.6
,

𝑢2
0.7,0.3,0.1

,
𝑢3

0.6,0.2,0.5
,

𝑢4
0.3,0.1,0.6

,
𝑢5

0.4,0.3,0.2
, ) , 0.4], 

[(𝑒2, 𝑟, 1), (
𝑢1

0.6,0.3,0.5
,

𝑢2
0.7,0.3,0.6

,
𝑢3

0.5,0.3,0.4
,

𝑢4
0.2,0.1,0.3

,
𝑢5

0.6,0.2,0.5
, ) , 0.5], 

[(𝑒3, 𝑝, 1), (
𝑢1

0.2,0.4,0.6
,

𝑢2
0.7,0.4,0.2

,
𝑢3

0.4,0.1,0.2
,

𝑢4
0.8,0.4,0.3

,
𝑢5

0.7,0.3,0.4
, ) , 0.3], 

[(𝑒3, 𝑞, 1), (
𝑢1

0.4,0.2,0.6
,

𝑢2
0.5,0.3,0.6

,
𝑢3

0.6,0.2,0.7
,

𝑢4
0.8,0.2,0.4

,
𝑢5

0.6,0.2,0.3
, ) , 0.4], 

[(𝑒3, 𝑟, 1), (
𝑢1

0.3,0.6,0.5
,

𝑢2
0.6,0.2,0.5

,
𝑢3

0.2,0.1,0.4
,

𝑢4
0.5,0.3,0.2

,
𝑢5

0.4,0.1,0.5
, ) , 0.5], 

[(𝑒4, 𝑝, 1), (
𝑢1

0.2,0.3,0.6
,

𝑢2
0.7,0.1,0.5

,
𝑢3

0.4,0.2,0.8
,

𝑢4
0.9,0.2,0.4

,
𝑢5

0.3,0.4,0.6
, ) , 0.6], 

[(𝑒4, 𝑞, 1), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.2,0.3,0.4

,
𝑢3

0.4,0.1,0.5
,

𝑢4
0.6,0.3,0.2

,
𝑢5

0.7,0.3,0.4
, ) , 0.6], 

[(𝑒4, 𝑟, 1), (
𝑢1

0.5,0.2,0.1
,

𝑢2
0.6,0.3,0.5

,
𝑢3

0.2,0.5,0.3
,

𝑢4
0.5,0.1,0.4

,
𝑢5

0.3,0.2,0.5
, ) , 0.3], 

[(𝑒1, 𝑝, 0), (
𝑢1

0.2,0.3,0.4
,

𝑢2
0.5,0.3,0.1

,
𝑢3

0.6,0.3,0.4
,

𝑢4
0.6,0.2,0.4

,
𝑢5

0.7,0.5,0.6
, ) , 0.9], 

[(𝑒1, 𝑞, 0), (
𝑢1

0.5,0.1,0.7
,

𝑢2
0.4,0.2,0.3

,
𝑢3

0.8,0.5,0.4
,

𝑢4
0.7,0.3,0.6

,
𝑢5

0.5,0.3,0.4
, ) , 0.7], 

[(𝑒1, 𝑟, 0), (
𝑢1

0.3,0.1,0.6
,

𝑢2
0.6,0.3,0.7

,
𝑢3

0.3,0.2,0.4
,

𝑢4
0.8,0.1,0.4

,
𝑢5

0.6,0.4,0.5
, ) , 0.6], 

[(𝑒2, 𝑝, 0), (
𝑢1

0.7,0.3,0.5
,

𝑢2
0.6,0.2,0.4

,
𝑢3

0.4,0.3,0.5
,

𝑢4
0.3,0.2,0.5

,
𝑢5

0.4,0.3,0.5
, ) , 0.8], 

[(𝑒2, 𝑞, 0), (
𝑢1

0.6,0.2,0.4
,

𝑢2
0.5,0.3,0.7

,
𝑢3

0.8,0.1,0.3
,

𝑢4
0.2,0.3,0.6

,
𝑢5

0.6,0.2,0.4
, ) , 0.4], 

[(𝑒2, 𝑟, 0), (
𝑢1

0.6,0.3,0.4
,

𝑢2
0.5,0.2,0.4

,
𝑢3

0.7,0.4,0.5
,

𝑢4
0.5,0.2,0.4

,
𝑢5

0.4,0.3,0.5
, ) , 0.2], 

[(𝑒3, 𝑝, 0), (
𝑢1

0.6,02,0.4
,

𝑢2
0.6,0.1,0.5

,
𝑢3

0.5,0.4,0.6
,

𝑢4
0.8,0.3,0.6

,
𝑢5

0.7,0.2,0.4
, ) , 0.5], 

[(𝑒3, 𝑞, 0), (
𝑢1

0.7,0.1,0.6
,

𝑢2
0.4,0.5,0.8

,
𝑢3

0.4,0.3,0.5
,

𝑢4
0.6,0.2,0.5

,
𝑢5

0.4,0.3,0.5
, ) , 0.3], 

[(𝑒3, 𝑟, 0), (
𝑢1

0.2,0.3,0.6
,

𝑢2
0.7,0.4,0.5

,
𝑢3

0.4,0.2,0.8
,

𝑢4
0.9,0.1,0.4

,
𝑢5

0.6,0.3,0.2
, ) , 0.3], 

[(𝑒4, 𝑝, 0), (
𝑢1

0.4,0.2,0.6
,

𝑢2
0.5,0.2,0.6

,
𝑢3

0.9,0.5,0.1
,

𝑢4
0.3,0.2,0.6

,
𝑢5

0.4,0.3,0.5
, ) , 0.6], 

[(𝑒4, 𝑞, 0), (
𝑢1

0.3,0.2,0.1
,

𝑢2
0.6,0.1,0.5

,
𝑢3

0.6,0.2,0.5
,

𝑢4
0.8,0.3,0.2

,
𝑢5

0.2,0.3,0.4
, ) , 0.5], 

 [(𝑒4, 𝑟, 0), (
𝑢1

0.6,0.2,0.5
,

𝑢2
0.7,0.1,0.6

,
𝑢3

0.5,0.3,0.1
,

𝑢4
0.3,0.2,0.6

,
𝑢5

0.4,0.2,0.5
, ) , 0.1]}. 

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts, as shown in Tables 

1 and 2. 
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Table 1. Agree-GNSES. 

U 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝝁  

(𝑒1, 𝑝) 0.2,0.3,0.4 0.8,0.2,0.6 0.6,0.3,0.5 0.4,0.2,0.3 0.6,0.3,0.1 0.7 
(𝑒2, 𝑝) 0.6,0.2,0.3 0.4,0.2,0.5 0.3,0.4,0.1 0.7,0.3,0.6 0.5,0.2,0.4 0.8 
(𝑒3, 𝑝) 0.2,0.4,0.6 0.7,0.4,0.2 0.4,0.1,0.2 0.8,0.4,0.3 0.7,0.3,0.4 0.3 
(𝑒4, 𝑝) 0.2,0.3,0.6 0.7,0.1,0.5 0.4,0.2,0.8 0.9,0.2,0.4 0.3,0.4,0.6 0.6 
(𝑒1, 𝑞) 0.3,0.1,0.4 0.2,0.1,0.5 0.4,0.2,0.3 0.4,0.2,0.3 0.7,0.2,0.5 0.6 
(𝑒2, 𝑞) 0.1,0.3,0.6 0.7,0.3,0.1 0.6,0.2,0.5 0.3,0.1,0.6 0.4,0.3,0.2 0.4 
(𝑒3, 𝑞) 0.4,0.2,0.6 0.5,0.3,0.6 0.6,0.2,0.7 0.8,0.2,0.4 0.6,0.2,0.3 0.4 
(𝑒4, 𝑞) 0.5,0.2,0.1 0.2,0.3,0.4 0.4,0.1,0.5 0.6,0.3,0.2 0.7,0.3,0.4 0.6 
(𝑒1, 𝑟) 0.3,0.5,0.1 0.6,0.2,0.5 0.1,0.4,0.2 0.5,0.2,0.3 0.4,0.3,0.2 0.2 
(𝑒2, 𝑟) 0.6,0.3,0.5 0.7,0.3,0.6 0.5,0.3,0.4 0.2,0.1,0.3 0.6,0.2,0.5 0.5 
(𝑒3, 𝑟) 0.3,0.6,0.5 0.6,0.2,0.5 0.2,0.1,0.4 0.5,0.3,0.2 0.4,0.1,0.5 0.5 
(𝑒4, 𝑟) 0.5,0.2,0.1 0.6,0.3,0.5 0.2,0.5,0.3 0.5,0.1,0.4 0.3,0.2,0.5 0.3 

Table 2. Disagree-GNSES. 

U 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 𝝁  

(𝑒1, 𝑝) 0.2,0.3,0.4 0.5,0.3,0.1 0.6,0.3,0.4 0.6,0.2,0.4 0.7,0.5,0.6 0.9 
(𝑒2, 𝑝) 0.7,0.3,0.5 0.6,0.2,0.4 0.4,0.3,0.5 0.3,0.2,0.5 0.4,0.3,0.5 0.8 
(𝑒3, 𝑝) 0.6,02,0.4 0.6,0.1,0.5 0.5,0.4,0.6 0.8,0.3,0.6 0.7,0.2,0.4 0.5 
(𝑒4, 𝑝) 0.4,0.2,0.6 0.5,0.2,0.6 0.9,0.5,0.1 0.3,0.2,0.6 0.4,0.3,0.5 0.6 
(𝑒1, 𝑞) 0.5,0.1,0.7 0.4,0.2,0.3 0.8,0.5,0.4 0.7,0.3,0.6 0.5,0.3,0.4 0.7 

       
(𝑒2, 𝑞) 0.6,0.2,0.4 0.5,0.3,0.7 0.8,0.1,0.3 0.2,0.3,0.6 0.6,0.2,0.4 0.4 
(𝑒3, 𝑞) 0.7,0.1,0.6 0.4,0.5,0.8 0.4,0.3,0.5 0.6,0.2,0.5 0.4,0.3,0.5 0.3 
(𝑒4, 𝑞) 0.3,0.2,0.1 0.6,0.1,0.5 0.6,0.2,0.5 0.8,0.3,0.2 0.2,0.3,0.4 0.5 
(𝑒1, 𝑟) 0.3,0.1,0.6 0.6,0.3,0.7 0.3,0.2,0.4 0.8,0.1,0.4 0.6,0.4,0.5 0.6 
(𝑒2, 𝑟) 0.6,0.3,0.4 0.5,0.2,0.4 0.7,0.4,0.5 0.5,0.2,0.4 0.4,0.3,0.5 0.2 
(𝑒3, 𝑟) 0.2,0.3,0.6 0.7,0.4,0.5 0.4,0.2,0.8 0.9,0.1,0.4 0.6,0.3,0.2 0.3 
(𝑒4, 𝑟) 0.6,0.2,0.5 0.7,0.1,0.6 0.5,0.3,0.1 0.3,0.2,0.6 0.4,0.2,0.5 0.1 

Step 3—Now calculate the scores of agree (𝑢𝑖) by using the data in Table 1, to obtain values in Table 3. 

𝑇𝐴
𝑎𝑔𝑔(𝑝, 𝑢1) = (

𝑇𝐴1 + 𝑇𝐴2 + 𝑇𝐴3 + 𝑇𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
). 

= (
0.2 + 0.6 + 0.2 + 0.2

4
) . (

0.7 + 0.8 + 0.3 + 0.6

4
) 

= 0.18 

𝐼𝐴
𝑎𝑔𝑔(𝑞, 𝑢1)  = (

𝐼𝐴1 + 𝐼𝐴2 + 𝐼𝐴3 + 𝐼𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
).  

= (
0.3 + 0.2 + 0.4 + 0.3

4
) . (

0.7 + 0.8 + 0.3 + 0.6

4
)  

= 0.18  

𝐹𝐴
𝑎𝑔𝑔(𝑟, 𝑢1) = (

𝐹𝐴1 + 𝐹𝐴2 + 𝐹𝐴3 + 𝐹𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
). 

= (
0.4 + 0.3 + 0.6 + 0.6

4
) . (

0.7 + 0.8 + 0.3 + 0.6

4
)  

= 0.285 

𝑢1 = |𝑇𝐴𝑖
𝑎𝑔𝑔

− 𝐹𝐴𝑖
𝑎𝑔𝑔

− 𝐼𝐴𝑖
𝑎𝑔𝑔

| = |0.18 − 0.18 − 0.285| = 0.285. 

 

  



Symmetry 2018, 10, 437 14 of 17 

 

Table 3. Degree table of agree-GNSES. 

U 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 

p 0.285 0.015 0.135 0.015 0.09 

q 0.18 0.15 0.105 0.12 0.015 

r 0.165 0.09 0.24 0.06 0.045 

Now calculate the score of disagree (𝑢𝑖) by using the data in Table 2, to obtain values in Table 4. 

𝑇𝐴
𝑎𝑔𝑔(𝑝, 𝑢1) = (

𝑇𝐴1 + 𝑇𝐴2 + 𝑇𝐴3 + 𝑇𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
) 

= (
0.2 + 0.7 + 0.6 + 0.4

4
) . (

0.9 + 0.8 + 0.5 + 0.6

4
)  

= 0.3325 

𝐼𝐴
𝑎𝑔𝑔(𝑞, 𝑢1) = (

𝐼𝐴1 + 𝐼𝐴2 + 𝐼𝐴3 + 𝐼𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
). 

= (
0.3 + 0.3 + 0.2 + 0.2

4
) . (

0.9 + 0.8 + 0.5 + 0.6

4
)  

= 0.175  

 𝐹𝐴
𝑎𝑔𝑔(𝑟, 𝑢1)  = (

𝐹𝐴1 + 𝐹𝐴2 + 𝐹𝐴3 + 𝐹𝐴4
4

) . (
 𝜇1 +  𝜇2 +  𝜇3 +  𝜇4

4
).  

= (
0.4 + 0.5 + 0.4 + 0.6

4
) . (

0.9 + 0.8 + 0.5 + 0.6

4
)  

= 0.3325  

𝑢1 = |𝑇𝐴𝑖
𝑎𝑔𝑔

− 𝐹𝐴𝑖
𝑎𝑔𝑔

− 𝐼𝐴𝑖
𝑎𝑔𝑔

| = |0.3325 − 0.175 − 0.3325|  = 0.175. 

 

Table 4. Degree table of disagree-GNSES. 

U 𝒖𝟏 𝒖𝟐 𝒖𝟑 𝒖𝟒 𝒖𝟓 

p 0.175 0.035 0.1225 0.175 0.1925 

q 0.0525 0.2625 0.035 0.1225 0.0875 

r 0.2275 0.1225 0.175 0.0175 0.1575 

Step 4—The final score of 𝑢𝑖 is computed as follows. 

Score(𝑢1) = 0.285 − 0.0525 = 0.2325, 

Score(𝑢2) = 0.15 − 0.035 = 0.115, 

Score(𝑢3) = 0.24 − 0.035 = 0.205, 

Score(𝑢4) = 0.12 − 0.0175 = 0.1025, 

Score(𝑢5) = 0.09 − 0.0875 = 0.0025. 

 

Step 5—Score(𝑢1) = 0.2325 is the maximum. Hence, the best decision for the experts is to select 

worker 𝑢1 as the company’s employee. 

6. Comparison Analysis 

A generalized neutrosophic soft expert model gives more precision, flexibility, and compatibility 

than the existing neutrosophic models. These are verified by a comparison analysis, using 

neutrosophic soft expert decision method, with those methods used by Sahin et al. [27], Hassan [44], 

and Maji [20], as given in Table 5. The comparison is done based on the same example as in Section 

5. The ranking order results obtained are consistent with those in [20,27,44]. 
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Table 5. Comparison of neutrosophic soft set to other variants. 

Methods 
Neutrosophic 

Soft Set 

Neutrosophic 

Soft Expert Set 

Q-Neutrosophic 

Soft Expert Set 

Generalized 

Neutrosophic Soft 

Expert Set 

Authors Maji [20] Sahin et al. [27] Hassan et al. [44] Proposed Method 

Domain 
Universe of 

discourse 

Universe of 

discourse 

Universe of 

discourse 

Universe of 

discourse 

Co-domain [0,1]3 [0,1]3 [0,1]3 [0,1]3 

True Yes Yes Yes Yes 

Falsity Yes Yes Yes Yes 

Indeterminacy Yes Yes Yes Yes 

Expert No Yes Yes Yes 

Q No No Yes No 

Ranking 
𝑢2 > 𝑢3 > 𝑢1
> 𝑢4 > 𝑢5 

𝑢2 > 𝑢2 > 𝑢1
> 𝑢4 > 𝑢5 

𝑢3 > 𝑢1 > 𝑢2 > 𝑢4
> 𝑢5 

𝑢1 > 𝑢3 > 𝑢2 > 𝑢4
> 𝑢5 

7. Conclusions 

We have established the concept of generalized neutrosophic soft expert set (GNSES) as a 

generalization of NSES. The basic operations of GNSES of complement, union, intersection AND, and 

OR were defined. Subsequently, a definition of GNSES-aggregation operator was proposed to 

construct an algorithm of a GNSES decision method. Finally, an application of the constructed 

algorithm, to solve a decision-making , was provided. This new extension provides a significant 

contribution to current theories for handling indeterminacy, and it spurs the development of further 

research and pertinent applications. 
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