Abstract

Aim of this article is to find the maximum and minimum solution of the fuzzy neutrosophic soft relational equation $xA = b$ and $Ax = b$, where x and b are fuzzy neutrosophic soft vector and A is a fuzzy neutrosophic soft matrix. Whenever A is singular we can not find A^{-1}. In that case we can use g-inverse to get the solution of the above relational equation. Further, using this concept maximum and minimum g-inverse of fuzzy neutrosophic soft matrix are obtained.

AMS Subject classification code: 03E72, 15B15.

Keywords: Fuzzy Neutrosophic Soft Set (FNSS), Fuzzy Neutrosophic Soft Matrix (FNSM), g-inverse.

1 Introduction

Most of our real life problems in Medical Science, Engineering, Management, Environment and Social Sciences often involve data which are not necessarily crisp, precise and deterministic in character due to various uncertainties associated with these problems. Such uncertainties are usually being handled with the help of the
topics like probability, fuzzy sets, interval Mathematics and rough sets etc., Intuitionistic fuzzy sets introduced by Atanassov [3] is appropriate for such a situation. The intuitionistic fuzzy sets can only handle the incomplete information considering both the truth membership and falsity membership. It does not handle the indeterminate and inconsistent information which exists in belief system. Smarandache [13] announced and evinced the concept of neutrosophic set which is a Mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. The neutrosophic components T,I,F which represents the membership, indeterminacy, and non-membership values respectively, where \([-0,1+]\) is the non-standard unit interval, and thus one defines the neutrosophic set.

For example the Schrodinger’s cat theory says that basically the quantum state of a photon can basically be in more than one place at the same time, which translated to the neutrosophic set which means an element (quantum state) belongs and does not belong to a set (one place) at the same time; or an element (quantum state) belongs to two different sets (two different places) in the same time. Diletheism is the view that some statements can be both true and false simultaneously. More precisely, it is belief that there can be true statement whose negation is also true. Such state are called true contradiction, diletheia or nondualism. ” All statements are true” is a false statement. The above example of true contradictions that dialetheists accept. Neutrosophic set, like dialetheism, can describe paradoxist elements, Neutrosophic set (paradoxist element)=(1,1,1), while intuitionistic fuzzy logic can not describe a paradox because the sum of components should be 1 in intuitionistic fuzzy set.

In neutrosophic set there is no restriction on T,I,F other than they are subsets of \([-0,1+]\), thus
\[-0 \leq \inf T + \inf I + \inf F \leq \sup T + \sup I + \sup F \leq 3^+\]

Neutrosophic sets and logic are the foundations for many theories which are more general than their classical counterparts in fuzzy, intuitionistic fuzzy, paraconsistent set, dialetheist set, paradoxist set and tautological set.

One of the important theory of Mathematics which has a vast application in Science and Engineering is the theory of matrices. Let \(A\) be a square matrix of full rank. Then, there exists a matrix \(X\) such that \(AX =XA = I\). This \(X\) is called the
inverse of A and is denoted by A^{-1}. Suppose A is not a matrix of full rank or it is a rectangular matrix, in such a case inverse does not exists. Need felt in numerous areas of applied Mathematics for some kind of partial inverse of a matrix which is singular or even rectangular, such inverse are called generalized inverse. Solving fuzzy matrix equation of the type $xA = b$ where $x = (x_{11}, x_{12}, x_{1m}), b = (b_{11}, b_{12}, b_{1n})$ and A is a fuzzy matrix of order $m \times n$ is of great interest in various fields. We say $xA = b$ is comptiable, if there exists a solution for $xA = b$ and in this case we write \(\max \min (x_{1j}, a_{jk}) = b_{1k} \) for all $j \in I_m$ and $k \in I_n$, where I_n is an index set, $i = 1, 2, ..., n$. \(\Omega_i(A, b) \) represents the set of all solutions of $xA = b$.

The authors extend this concept into fuzzy neutrosophic soft matrix. The fuzzy neutrosophic soft matrix equation is of the form $xA = b$, where $x = (x_{11}^T, x_{11}^T, x_{1m}^T)$, $b = (b_{11}^T, b_{11}^T, b_{11}^T)$ and A is a fuzzy neutrosophic soft matrix of order $m \times n$. The equation $xA = b$ is compatible if there exist a solution for $xA = b$ and in this case we write \(\max \min (x_{1j}, x_{1j}^T, x_{1j}^T, x_{1j}^T) = (b_{1k}, b_{1k}, b_{1k}) \) for all $j \in I_m$ and $k \in I_n$. Denote \(\Omega_i(A, b) = \{ x | xA = b \} \) represents the set of all solutions of $xA = b$. Several authors [4, 6, 12] have studied about the maximum solution \hat{x} and the minimum solution \check{x} of $xA = b$ for fuzzy matrix as well as IFMs.

Li Jian-Xin [6] and Katarina Cechlarova [5] discussed the solvability of maxmin fuzzy equation $xA = b$ and $Ax = b$. In both the cases the maximum solution is unique and the minimum solution need not be unique. Let \(\Omega_2(A, b) \) be the set of all solutions for $Ax = b$. Murugadas [10] introduced a method to find maximum g-inverse as well as minimum g-inverse of fuzzy matrix and intuitionistic fuzzy matrix. Let us restrict our further discussion in this section to fuzzy neutrosophic soft matrix equation of the form $Ax = b$ with $x = [(x_{1i}^T, x_{1i}^T, x_{1i}^T) | i \in I_n], b = [(b_{1k}, b_{1k}, b_{1k}) \in I_m]$ where $A \in FNSM_{m,n}$.

In this paper the authors extend the idea of finding g-inverse to FNSM. And also finds the maximum and minimum solution of the relational equation $xA = b$ when A is a FNSM. Further this concept has been extended in finding g-inverse of FNSM.

2 preliminaries

Definition 2.1. [13] A neutrosophic set A on the universe of discourse X is defined as $A = \{ (x, T_A(x), I_A(x), F_A(x)) | x \in X \}$, where $T, I, F : X \rightarrow [0,1]^+$ and

\[
-0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3^+ \quad \ldots \ldots \quad (1).
\]

From philosophical point of view the neutrosophic set takes the value from real standard or non-standard subsets of $[0,1]^+$. But in real life application especially in
scientific and Engineering problems it is difficult to use neutrosophic set with value from real standard or non-standard subset of $]-0,1+$]. Hence we consider the neutrosophic set which takes the value from the subset of $[0,1]$. Therefore we can rewrite the equation (1) as

$$0 \leq T_A(x) + I_A(x) + F_A(x) \leq 3.$$

In short an element \tilde{a} in the neutrosophic set A, can be written as $\tilde{a} = \{a^T, a^I, a^F\}$, where a^T denotes degree of truth, a^I denotes degree of indeterminacy, a^F denotes degree of falsity such that $0 \leq a^T + a^I + a^F \leq 3$.

Example 2.2. Assume that the universe of discourse $X = \{x_1, x_2, x_3\}$, where $x_1, x_2,$ and x_3 characterises the quality, reliability, and the price of the objects. It may be further assumed that the values of $\{x_1, x_2, x_3\}$ are in $[0,1]$ and they are obtained from some investigations of some experts. The experts may impose their opinion in three components viz: the degree of goodness, the degree of indeterminacy and the degree of poorness to explain the characteristics of the objects. Suppose A is a Neutrosophic Set (NS) of X, such that $A = \{(x_1, 0.4, 0.5, 0.3), (x_2, 0.7, 0.2, 0.4), (x_3, 0.8, 0.3, 0.4)\}$, where for x_1 the degree of goodness of quality is 0.4, degree of indeterminacy of quality is 0.5 and degree of falsity of quality is 0.3 etc.,

Definition 2.3. [9] Let U be an initial universe set and E be a set of parameters. Let $P(U)$ denotes the power set of U. Consider a nonempty set $A, A \subseteq E$. A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \rightarrow P(U)$.

Definition 2.4. [1] Let U be an initial universe set and E be a set of parameters. Consider a non empty set $A, A \subseteq E$. Let $P(U)$ denotes the set of all fuzzy neutrosophic sets of U. The collection (F, A) is termed to be the Fuzzy Neutrosophic Soft Set (FNSS) over U, where F is a mapping given by $F : A \rightarrow P(U)$. Hereafter we simply consider A as FNSS over U instead of (F, A).

Definition 2.5. [2] Let $U = \{e_1, e_2, \ldots, e_m\}$ be the universal set and E be the set of parameters given by $E = \{e_1, e_2, \ldots, e_n\}$. Let $A \subseteq E$. A pair (F, A) be a FNSS over U. Then the subset of $U \times E$ is defined by $R_A = \{(u, e) : e \in A, u \in F_A(e)\}$ which is called a relation form of (F, A). The membership function, indeterminacy membership function and non membership function are written by $T_{RA} : U \times E \rightarrow [0,1]$, $I_{RA} : U \times E \rightarrow [0,1]$ and $F_{RA} : U \times E \rightarrow [0,1]$ where $T_{RA}(u, e) \in [0,1], I_{RA}(u, e) \in [0,1]$ and $F_{RA}(u, e) \in [0,1]$ are the membership value, indeterminacy value and non membership value respectively of $u \in U$ for each $e \in E$.

If $[(T_{ij}, I_{ij}, F_{ij})] = [(T_{ij}(u_i, e_j), I_{ij}(u_i, e_j), F_{ij}(u_i, e_j))]$ we define a matrix
Definition 2.6. Let $U = \{c_1, c_2, ..., c_m\}$ be the universal set and E be the set of parameters given by $E = \{e_1, e_2, ..., e_n\}$. Let $A \subseteq E$. A pair (F, A) be a fuzzy neutrosophic soft set. Then fuzzy neutrosophic soft set (F, A) in a matrix form as $A_{m \times n} = (a_{ij})_{m \times n}$ or $A = (a_{ij}), i = 1, 2, ..., m, j = 1, 2, ..., n$ where

$$
(a_{ij}) = \begin{cases} \langle T(c_i, e_j), I(c_i, e_j), F(c_i, e_j) \rangle & \text{if } e_j \in A \\
\langle 0, 0, 1 \rangle & \text{if } e_j \notin A
\end{cases}
$$

where $T(c_i)$ represent the membership of c_i, $I(c_i)$ represent the indeterminacy of c_i and $F(c_i)$ represent the non-membership of c_i in the FNSS (F, A). If we replace the identity element $\langle 0, 0, 1 \rangle$ by $\langle 0, 1, 1 \rangle$ in the above form we get FNSM of type-II.

FNSM of Type-I[14]

Let $N_{m \times n}$ denotes FNSM of order $m \times n$ and N_n denotes FNSM of order $n \times n$.

Definition 2.7. Let $A = (\langle a_{ij}^T, a_{ij}^I, a_{ij}^F \rangle), B = (\langle b_{ij}^T, b_{ij}^I, b_{ij}^F \rangle) \in N_{m \times n}$ the component-wise addition and componentwise multiplication is defined as

$$
A \oplus B = (\sup \{a_{ij}^T, b_{ij}^T\}, \sup \{a_{ij}^I, b_{ij}^I\}, \inf \{a_{ij}^F, b_{ij}^F\}).
$$

$$
A \odot B = (\inf \{a_{ij}^T, b_{ij}^T\}, \inf \{a_{ij}^I, b_{ij}^I\}, \sup \{a_{ij}^F, b_{ij}^F\}).
$$

Definition 2.8. Let $A \in N_{m \times n}, B \in N_{n \times p}$, the composition of A and B is defined as

$$
A \circ B = \left(\sum_{k=1}^{n} (a_{ik}^T \land b_{kj}^T), \sum_{k=1}^{n} (a_{ik}^I \land b_{kj}^I), \prod_{k=1}^{n} (a_{ik}^F \lor b_{kj}^F) \right)
$$

equivalently we can write the same as

$$
A \circ B = \left(\bigvee_{k=1}^{n} (a_{ik}^T \land b_{kj}^T), \bigvee_{k=1}^{n} (a_{ik}^I \land b_{kj}^I), \bigwedge_{k=1}^{n} (a_{ik}^F \lor b_{kj}^F) \right)
$$

The product $A \circ B$ is defined if and only if the number of columns of A is same as the number of rows of B. A and B are said to be conformable for multiplication. We shall use AB instead of $A \circ B$.

FNSM of Type-II[14]

\[
\begin{bmatrix}
\langle T_{11}, I_{11}, F_{11} \rangle & \langle T_{12}, I_{12}, F_{12} \rangle & \cdots & \langle T_{1n}, I_{1n}, F_{1n} \rangle \\
\langle T_{21}, I_{21}, F_{21} \rangle & \langle T_{22}, I_{22}, F_{22} \rangle & \cdots & \langle T_{2n}, I_{2n}, F_{2n} \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle T_{m1}, I_{m1}, F_{m1} \rangle & \langle T_{m2}, I_{m2}, F_{m2} \rangle & \cdots & \langle T_{mn}, I_{mn}, F_{mn} \rangle
\end{bmatrix}_{m \times n}
\]

which is called an $m \times n$ FNSM of the FNSS (F_A, E) over U.\]
Definition 2.9. Let \(A = (\langle a^T_{ij}, a^I_{ij}, a^F_{ij} \rangle) \), \(B = (\langle b^T_{ij}, b^I_{ij}, b^F_{ij} \rangle) \) ∈ \(N_{m \times n} \), the component wise addition and component wise multiplication is defined as

\[
A \oplus B = (\langle \sup \{a^T_{ij}, b^T_{ij}\}, \inf \{a^I_{ij}, b^I_{ij}\}, \inf \{a^F_{ij}, b^F_{ij}\} \rangle).
\]

\[
A \odot B = (\langle \inf \{a^T_{ij}, b^T_{ij}\}, \sup \{a^I_{ij}, b^I_{ij}\}, \sup \{a^F_{ij}, b^F_{ij}\} \rangle).
\]

Analogous to FNSM of type-I, we can define FNSM of type-II in the following way

Definition 2.10. Let \(A = (\langle a^T_{ij}, a^I_{ij}, a^F_{ij} \rangle) = (a_{ij}) \) ∈ \(N_{m \times n} \) and \(B = (\langle b^T_{ij}, b^I_{ij}, b^F_{ij} \rangle) = (b_{ij}) \) ∈ \(F_{n \times p} \) the product of \(A \) and \(B \) is defined as

\[
A \ast B = \left(\sum_{k=1}^{n} \langle a^T_{ik} \wedge b^T_{kj} \rangle, \prod_{k=1}^{n} \langle a^I_{ik} \vee b^I_{kj} \rangle, \prod_{k=1}^{n} \langle a^F_{ik} \vee b^F_{kj} \rangle \right)
\]

equivalently we can write the same as

\[
= \left(\bigvee_{k=1}^{n} \langle a^T_{ik} \wedge b^T_{kj} \rangle, \bigwedge_{k=1}^{n} \langle a^I_{ik} \vee b^I_{kj} \rangle, \bigwedge_{k=1}^{n} \langle a^F_{ik} \vee b^F_{kj} \rangle \right).
\]

the product \(A \ast B \) is defined if and only if the number of columns of \(A \) is same as the number of rows of \(B \). \(A \) and \(B \) are said to be conformable for multiplication.

3 Main results

Definition 3.1. \(A \in N_{m \times n} \) is said to be regular if there exists \(X \in N_{n \times m} \) such that

\[
AXA = A.
\]

Definition 3.2. If \(A \) and \(X \) are two FNSM of order \(m \times n \) satisfies the relation

\[
AXA = A,
\]

then \(X \) is called a generalized inverse (g-inverse) of \(A \) which is denoted by \(A^{-} \). The g-inverse of an FNSM is not necessarily unique. We denote the set of all g-inverse by \(A \{1\} \).

Definition 3.3. Any element \(\hat{x} \in \Omega_1(A,b) \) is called a maximal solution if for all \(x \in \Omega_1(A,b) \), \(x \geq \hat{x} \) implies \(x = \hat{x} \). That is elements \(x, \hat{x} \) are component wise equal.

Definition 3.4. Any element \(\check{x} \in \Omega_1(A,b) \) is called a minimal solution if for all \(x \in \Omega_1(A,b) \), \(x \leq \check{x} \) implies \(x = \check{x} \). That is elements \(x, \check{x} \) are component wise equal.

Lemma 3.5. Let \(xA = b \) as defined in eqn (1). If \(\langle \max_j a^T_{jk}, \max_j a^I_{jk}, \min_j a^F_{jk} \rangle < \langle b^T_{1k}, b^I_{1k}, b^F_{1k} \rangle \) for some \(k \in I_n \), then \(\Omega_1(A,b) = \phi \).
Therefore, no values of x satisfy the equation $x A = b$. Hence $\Omega(A, b) = \emptyset$.

Theorem 3.6. For the equation $x A = b$, $\Omega_1(A, b) \neq \emptyset$ if and only if $x = [\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle | j \in I_m]$ defined as $\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle = \{\min\sigma(a^T_{jk}, b^I_{1k}), \min\sigma(a^T_{jk}, b^I_{1k}), \max\sigma''(a^F_{jk}, b^F_{1k})\}$, where

$$
\sigma(a^T_{jk}, b^I_{1k}) = \begin{cases}
 b^T_{1k} & \text{if } a^T_{jk} > b^T_{1k} \\
 1 & \text{otherwise}
\end{cases}
$$

$$
\sigma'(a^T_{jk}, b^I_{1k}) = \begin{cases}
 b^I_{1k} & \text{if } a^T_{jk} > b^I_{1k} \\
 1 & \text{otherwise}
\end{cases}
$$

$$
\sigma''(a^F_{jk}, b^F_{1k}) = \begin{cases}
 b^F_{1k} & \text{if } a^F_{jk} < b^F_{1k} \\
 0 & \text{otherwise}
\end{cases}
$$

is the maximum solution of $x A = b$

Proof: If $\Omega_1(A, b) \neq \emptyset$, then \hat{x} is a solution of $x A = b$. For if \hat{x} is not a solution, then $\hat{x} A \neq b$ and therefore

$$
\max \min \{\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle | j \in I_m \} \neq \{b^T_{1k}, b^I_{1k}, b^F_{1k}\} \text{ for atleast one } k_0 \in I_n. \text{ By the Definition of } \langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle = \{b^T_{1k}, b^I_{1k}, b^F_{1k}\} \text{ for each } k \text{ and so}
$$

$$
\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle \leq \{b^T_{1k}, b^I_{1k}, b^F_{1k}\}.
$$

Therefore,

$$
\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle \langle a^T_{jk}, a^I_{jk}, a^F_{jk} \rangle < \{b^T_{1k}, b^I_{1k}, b^F_{1k}\}
$$

$$
\langle \max a^T_{jk}, \max a^I_{jk}, \min a^F_{jk} \rangle < \{b^T_{1k}, b^I_{1k}, b^F_{1k}\} \text{ for some } k_0 \text{ by our assumption.}
$$

Hence by Lemma 3.5 $\Omega_1(A, b) = \emptyset$ which is a contradiction. Hence \hat{x} is a solution. Let us prove that \hat{x} is the maximum one. If possible let us assume that \hat{y} is another solution such that $\hat{y} \geq \hat{x}$ that is

$$
\langle y^T_{1j}, y^I_{1j}, y^I_{1j} \rangle > \langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle \text{ for atleast one } j_0.
$$

Therefore, by the definition of $\langle x^T_{1j}, x^I_{1j}, x^T_{1j} \rangle$,

$$
\langle y^T_{1j}, y^I_{1j}, y^I_{1j} \rangle > \{\min\sigma(a^T_{jk_0}, b^I_{1k}), \min\sigma(a^T_{jk_0}, b^I_{1k}), \max\sigma''(a^F_{jk_0}, b^F_{1k})\}
$$

Since $\Omega_1(A, b) \neq \emptyset$, by the Lemma 3.5 $\langle \max a^T_{jk_0}, \max a^I_{jk_0}, \min a^F_{jk_0} \rangle \geq \{b^T_{1k_0}, b^I_{1k_0}, b^F_{1k_0}\} \text{ for each } k_0$.

Hence $\langle b^T_{1k_0}, b^I_{1k_0}, b^F_{1k_0} \rangle \neq \langle \max a^T_{jk_0}, \max a^I_{jk_0}, \min a^F_{jk_0} \rangle$ which is a contradiction to our assumption that $y \in \Omega_1(A, b)$.
Therefore \(\hat{x} \) is the maximum solution.
The converse part is trivial.
If the relational equation is the form \(Ax = b \)....(2)
where \(A \) is an fuzzy neutrosophic soft matrix of order \(m \times n \),
\(x = (\langle x_{11}, x_{11}, x_{11} \rangle, ..., \langle x_{1n}, x_{1n}, x_{1n} \rangle)^T, b = (\langle b_{11}, b_{11}, b_{11} \rangle, ..., \langle b_{1m}, b_{1m}, b_{1m} \rangle)^T \) we can
prove the following Lemma and Theorem in similar fashion. Let \(\Omega_2(A, b) \) be the set
all solution of the relational equation \(Ax = b \).

Definition 3.7. Any element \(\hat{x} \in \Omega_2(A, b) \) is called a maximal solution if for all
\(x \in \Omega_2(A, b), x \geq \hat{x} \) implies \(x = \hat{x} \). That is elements \(x, \hat{x} \) are component wise equal.

Definition 3.8. Any element \(\hat{x} \in \Omega_2(A, b) \) is called a minimal solution if for all
\(x \in \Omega_2(A, b), x \leq \hat{x} \) implies \(x = \hat{x} \). That is elements \(x, \hat{x} \) are component wise equal.

Lemma 3.9. Let \(Ax = b \) as defined in (2).
If \(\langle \max a_{ki}^T, \max a_{ki}^T, \min a_{ki}^T \rangle < \langle b_{k1}^T, b_{k1}^T, b_{k1}^T \rangle \) for some \(k \in I_m \), then \(\Omega_2(A, b) = \phi \).

Theorem 3.10. For the equation \(Ax = b, \Omega_2(A, b) \neq \phi \) if only if
\(\hat{x} = [(\hat{x}^T_{j1}, \hat{x}^F_{j1}, \hat{x}^F_{j1})]j \in I_n \) defined as
\(\langle \hat{x}^T_{j1}, \hat{x}^F_{j1}, \hat{x}^F_{j1} \rangle = (\min \sigma(a_{ki}^T, b_{k1}^T), \min \sigma(a_{ki}^T, b_{k1}^T), \max \sigma''(a_{ki}^F, b_{k1}^F)) \).
where
\[
\sigma(a_{ki}^T, b_{k1}^T) = \begin{cases}
 b_{k1}^T & \text{if } a_{ki}^T > b_{k1}^T \\
 1 & \text{otherwise}
\end{cases}
\]
\[
\sigma'(a_{ki}^T, b_{k1}^T) = \begin{cases}
 b_{k1}^T & \text{if } a_{ki}^T > b_{k1}^T \\
 1 & \text{otherwise}
\end{cases}
\]
\[
\sigma''(a_{ki}^F, b_{k1}^F) = \begin{cases}
 b_{ik}^F & \text{if } a_{ki}^F < b_{k1}^F \\
 0 & \text{otherwise}
\end{cases}
\]
is the maximum solution of \(Ax = b \).

Example 3.11. Let \(A = \begin{bmatrix} 0.5 & 0.6 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}, \begin{bmatrix} 0.7, 0.5, 0.1 \\ 0.6, 0.4, 0 \end{bmatrix} \) and \(b = \begin{bmatrix} 0.2, 0.3, 0.5 \\ 0.5, 0.3, 0.1 \end{bmatrix} \)
then we can find \(\hat{x} = [(\hat{x}^T_{11}, \hat{x}^F_{11}, \hat{x}^F_{11}), (\hat{x}^T_{12}, \hat{x}^F_{12}, \hat{x}^F_{12})] \) in \(xA = b \)
\[\langle \hat{x}_{11}^T, \hat{x}_{11}^t, \hat{x}_{11}^\ell \rangle = \langle \min_k \sigma(a_{1k}^T, b_{1k}^T), \min_k \sigma'(a_{1k}^t, b_{1k}^t), \max_k \sigma''(a_{1k}^\ell, b_{1k}^\ell) \rangle \\
= \langle \min_k (0.2, 0.5), \min_k (0.3, 0.3), \max_k (0.5, 0) \rangle \\
= \langle 0.2, 0.3, 0.5 \rangle \\
\langle \hat{x}_{12}^T, \hat{x}_{12}^t, \hat{x}_{12}^\ell \rangle = \langle \min_k \sigma(a_{2k}^T, b_{1k}^T), \min_k \sigma'(a_{2k}^t, b_{1k}^t), \max_k \sigma''(a_{2k}^\ell, b_{1k}^\ell) \rangle \\
= \langle \min_k (1, 0.5), \min_k (1, 0.3), \max_k (0, 0.1) \rangle \\
= \langle 0.5, 0.3, 0.1 \rangle \]

Then clearly
\[(0.2, 0.3, 0.5) \langle 0.5, 0.3, 0.1 \rangle = (0.2, 0.3, 0.5) \langle 0.5, 0.3, 0.1 \rangle \]

To get the minimal solution \(\hat{x} \) of \(xA = b \) we follow the procedure as followed for fuzzy neutrosophic soft matrix equation.

Step.1 Determine the sets \(J_k(\hat{x}) = \{ j \in I_m | min((\hat{x}_{1j}^T, \hat{x}_{1j}^t, \hat{x}_{1j}^\ell), (a_{1k}^T, a_{1k}^t, a_{1k}^\ell)) = b_{1k}^T \} \) for all \(k \in I_n \). Construct their cartesian product \(J(\hat{x}) = J_1(\hat{x}) \times J_2(\hat{x}) \times \cdots \times J_n(\hat{x}) \).

Step.2 Denote the elements of \(J(\hat{x}) \), by \(\beta = [\beta_k/k \in I_n] \). For each \(\beta \in J(\hat{x}) \) and each \(j \in I_m \), determine the set \(k(\beta, j) = \{ k \in I_m | \beta_k = j \} \).

Step.3 For each \(\beta \in J(\hat{x}) \) generate the n-tuple \(g(\beta) = g_j(\beta) | j \in I_m \),
where
\[g_j(\beta) = \begin{cases}
\max_{k(\beta, j)} (b_{1k}^T, b_{1k}^t, b_{1k}^\ell) & \text{if } k(\beta, j) \neq 0 \\
\langle 0, 0, 1 \rangle & \text{otherwise}
\end{cases} \]

Step.4 From all the m-tuples \(g(\beta) \) generated in step.3, select only the minimal one by pairwise comparison. The resulting set of n-tuples is the minimal solution of the reduced form of equation \(xA = b \).

Example 3.12. Let us find the minimal solution to the linear equation given in Example 3.11 using the maximal solution \(\hat{x} \)

Step 1. To determine \(J_k(\hat{x}) \) for \(k = 1, 2 \).
\[J_1(\hat{x}) = \{ j = 1, 2 | \min(\langle x_{1j}, x_{1j}, x_{1j}^T, a_{1j}^T, a_{1j}^F \rangle) = \langle b_{1k}^T, b_{1k}^I, b_{1k}^F \rangle \} = \{ \min\{\langle 0.2, 0.3, 0.5 \rangle, \langle 0.5, 0.6, 0.2 \rangle \}, \min\{\langle 0.5, 0.3, 0.1 \rangle, \langle 0.2, 0.3, 0.5 \rangle \} \} = \langle 0.2, 0.3, 0.5 \rangle = \{1, 2\} \]
\[J_2(\hat{x}) = \{ \min\{\langle 0.2, 0.3, 0.5 \rangle, \langle 0.7, 0.5, 0.1 \rangle \}, \min\{\langle 0.5, 0.3, 0.1 \rangle, \langle 0.6, 0.4, 0 \rangle \} \} = \{0.5, 0.3, 0.1\} \]
\[= \{2\} \]

Therefore \(J_k(\hat{x}) = J_1(\hat{x}) \times J_2(\hat{x}) = \{1, 2\} \times \{2\} = \{(1, 2, (2, 2))\} = \beta \)

Step 2: To determine the sets \(K(\beta, j) \) for each \(\beta = J_k(\hat{x}) \) and for each \(j = 1, 2 \).

For \(\beta = (1, 2) \)
\[K(\beta, 1) = \{ k = 1, 2 | \beta _k = 1 \} = \{1\} \]
\[K(\beta, 2) = \{ k = 1, 2 | \beta _k = 2 \} = \{2\} \]

For \(\beta = (2, 2) \)
\[K(\beta, 1) = \{ k = 1, 2 | \beta _k = 1 \} = \{\emptyset\} \]
\[K(\beta, 2) = \{ k = 1, 2 | \beta _k = 2 \} = \{1, 2\} \]

Thus the sets \(K(\beta, j) \) for each \(\beta \in J(\hat{x}) \) and \(j = 1, 2 \) are listed in the following table.

<table>
<thead>
<tr>
<th>(K(\beta, j))</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2)</td>
<td>{1}</td>
<td>{2}</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>{\emptyset}</td>
<td>{1, 2}</td>
</tr>
</tbody>
</table>

Step 3: For each \(\beta \in J(\hat{x}) \) we generate the tuples \(g(\beta) \)

For \(\beta = (1, 2) \)
\[g_1(\beta) = \max_{k \in K(\beta, 1)} \langle 0.2, 0.3, 0.5 \rangle \quad \text{if } k(\beta, 1) \neq \emptyset \]
\[= \langle 0.2, 0.3, 0.5 \rangle \]
\[g_2(\beta) = \langle 0.5, 0.3, 0.1 \rangle \]

For \(\beta = (2, 2) \)
\[g_1(\beta) = \langle 0.0, 1 \rangle \]
\[g_2(\beta) = \langle 0.5, 0.3, 0.1 \rangle \]

Therefore we can get the following table for \(\beta \)

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(g(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2)</td>
<td>{0.2, 0.3, 0.5}, {0.5, 0.3, 0.1}</td>
</tr>
<tr>
<td>(2, 2)</td>
<td>{0.0, 1}, {0.5, 0.3, 0.1}</td>
</tr>
</tbody>
</table>

Out of which \(\{0.0, 1\}, \{0.5, 0.3, 0.1\} \) is the minimal one. And also it satisfy \(xA = b \) that is \(\hat{x} = \{(0.0, 1), (0.5, 0.3, 0.1)\} \)
Using the same method we have followed, one can find the g-inverse of a fuzzy neutrosophic soft matrix if it exists.

Example 3.13. Let \(A = \begin{bmatrix} (1,1,0) & (1,1,0) \\ (1,1,0) & (0,0,1) \end{bmatrix} \). To find the g-inverse, set \(AXA = A \) and \(AX = B \) so that \(BA = A \), where

\[
X = \begin{bmatrix} \langle x_{11}^T, x_{11}^F, x_{11}^N \rangle & \langle x_{12}^T, x_{12}^F, x_{12}^N \rangle \\ \langle x_{21}^T, x_{21}^F, x_{21}^N \rangle & \langle x_{22}^T, x_{22}^F, x_{22}^N \rangle \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} \langle b_{11}^T, b_{11}^F, b_{11}^N \rangle & \langle b_{12}^T, b_{12}^F, b_{12}^N \rangle \\ \langle b_{21}^T, b_{21}^F, b_{21}^N \rangle & \langle b_{22}^T, b_{22}^F, b_{22}^N \rangle \end{bmatrix}.
\]

To find \(B \) and \(X \):

\[
\langle b_{11}^T, b_{11}^F, b_{11}^N \rangle = \langle 1,1,0 \rangle, \quad \langle b_{12}^T, b_{12}^F, b_{12}^N \rangle = \langle 1,1,0 \rangle = \langle 0,0,1 \rangle,
\]

\[
\langle b_{12}^T, b_{12}^F, b_{12}^N \rangle = \langle (1,1,0), (1,1,0) \rangle = \langle (1,1,0), (0,0,1) \rangle,
\]

\[
\langle b_{11}^T, b_{11}^F, b_{11}^N \rangle = \langle 1,1,0 \rangle,
\]

\[
\langle b_{12}^T, b_{12}^F, b_{12}^N \rangle = \langle 1,1,0 \rangle,
\]

\[
\langle b_{11}^T, b_{11}^F, b_{11}^N \rangle = \langle 0,0,1 \rangle,
\]

\[
\langle b_{12}^T, b_{12}^F, b_{12}^N \rangle = \langle 1,1,0 \rangle.
\]

Therefore \(\hat{B} = \begin{bmatrix} (1,1,0) & (1,1,0) \\ (0,0,1) & (1,1,0) \end{bmatrix} \), which satisfy \(BA = A \).

The \(AX = B \) becomes

\[
\begin{bmatrix} (1,1,0) & (1,1,0) \\ (0,0,1) & (1,1,0) \end{bmatrix} = \begin{bmatrix} (1,1,0) & (1,1,0) \\ (0,0,1) & (1,1,0) \end{bmatrix},
\]

\[
\langle x_{11}^T, x_{11}^F, x_{11}^N \rangle = \langle \min(\sigma_{k1}, b_{k1}), \min(\sigma_{k1}, b_{k1}), \max(\sigma_{k1}, b_{k1}) \rangle = \langle 0,0,1 \rangle,
\]

\[
\langle x_{12}^T, x_{12}^F, x_{12}^N \rangle = \langle \min(\sigma_{k2}, b_{k2}), \min(\sigma_{k2}, b_{k2}), \max(\sigma_{k2}, b_{k2}) \rangle = \langle 1,1,0 \rangle,
\]

\[
\langle x_{21}^T, x_{21}^F, x_{21}^N \rangle = \langle \min(\sigma_{k1}, b_{k1}), \min(\sigma_{k1}, b_{k1}), \max(\sigma_{k1}, b_{k1}) \rangle = \langle 1,1,0 \rangle,
\]

\[
\langle x_{22}^T, x_{22}^F, x_{22}^N \rangle = \langle \min(\sigma_{k2}, b_{k2}), \min(\sigma_{k2}, b_{k2}), \max(\sigma_{k2}, b_{k2}) \rangle = \langle 1,1,0 \rangle.
\]

Therefore \(\hat{X} = \begin{bmatrix} (0,0,1) & (1,1,0) \\ (1,1,0) & (1,1,0) \end{bmatrix} \). Clearly \(A\hat{X}A = A \).

Hence \(\hat{X} \) is the maximum g-inverse of \(A\hat{X}A = A \).

To get the minimal solution: Let us find the minimum \(\hat{B} \) from \(BA = A \) and using the minimum \(\hat{B} \) in \(AX = B \) we can find the minimum \(\hat{X} \).

Consider \(\begin{bmatrix} (1,1,0) & (1,1,0) \\ (0,0,1) & (1,1,0) \end{bmatrix} = \begin{bmatrix} (1,1,0) & (1,1,0) \\ (1,1,0) & (0,0,1) \end{bmatrix} \).

Step 1. Determine the set \(J_{ij}(B) \).
\[J_{11}(\hat{B}) = \{ \min\{(1, 1, 0), (1, 1, 0)\}, \min\{(1, 1, 0), (1, 1, 0)\} \} = \langle 1, 1, 0 \rangle \]
\[J_{12}(\hat{B}) = \{ \min\{(1, 1, 0), (1, 1, 0)\}, \min\{(1, 1, 0), (0, 0, 1)\} \} = \langle 1, 1, 0 \rangle \]
\[J_{21}(\hat{B}) = \{ \min\{(0, 0, 1), (1, 1, 0)\}, \min\{(1, 1, 0), (1, 1, 0)\} \} = \langle 1, 1, 0 \rangle \]
\[J_{22}(\hat{B}) = \{ \min\{(0, 0, 1), (1, 1, 0)\}, \min\{(1, 1, 0), (0, 0, 1)\} \} = \langle 0, 0, 1 \rangle \]
\[
\begin{align*}
\text{Let } \beta_1 &= J_{11}(\hat{B}) \times J_{12}(\hat{B}) = \{1, 2\} \times \{1\} = \{(1, 2), (2, 1)\} \\
\beta_2 &= J_{21}(\hat{B}) \times J_{22}(\hat{B}) = \{2\} \times \{1, 2\} = \{(2, 1), (2, 2)\} \\
\text{Step 2. Determine the set } K(\beta_k, j) \text{ for } k = 1, 2 \text{ and } j = 1, 2
\end{align*}
\]
For \(\beta_1 = (1, 1) \)
\[K(\beta_1, 1) = \{1, 2\} \]
\[K(\beta_1, 2) = \{\phi\} \]
For \(\beta_1 = (2, 1) \)
\[K(\beta_1, 1) = \{2\} \]
\[K(\beta_1, 2) = \{1\} \]
For \(\beta_2 = (2, 1) \)
\[K(\beta_2, 1) = \{\phi\} \]
\[K(\beta_2, 2) = \{1, 2\} \]
Writing the values in tabular form we get

<table>
<thead>
<tr>
<th>((\beta_1, j))</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1))</td>
<td>{1, 2}</td>
<td>(\phi)</td>
</tr>
<tr>
<td>((2, 1))</td>
<td>{2}</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((\beta_2, j))</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2, 1))</td>
<td>{2}</td>
<td>{1}</td>
</tr>
<tr>
<td>((2, 2))</td>
<td>(\phi)</td>
<td>{1, 2}</td>
</tr>
</tbody>
</table>

\text{Step 3. For each } \beta_k \text{ let us generate the } g(\beta_k) \text{ tuples}

For \(\beta_1 = (1, 1) \)
\[g_1(\beta_1) = (1, 1) \]
\[g_1(\beta_1) = \max_{k \in K(\beta_1)} \{ \langle 1, 1, 0 \rangle, \langle 1, 1, 0 \rangle \} = \langle 1, 1, 0 \rangle \]
\[g_2(\beta_1) = \langle 0, 0, 1 \rangle \]
For \(\beta_1 = (2, 1) \)
\(g_1(\beta_1) = (1, 1, 0) \)
\(g_2(\beta_1) = (1, 1, 0) \)

For \(g_1(\beta_1) = (2, 1) \)
\(g_1(\beta_1) = (1, 1, 0) \)
\(g_2(\beta_1) = (1, 1, 0) \)

For \(g_1(\beta_1) = (2, 2) \)
\(g_1(\beta_2) = (0, 0, 1) \)
\(g_2(\beta_2) = \max\{(1, 1, 0), (0, 0, 1)\} = (1, 1, 0) \)

The corresponding tabular forms are given by

<table>
<thead>
<tr>
<th>((\beta_1, j))</th>
<th>(g(\beta_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1))</td>
<td>((1, 1, 0), (0, 0, 1))</td>
</tr>
<tr>
<td>((2, 1))</td>
<td>((1, 1, 0), (1, 1, 0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((\beta_2, j))</th>
<th>(g(\beta_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2, 1))</td>
<td>((0, 0, 1), (1, 1, 0))</td>
</tr>
<tr>
<td>((2, 1))</td>
<td>((0, 0, 1), (1, 1, 0))</td>
</tr>
</tbody>
</table>

By pairwise comparison we can find out the minimum in each of the above table, we get
\(\hat{B} = \begin{bmatrix} (1, 1, 0) & (0, 0, 1) \\ (0, 0, 1) & (1, 1, 0) \end{bmatrix} \)

Using the minimum \(\hat{B} \) in \(AX = B \) we can find the minimum \(\hat{X} \)
Now \(AX = \hat{B} \) is
\(\begin{bmatrix} (1, 1, 0) & (1, 1, 0) \\ (1, 1, 0) & (0, 0, 1) \end{bmatrix} \begin{bmatrix} (0, 0, 1) & (1, 1, 0) \\ (1, 1, 0) & (1, 1, 0) \end{bmatrix} = \begin{bmatrix} (1, 1, 0) & (0, 0, 1) \\ (0, 0, 1) & (1, 1, 0) \end{bmatrix} \)

Step. 4 Determine the set \(J_{ij}(\hat{B}) \)
\[
J_{11}(\hat{X}) = \{ \min\{(1, 1, 0), (0, 0, 1)\}, \min\{(1, 1, 0), (1, 1, 0)\} \} = (1, 1, 0) \\
= \{ (0, 0, 1)(1, 1, 0) \} = \{2\}
\]
\[
J_{12}(\hat{X}) = \{ \min\{(1, 1, 0), (1, 1, 0)\}, \min\{(1, 1, 0), (1, 1, 0)\} \} = (0, 0, 1) \\
= \{ (1, 1, 0)(1, 1, 0) \} = \{\phi\}
\]
\[
J_{21}(\hat{X}) = \{ \min\{(1, 1, 0), (0, 0, 1)\}, \min\{(0, 0, 1), (1, 1, 0)\} \} = (0, 0, 1) \\
= \{ (0, 0, 1)(0, 0, 1) \} = \{1, 2\}
\]
\[
J_{22}(\hat{X}) = \{ \min\{(1, 1, 0), (1, 1, 0)\}, \min\{(0, 0, 1), (1, 1, 0)\} \} = (1, 1, 0) \\
= \{ (1, 1, 0)(0, 0, 1) \} = \{1\}
\]

Let \(\beta_1 = J_{11}\hat{B} \times J_{12}\hat{B} = \{2\} \times \phi \)
\[\beta_2 = J_21 \hat{B} \times J_22 \hat{B} = \{1, 2\} \times \{1\} = \{(1, 1)(2, 1)\} \]

Step 5. Determine the set \(K(\beta_k, j) \) for \(k=1,2 \) and \(j=1,2 \)

For \(\beta_1 = \{2\} \) \(K(\beta_1, 1) = \emptyset \)

\(K(\beta_1, 2) = \{1\} \)

For \(\beta_2 = \{2, 1\} \) \(K(\beta_2, 1) = \{2\} \)

\(K(\beta_2, 2) = \{1\} \)

\[
\begin{array}{c|cc}
 k(\beta_1, j) & 1 & 2 \\
 \{2\} \times \phi & \emptyset & \{1\}
\end{array}
\]

\[
\begin{array}{c|cc}
 k(\beta_2, j) & \{1, 2\} & \emptyset \\
 \{1, 1\} & \{1, 2\} & \emptyset \\
 \{2, 1\} & \{2\} & \{1\}
\end{array}
\]

Step 6: For each \(\beta_k \) Let as generate the \(g(\beta_k) \) tuples.

For \(\beta_1 = \{2\} \times \phi \)

\[g_1(\beta_1) = \langle 0, 0, 1 \rangle \]

\[g_2(\beta_2) = \langle 1, 1, 0 \rangle \]

For \(\beta_2 = \{1, 1\} \)

\[g_1(\beta_2) = \langle 1, 1, 0 \rangle \]

\[g_2(\beta_2) = \langle 0, 0, 1 \rangle \]

For \(\beta_2 = \{2, 1\} \)

\[g_1(\beta_2) = \langle 1, 1, 0 \rangle \]

\[g_2(\beta_2) = \langle 0, 0, 1 \rangle \]

The corresponding tabular forms are given by

\[
\begin{array}{c|c}
 \beta_1 & g(\beta_1) \\
 \{2\} \times \phi & \langle 0, 0, 1 \rangle, \langle 1, 1, 0 \rangle \\
\end{array}
\]

\[
\begin{array}{c|c}
 \beta_2 & g(\beta_2) \\
 \{1, 1\} & \langle 1, 1, 0 \rangle, \langle 0, 0, 1 \rangle \\
 \{2, 1\} & \langle 1, 1, 0 \rangle, \langle 0, 0, 1 \rangle \\
\end{array}
\]

To get the \(\tilde{X} \) select a minimum row from each table, that is

\[\tilde{X} = \begin{bmatrix}
 \langle 0, 0, 1 \rangle & \langle 1, 1, 0 \rangle \\
 \langle 1, 1, 0 \rangle & \langle 0, 0, 1 \rangle \\
\end{bmatrix} \]

Clearly this \(\tilde{X} \) will satisfy \(AXA = A \) and we observe that

\[
[\tilde{X}, \tilde{X}] = \left\{ \left[\begin{array}{c}
 \langle 0, 0, 1 \rangle \\
 \langle 1, 1, 0 \rangle \\
\end{array} \right] \left[\begin{array}{c}
 \langle 1, 1, 0 \rangle \\
 \langle \alpha, \alpha', \alpha'' \rangle \\
\end{array} \right] \big| 0 \leq \alpha \leq 1, 0 \leq \alpha' \leq 1 \text{ and } 0 \leq \alpha'' \leq 1 \text{ with } \alpha + \alpha' + \alpha'' \leq 3 \right\} \]

is the set of all \(g \)-inverse in \([\tilde{X}, \tilde{X}]\).
Conclusion: The maximum and minimum solution of the relational equation $xA = b$ and $Ax = b$ has been obtained. Using this relational equation maximum and minimum g-inverse of a fuzzy neutrosophic soft matrix are also found.

References

