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Abstract: Games are considered to be the most attractive and healthy event between nations
and peoples. Soft expert sets are helpful for capturing uncertain and vague information.
By contrast, neutrosophic set is a tri-component logic set, thus it can deal with uncertain,
indeterminate, and incompatible information where the indeterminacy is quantified explicitly and
truth membership, indeterminacy membership, and falsity membership independent of each other.
Subsequently, we develop a combined approach and extend this concept further to introduce the
notion of the neutrosophic cubic soft expert sets (NCSESs) by using the concept of neutrosophic
cubic soft sets, which is a powerful tool for handling uncertain information in many problems and
especially in games. Then we define and analyze the properties of internal neutrosophic cubic
soft expert sets (INCSESs) and external neutrosophic cubic soft expert sets (ENCSESs), P-order,
P-union, P-intersection, P-AND, P-OR and R-order, R-union, R-intersection, R-AND, and R-OR of
NCSESs. The NCSESs satisfy the laws of commutativity, associativity, De Morgan, distributivity,
idempotentency, and absorption. We derive some conditions for P-union and P-intersection of two
INCSESs to be an INCSES. It is shown that P-union and P-intersection of ENCSESs need not be an
ENCSES. The R-union and R-intersection of the INCSESs (resp., ENCSESs) need not be an INCSES
(resp. ENCSES). Necessary conditions for the P-union, R-union and R-intersection of two ENCSESs
to be an ENCSES are obtained. We also study the conditions for R-intersection and P-intersection
of two NCSESs to be an INCSES and ENCSES. Finally, for its applications in games, we use the
developed procedure to analyze the cricket series between Pakistan and India. It is shown that the
proposed method is suitable to be used for decision-making, and as good as or better when compared
to existing models.

Keywords: neutrosophic sets; cubic sets; soft sets; neutrosophic cubic soft sets; neutrosophic cubic
soft expert system; multicriteria decision-making

1. Introduction

Researchers always try to discover methods to handle imprecise and vague information, which is
not possible using classical set theory. In this regard, Zadeh gave the concept of fuzzy set [1], to cope
with uncertainty. However, fuzzy sets were considered imperfect since it is not always easy to give
an exact degree of membership to any element. To overcome this problem, the interval-valued fuzzy
set was proposed by Turksen [2]. Atanassov [3] extended the notion of fuzzy sets to intuitionistic
fuzzy sets by introducing the non-membership of an element with its membership in a set X, which
were proven to be a better tool than fuzzy sets. Furthermore, the intuitionistic fuzzy sets are used
in many directions [4]. Smarandache gave the notion of neutrosophic sets as a generalization of
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intuitionistic fuzzy sets and fuzzy sets [5]. The idea of neutrosophic sets are further expanded
to different directions [6–9] by various researchers. Jun et al. [10] gave the idea of cubic set and
it was characterized by interval-valued fuzzy set and fuzzy set, which is a more general tool to
capture uncertainty and vagueness, since fuzzy set deals with single-value membership while
interval-valued fuzzy set ranges the membership in the form of intervals. The hybrid platform
provided by cubic set has the main advantage since it contains more information than a fuzzy set
and interval-valued fuzzy set. By using this concept, different problems arising in several areas can
be solved by choosing the finest choice by means of cubic sets as in the works of Abughazalah and
Yaqoob [11], Rashid et al. [12], Gulistan et al. [13], Ma et al. [14], Naveed at al. [15], Gulistan et al. [16],
Khan et al. [17,18], Yaqoob et al. [19], and Aslam et al. [20].

More recently, Jun et al. [21] gave the idea of neutrosophic cubic set and it was subsequently used
in many areas by Khan et al. [22] and Gulistan et al. [23,24].

On the other hand, Molodtsov [25] introduced the concept of soft sets that can be seen as a
new mathematical theory for dealing with uncertainty. It was applied to many different fields by
Maji et al. [26] who later defined fuzzy soft set theory and some properties of fuzzy soft sets [27].
Hybrids of soft sets were further developed [28–32].

Alkhazaleh and Salleh in 2011 defined the concept of soft expert set in which the user could
know the opinion of all the experts in one model and gave an application of this concept in the
decision-making problem [33]. Arokia et al. [34] studied fuzzy parameterizations for decision-making
in risk management systems via soft expert set. Arokia and Arockiarani [35] provided a fusion
of soft expert set and matrix models. Alkhazaleh and Salleh [36] extended the concept of soft
expert set in terms of fuzzy set and provided its application. Bashir and Salleh [37] provided the
concept of fuzzy parameterized soft expert set. Bashir et al. [38] discussed possibility fuzzy soft
expert set. Alhazaymeh et al. [39] provided the application of generalized vague soft expert set in
decision-making. Broumi and Smarandache [40] extended the soft expert sets in terms of intuitionistic
fuzzy sets. Abu Qamar and Hassan [41,42] presented the idea of Q-neutrosophic soft relation and
its entropy measures of distance and similarity. Sahin et al. [43] gave the idea of neutrosophic soft
expert sets while Uluçay et al. [44], introduced the concept of generalized neutrosophic soft expert set
for multiple-criteria decision-making. Neutrosophic vague soft expert set theory was put forward by
Al-Quran and Hassan [45] and developed it further to complex neutrosophic soft expert set [46,47].
Qayyum et al. [48] gave the idea of cubic soft expert sets for a more general approach. Ziemba and
Becker [49] presented analysis of the digital divide using fuzzy forecasting, which is a new approach
in decision-making.

Hence it is natural to extend the concept of expert sets to neutrosophic cubic soft expert sets for a
more generalized approach. The major contribution of this paper is the development of neutrosophic
cubic soft expert sets(NCSESs) by using the concept of neutrosophic cubic soft sets which generalizes
the concept of fuzzy soft expert sets, intuitionistic soft expert sets, and cubic soft expert sets. We define
and analyze the properties of internal neutrosophic cubic soft expert sets (INCSESs) and external
neutrosophic cubic soft expert sets (ENCSESs), P-order, P-union, P-intersection, P-AND, P-OR, and
R-order, R-union, R-intersection, R-AND, and R-OR of NCSESs. The NCSESs satisfy the laws of
commutativity, associativity, De Morgan, distributivity, idempotentency, and absorption. We derive
some conditions for P-union and P-intersection of two INCSESs to be an INCSES. It is shown that
P-union and P-intersection of ENCSESs need not be an ENCSES. The R-union and R-intersection of
the INCSESs (resp., ENCSESs) need not be an INCSES (resp. ENCSES). Necessary conditions for the
P-union, R-union, and R-intersection of two ENCSESs to be an ENCSES are obtained. We also study
the conditions for R-intersection and P-intersection of two NCSESs to be an INCSES and ENCSES.
This paper is organized as follows. Section 2 will be on preliminaries, while section 3 develops an
approach to neutrosophic cubic soft expert set. We focus on the basic operations, namely P-order,
R-order, P-containment, R-containment, P-union, P-intersection, R-union, R-intersection, complement,
P-AND, P-OR, R-AND, and R-OR of NCSESs. Section 4 will present more results on NCSESs, followed
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by Section 5 on application in analyzing a cricket series. A comparison analysis will be discussed in
Section 6 and a conclusion is drawn in Section 7.

2. Preliminaries

Here we recall some of the basic material from the literature to develop the new theory.
For simplicity, the symbol (FE

S , A) stands for the soft expert set, N stands for the neutrosophic set, IN

stands for the interval neutrosophic set and (NC) for the neutrosophic cubic sets.
In psychology, decision-making (also spelled decision-making) is regarded as the cognitive

process resulting in the selection of a belief or a course of action among several alternative possibilities.
Every decision-making process produces a final choice, which may or may not prompt action.
Decision-making is the process of identifying and choosing alternatives based on the values,
preferences, and beliefs of the decision-maker. Experts set is a technique used in decision-making
problems, which is further extended to generalized forms, such as fuzzy experts set, intuitionistic
fuzzy expert set, cubic expert sets, neutrosophic expert set and other hybrids. We begin by stating the
definition of expert set.

Definition 1. [33] Let U be a universe, E be a set of parameters, and X be a set of experts. Let O = {0 =

disagree, 1 = agree} be a set of two valued opinion, Z = E× X×O and A ⊆ Z. A pair
(

FE
S , A

)
is called a soft

expert set over U, where FE
S is a mapping given by FE

S : A −→ P(U) where P(U) denotes the power set of U.

Definition 2. [33] Two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U,
(

FE
S , A

)
⊆
(
GE

S , B
)

if

HE
S (a) =

{
A ⊆ B

FE
S (a) ⊆ GE

S (a) for all a ∈ A

and
(

FE
S , A

)
=
(
GE

S , B
)

if and only if
(

FE
S , A

)
⊆
(
GE

S , B
)

as well as
(
GE

S , B
)
⊆
(

FE
S , A

)
.

Definition 3. [33] Let E be a set of parameters and X be a set of experts. The NOT set ÍZ of Z = E× X×O
is defined by

ÍZ =
{(

Íei, xi, ok
)

. Íei /∈ E, xj ∈ X and ok ∈ O ∀ i, j, k
}

Definition 4. [33] The complement of a soft expert set
(

FE
S , A

)
is denoted by

(
FE

S , A
)c

= (FEc
S , ÍA) where

FEc
S : ÍA −→ P(U) is a mapping given by FEc

S (a) = U − FE
S ( Ía), for all a ∈ ÍA.

Definition 5. [33] If Z = E× X× {1} in Definition 1 then
(

FE
S , A

)
is called agree soft expert set over U and

it is denoted by
(

FE
S , A

)
1 .

Definition 6. [33] If Z = E× X× {0} in Definition 1 then
(

FE
S , A

)
is called disagree soft expert set over U

and it is denoted by
(

FE
S , A

)
0

Definition 7. [33] The union of two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U denoted by
(

FE
S , A

)
∪(

GE
S , B

)
, is the soft expert set (HE

S , C) where C = A ∪ B, and for all a ∈ C,

HE
S (a) =


FE

S (a) if a ∈ A− B
GE

S (a) if a ∈ B− A
FE

S (a) ∪ GE
S (a) if a ∈ A ∩ B.

Definition 8. [33] The intersection of two soft expert sets
(

FE
S , A

)
and

(
GE

S , B
)

over U denoted by
(

FE
S , A

)
∩(

GE
S , B

)
, is the soft expert set (HE

S , C) where C = A ∩ B, and for all a ∈ C,
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HE
S (a) =


FE

S (a) if a ∈ A− B
GE

S (a) if a ∈ B− A
FE

S (a) ∩ GE
S (a) if a ∈ A ∩ B.

Definition 9. [33] If
(

FE
S , A

)
and

(
GE

S , B
)

are two soft expert sets over U then
(

FE
S , A

)
AND

(
GE

S , B
)

denoted
by
(

FE
S , A

)
∧ (GE

S , B), is defined by (
FE

S , A
)
∧ (GE

S , B) = (HE
S , A× B)

where HE
S (a, b) = FE

S (a) ∩ GE
S (b), for all (a, b) ∈ A× B.

Definition 10. [33] If
(

FE
S , A

)
and

(
GE

S , B
)

are two soft expert sets then
(

FE
S , A

)
OR(GE

S , B) denoted by(
FE

S , A
)
∨ (GE

S , B) is defined by (
FE

S , A
)
∨ (GE

S , B) = (HE
S , A× B)

where HE
S (a, b) = FE

S (a) ∪ GE
S (b), for all (a, b) ∈ A× B.

Definition 11. [5] A neutrosophic set in X is the structure of the form

N := {〈x, TN(x), IN(x), FN(x)〉 : x ∈ X}

where TN , IN , FN : X → [0, 1] such that 0 ≤ TN(x) + IN(x) + FN(x) ≤ 3.

Definition 12. [8] An interval neutrosophic set in X is the structure of the form

IN :=
{〈

x, TIN (x), IIN (x), FIN (x)
〉

: x ∈ X
}

where TN , IN , FN : X → D[0, 1] such that [0, 0] � TN(x) + IN(x) + FN(x) � [3, 3].

Definition 13. [21] A neutrosophic cubic set in X is a pair (NC) = (IN , N) where

IN := {〈x, TIN (x), IIN (x), FIN (x)〉 : x ∈ X}

is an interval neutrosophic set in X where TIN , IIN , FIN : X → D[0, 1] and

N := {〈x, TN(x), IN(x), FN(x)〉 : x ∈ X}

is a neutrosophic set in X where TN , IN , FN : X → [0, 1].

3. Neutrosophic Cubic Soft Expert Set

In this section, we develop an approach to neutrosophic cubic soft expert set which is a more
general approach for soft expert set theory. We focus on the basic operations namely, P-order, R-order,
P-containment, R-containment, P-union, P-intersection, R-union, R-intersection, complement, P-AND,
P-OR, R-AND, and R-OR of neutrosophic cubic soft expert sets. The symbol ((NC)E

S , E, X) stands for
the neutrosophic cubic soft expert set.

Definition 14. Let U be a finite set containing n alternatives, E be a set of criteria, X be a set of experts. A triplet
((NC)E

S , E, X) is called neutrosophic cubic soft expert set over U, if and only if (NC)E
S : E× X → NCP(U) is

a mapping into the set of all neutrosophic cubic set in U and defined as

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}
,
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where
IN
(e,x)(u) = {(u, T̃IN (u), ĨIN (u), F̃IN (u))}, N(e,x)(x) = {(u, TN(u), IN(u), FN(u)},

such that

[0, 0] � T̃IN (u) + ĨIN (u) + F̃IN (u) � [3, 3], 0 ≤ TN(u) + IN(u) + FN(u) ≤ 3.

Example 1. Let U = {u1 = India, u2 = Pakistan} be the set of countries playing a cricket series, E = {e1 =

playing conditions , e2 = historic record} be the set of factors affecting the series, X = {x1, x2, x3} be the set of
experts giving their expert opinion. Let E× X = {(e1, x1), (e1, x2), (e2, x1), (e2, x2)}. Then the neutrosophic
cubic soft expert set ((NC)E

S , E, X) is given by

(NC)E
S (e1, x1) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.1, 0.4, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.1, 0.4, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e1, x3) =

{
(u1, [0.5, 0.6] , [0.2, 0.3] , [0.1, 0.2] , 0.4, 0.3, 0.5) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

(NC)E
S (e2, x3) =

{
(u1, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,
(u2, [0.6, 0.9] , [0.6, 0.9] , [0.6, 0.9] , 0.9, 0.7, 0.6) ,

}

The function of the form (T̃IN (u), TN(u)) denotes the range of values where the experts are sure to give certain
membership to a certain element, ( ĨIN (u), IN(u)) denotes the range of values where the experts are hesitant
and (F̃IN (u), FN(u)) denotes the range of values where the experts are sure to give negative points to a certain
element as a non-membership. Thus, experts have a wide range of scale to make their conclusion as compared
to the previous defined versions of fuzzy sets. More specific in the current example is the function of the form
(T̃IN (u), TN(u)) which gives the expert opinion for the past performance of these two countries, ( ĨIN (u), IN(u))
gives the expert opinion for running series between these two countries and (F̃IN (u), FN(u)) gives the expert
opinion for the upcoming series between these two countries which is not to be held in the near future.

Definition 15. A neutrosophic cubic soft expert set

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}
over U is said to be:
(i) Internal truth neutrosophic cubic soft experts set (briefly, ITNCSESs) if for all u ∈ U, so that

T−IN (u) ≤ TN(u) ≤ T+
IN (u), ∀ u ∈ U.

(ii) Internal indeterminacy neutrosophic cubic soft experts set (briefly, I INCSESs) if for all u ∈ U, so that

I−IN (u) ≤ IN(u) ≤ I+IN (u), ∀ u ∈ U.

(iii) Internal falsity neutrosophic cubic soft experts set (briefly, IFNCSESs) if for all u ∈ U, so that

F−IN (u) ≤ FN(u) ≤ F+
IN (u), ∀u ∈ U.
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If a neutrosophic cubic soft expert set ((NC)E
S , E, X) in X, satisfies (i), (ii), (iii), then it is known as

internal neutrosophic cubic soft expert set in X, abbreviated as (INCSESs).

Example 2. Consider the Example 1. Then the internal neutrosophic cubic soft expert set is given by

(NC)E
S (e1, x1) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.5, 0.4, 0.3) ,
(u2, [0.6, 0.9] , [0.5, 0.9] , [0.6, 0.8] , 0.7, 0.6, 0.7) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.6, 0.3, 0.2) ,
(u2, [0.6, 0.9] , [0.7, 0.9] , [0.6, 0.8] , 0.7, 0.8, 0.7) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.7, 0.2, 0.3) ,
(u2, [0.5, 0.9] , [0.6, 0.8] , [0.4, 0.9] , 0.6, 0.7, 0.6) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.8] , [0.3, 0.9] , [0.6, 0.9] , 0.7, 0.7, 0.8) ,
(u2, [0.3, 0.9] , [0.7, 0.9] , [0.6, 0.8] , 0.6, 0.8, 0.7)

}

Remark 1. We can draw the following conclusion from Example 2;
(i) If the value of N(e,x)(u) lies in the interval IN

(e,x)(u), then it means that the respective team is going to
maintain its progress in different time frames.

(ii) If the panel of experts consists of the internal panel (meaning that the experts are from the same country
or same cricket board), then it is known as INCSESs.

Definition 16. A neutrosophic cubic soft expert set

((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}
over U is said to be:
(i) External truth neutrosophic cubic soft expert set (briefly, ETNCSESs) if for all u ∈ U, we have

TN(u) /∈ (T−IN (u), T+
IN (u)), ∀ u ∈ U

(ii) External indeterminacy neutrosophic cubic soft expert set (briefly, EINCSESs) if for all u ∈ U, we have

IN(x) /∈ (I−IN (x), I+IN (x)), ∀ u ∈ U

(iii) External falsity neutrosophic cubic soft expert set (briefly, EFNCSESs) if for all u ∈ U, we have

FN(x) /∈ (F−IN (x), F+
IN (x)), ∀ u ∈ U

If a neutrosophic cubic soft expert set ((NC)E
S , E, X) over U, satisfies (i), (ii), (iii), then it is known

as external neutrosophic cubic soft expert set in X, abbreviated as (ENCSESs).

Example 3. Let U be the set of countries playing a one-day international (ODI) triangular series provided in
Example 1, then the external neutrosophic cubic soft expert set is given by;
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(NC)E
S (e1, x1) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e2, x1) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(NC)E
S (e1, x2) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e2, x2) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

Remark 2. We can draw the following conclusion from Example 3;
(i) If the value of N(e,x)(u) does not lie in the interval IN

(e,x)(u), then it means the respective team is not
maintaining its progress in different time frames.

(ii) If the panel of experts consists of the external panel (meaning that the experts are not from the same
country or same cricket board), then it is known as ENCSESs.

Our next discussion is to define some basic operations on neutrosophic cubic soft expert sets to
get more insight of neutrosophic cubic soft expert sets.

Definition 17. A NCSESs
(
(NC)E

S1, E1, X1
)

over U is said to be P-order contained in another NCSESs(
(NC)E

S2, E2, X2
)

over U, denoted by
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

,
if (i) E1 ⊆ E2,
(ii) X1 ⊆ X2,
(iii) (NC)E

S1(e, x) ⊆P (NC)E
S2(e, x) for all e ∈ E1, x ∈ X1, where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) � IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) ≤ N2(NC)E
S (e2,x2)

(x).

Definition 18. A NCSESs
(
(NC)E

S1, E1, X1
)

over U is said to be R-order contained in another NCSES(
(NC)E

S2, E2, X2
)

over U, denoted by
(
(NC)E

S1, E1, X1
)
⊆R

(
(NC)E

S2, E2, X2
)

,
if (i) E1 ⊆ E2,
(ii) X1 ⊆ X2,
(iii) (NC)E

S1(e, x) ⊆R (NC)E
S2(e, x) for all e ∈ E1, x ∈ X1,

where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) � IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) ≥ N2(NC)E
S (e2,x2)

(x).

Definition 19. Two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U is said to be equal which is
denoted by

(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

,
if (i) A = B,
(ii) X1 = X2,
(iii) (NC)E

S1(e) = (NC)E
S2(e) for all e ∈ E = A = B, x ∈ X = X1 = X2,

where condition (iii) implies that

IN
1(NC)E

S (e1,x1)
(x) = IN

2(NC)E
S (e2,x2)

(x), N1(NC)E
S (e1,x1)

(x) = N2(NC)E
S (e2,x2)

(x).

Remark 3. (a) We observe from Definitions 17–19, that for any two NCSESs
(
(NC)E

S1, E1, X1
)

and(
(NC)E

S2, E2, X2
)

over U;
(i) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S2, E2, X2
)
⊆P

(
(NC)E

S1, E1, X1
)

,
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then
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

,
(ii) If

(
(NC)E

S1, E1, X1
)
⊆R

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S2, E2, X2
)
⊆R

(
(NC)E

S1, E1, X1
)

,
then

(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S2, E2, X2
)

.
(b) Using Definitions 17–19, one can easily compare the performance of two cricket teams in different

time frames.

Definition 20. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two NCSESs in U.
Then we define (i)

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∪
E2, X3 = X1 ∪ X2

(NC)E
S3(ei) =


(NC)E

S1(ei) if ei ∈ E1 − E2

(NC)E
S2(ei) if ei ∈ E2 − E1

(NC)E
S1(ei) ∨P (NC)E

S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∨P (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∨ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∨ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,

T̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∨ ĨIN

(NC)E
S2(ei)

(u)

, F̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u)

 ,

TN
(NC)E

S1(ei)
(u) ∨ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∨ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∧ FN

(NC)E
S2(ei)

(u)


〉
}

(ii)
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∩ E2, X3 = X1 ∩ X2

(NC)E
S3(ei) =

{
(NC)E

S1(ei) ∧P (NC)E
S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∧P (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∧ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∧ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,

T̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∧ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u)

TN
(NC)E

S1(ei)
(u) ∧ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∧ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∨ FN

(NC)E
S2(ei)

(u)


〉
}

(iii)
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(ei) =


(NC)E

S1(ei) if ei ∈ E1 − E2

(NC)E
S2(ei) if ei ∈ E2 − E1

(NC)E
S1(ei) ∨R (NC)E

S2(ei) if ei ∈ E1 ∩ E2
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where

(NC)E
S1(ei) ∨R (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∨ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∧ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,

T̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∨ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u)

TN
(NC)E

S1(ei)
(u) ∧ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∧ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∨ FN

(NC)E
S2(ei)

(u)


〉

(iv)
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where E3 = E1 ∩ E2, X3 = X1 ∩ X2,

(NC)E
S3(ei) =

{
(NC)E

S1(ei) ∧R (NC)E
S2(ei) if ei ∈ E1 ∩ E2

where

(NC)E
S1(ei) ∧R (NC)E

S2(ei) =
{〈

u, IN
(NC)E

S1(ei)
∧ IN

(NC)E
S2(ei)

, N(NC)E
S1(ei)

∨ N(NC)E
S2(ei)

〉
: u ∈ U

}

= {
〈 u,

T̃IN
(NC)E

S1(ei)
(u) ∧ T̃IN

(NC)E
S2(ei)

(u), ĨIN
(NC)E

S1(ei)
(u) ∧ ĨIN

(NC)E
S2(ei)

(u),

F̃IN
(NC)E

S1(ei)
(u) ∨ T̃IN

(NC)E
S2(ei)

(u)

TN
(NC)E

S1(ei)
(u) ∨ TN

(NC)E
S2(ei)

(u), IN
(NC)E

S1(ei)
(u) ∨ IN

(NC)E
S2(ei)

(u),

FN
(NC)E

S1(ei)
(u) ∧ FN

(NC)E
S2(ei)

(u)


〉
}

(v) The complement of a neutrosophic cubic soft expert set
(
(NC)E

S , E, X
)

denoted by(
(NC)E

S , E, X
)c

= {(NC)Ec
S (ei) = {

〈
u, 1̃− IN

(NC)E
S (ei)

(u), 1− N(NC)E
S (ei)

(u)
〉

, u ∈ U}, ei ∈ A}.

Proposition 1. Let
(
(NC)E

S1, E1, X1
)
,
(
(NC)E

S2, E2, X2
)

,
(
(NC)E

S3, E3, X3
)

,
(
(NC)E

S4, E4, X4
)

be NCSESs
in U. Then

(i) If
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S4, E4, X4
)

.
(ii) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

then
(
(NC)E

S2, E2, X2
)c ⊆P

(
(NC)E

S1, E1, X1
)c .

(iii) If
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S4, E4, X4
)

.
(iv) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)

then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)

.
(v) If

(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

and
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S4, E4, X4
)

then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S4, E4, X4
)
,(

(NC)E
S1, E1, X1

)
∩P
(
(NC)E

S3, E3, X3
)
⊆P

(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S4, E4, X4
)

.

Proof. The proof is straightforward.

Theorem 1. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U the following
properties hold:

(i) Idempotent law:
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S1, E1, X1
)

,(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S1, E1, X1
)
=
(
(NC)E

S1, E1, X1
)

.
(ii) Commutative law:

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S1, E1, X1
)

,(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)
∩P
(
(NC)E

S1, E1, X1
)

.



Symmetry 2019, 11, 289 10 of 26

(iii) Associative law: (((NC)E
S1, E1, X1)∪P ((NC)E

S2, E2, X2))∪P ((NC)E
S3, E3, X3) = ((NC)E

S1, E1, X1)

∪P(((NC)E
S2, E2, X2) ∪P ((NC)E

S3, E3, X3)),
(((NC)E

S1, E1, X1)∩P ((NC)E
S2, E2, X2))∩P ((NC)E

S3, E3, X3) = ((NC)E
S1, E1, X1) ∩P (((NC)E

S2, E2, X2)

∩P((NC)E
S3, E3, X3)).

(iv) Distributive and De Morgan’s laws also true.
(v) Involution law: (

(
(NC)E

S1, E1, X1
)c
)c =

(
(NC)E

S1, E1, X1
)

.

Proposition 2. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U the following
properties are equivalent:

(i)
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

,
(ii)
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S1, E1, X1
)

,
(iii)

(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S2, E2, X2
)

.

Proof. (i)⇒ (ii) By Definition 20, we have(
(NC)E

S1, E1, X1

)
∩P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∩P (NC)E
S2, A ∩ B) = ((NC)E

S1 ∩P (NC)E
S2, A)

as A ⊆ B by hypothesis. Now for any e ∈ E1, since (NC)E
S1(e) ⊆P (NC)E

S2(e), using Definition 17,
implies that IN

(NC)E
S1(ei)

(u) � IN
(NC)E

S2(ei)
(u) and N(NC)E

S1(ei)
(u) ≤ N(NC)E

S2(ei)
(u) for any u ∈ U, where

(NC)E
S1(ei) = {

〈
u, IN

(NC)E
S1(ei)

(u), N(NC)E
S1(ei)

(u)
〉

u ∈ U}. Since IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) and

IN+
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u). Thus

inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = [inf{IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u)},

inf{IN+
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u)}] = [IN−
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)]

and inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)} = N(NC)E
S1(ei)

(u). So It is ok.

(NC)E
S1(e) ∩P (NC)E

S2(e) = {
〈

u, inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},

inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)
〉

: u ∈ U} = {
〈

u, IN
(NC)E

S1(ei)
(u), N(NC)E

S1(ei)
(u)
〉

: u ∈ U}

= (NC)E
S1(e)

Hence (NC)E
S1(e) ∩P (NC)E

S2(e) = (NC)E
S (e).

(ii)⇒(iii) By Definition 20, we have(
(NC)E

S1, E1, X1

)
∪P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∪P (NC)E
S2, A ∪ B) = ((NC)E

S1 ∪P (NC)E
S2, A)

as A∩ A = A and (NC)E
S2 ∩ (NC)E

S2 = (NC)E
S2, by hypothesis. Now for any e ∈ E1, since (NC)E

S1(e)∩P
(NC)E

S2(e) = (NC)E
S1(e), by Definition 20, we have

inf{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = IN
(NC)E

S1(ei)
(u)

and inf{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei)

(u)} = N(NC)E
S1(ei)

(u)

this implies that

sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)} = IN
(NC)E

S2(ei)
(u)

and sup{N(NC)E
S1(ei)

(u), N(NC)E
S2(ei1)

(u)} = N(NC)E
S2(ei)

(u)
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Thus, we have

(NC)E
S1(e) ∪P (NC)E

S2(e) = {
〈

u, sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},
sup{N(NC)E

S1(ei)
(u), N(NC)E

S2(ei)
(u)

〉
: u ∈ U}

= {
〈

u, IN
(NC)E

S2(ei)
(u), N(NC)E

S2(ei)
(u)
〉

: u ∈ U} = (NC)E
S2(e).

Hence (NC)E
S1(e) ∩P (NC)E

S2(e) = (NC)E
S2(e).

(iii)⇒(i) By hypothesis we have(
(NC)E

S1, E1, X1

)
∪P

(
(NC)E

S2, E2, X2

)
= ((NC)E

S1 ∪P (NC)E
S2, A ∪ B) = ((NC)E

S1 ∪P (NC)E
S2, A)

as A ∪ A = A and (NC)E
S2 ∪ (NC)E

S2 = (NC)E
S2 ⇒ A ⊆ A and (NC)E

S2 ⊆ (NC)E
S2. Also

(NC)E
S1(e) ∪P (NC)E

S2(e) = {
〈

u, sup{IN
(NC)E

S1(ei)
(u), IN

(NC)E
S2(ei)

(u)},
sup{N(NC)E

S1(ei)
(u), N(NC)E

S2(ei)
(u)

〉
: u ∈ U}

= {
〈

u, IN
(NC)E

S2(ei)
(u), N(NC)E

S2(ei)
(u)
〉

: u ∈ U} = (NC)E
S2(e)

this implies that IN
(NC)E

S1(ei)
(u) � IN

(NC)E
S2(ei)

(u) and N(NC)E
S1(ei)

(u) ≤ N(NC)E
S2(ei)

(u) for any u ∈ U.

Hence
(
(NC)E

S1, E1, X1
)
⊆P

(
(NC)E

S2, E2, X2
)

.

Corollary 1. If we take X1 = X2 = X in the Proposition 2, then the following are equivalent:
(i)
(
(NC)E

S1, E1, X
)
⊆P

(
(NC)E

S2, E2, X
)

,
(ii)
(
(NC)E

S1, E1, X
)
∩P
(
(NC)E

S2, E2, X
)
=
(
(NC)E

S1, E1, X
)

,
(iii)

(
(NC)E

S1, E1, X
)
∪P
(
(NC)E

S2, E2, X
)
=
(
(NC)E

S2, E2, X
)

.

Proof. The proof is straightforward.

4. More on NCSESs

In this section, we discuss different types of union and intersection of the NCSESs and their
related conditions.

1. The following example shows that R-Union of two INCSESs in U need not be INCSESs
in U.

Example 4. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U, where(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.1, 02], [0.4, 0.5], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.3, 04], [0.3, 0.5], [0.5, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.3)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.4], [0.4, 0.5], [0.5, 0.7], N(NC)E
S3(ei)

= (0.2, 0.3, 0.4)}

As 0.2 /∈ [0.4, 0.5], 0.3 /∈ [0.4, 0.5] and 0.4 /∈ [0.5, 0.7].

Hence
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is not a INCSES in U.
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The following theorem gives the condition under which R-union of two INCSESs in U is also a
INCSES in U.

Theorem 2. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and

(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such that

sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)} ≤
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is INCSESs
in U.

Proof. By Definition 20, we know
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where
E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(e3, x3) =


(NC)E

S1(e3, x3) if (e3, x3) ∈ (E1 × X1)− (E2 × X2)

(NC)E
S2(e3, x3) if (e3, x3) ∈ (E2 × X2)− (E1 × X1)

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) if (e3, x3) ∈ (E1 × E2) ∩ (X1 × X2)

where

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3)=
{〈

u, IN
(NC)E

S1(e3,x3)
∨IN

(NC)E
S2(e3,x3)

, N(NC)E
S1(e3,x3)

∧N(NC)E
S2(e3,x3)

〉
:u ∈ U

}

= {
〈 u,


T̃IN

(NC)E
S1(e3,x3)

(u) ∨ T̃IN
(NC)E

S2(e3,x3)
(u),

ĨIN
(NC)E

S1(e3,x3)
(u) ∨ ĨIN

(NC)E
S2(e3,x3)

(u),

F̃IN
(NC)E

S1(e3,x3)
(u) ∧ T̃IN

(NC)E
S2(e3,x3)

(u)




TN
(NC)E

S1(e3,x3)
(u) ∧ TN

(NC)E
S2(e3,x3)

(u),

IN
(NC)E

S1(e3,x3)
(u) ∧ IN

(NC)E
S2(e3,x3)

(u),

FN
(NC)E

S1(e3,x3)
(u) ∨ FN

(NC)E
S2(e3,x3)

(u)



〉

If (e3, x3) ∈ (E1 × X1) − (E2 × X2) or if (e3, x3) ∈ (E2 × X2) − (E1 × X1) then the result is trivial.
If (e3, x3) ∈ (E1 ∩ E2 × X1 ∩ X2) , then

(NC)E
S3 (e3, x3) =

{〈
u, IN

(NC)E
S1(e3,x3)

∨ IN
(NC)E

S2(e3,x3)
, N(NC)E

S1(e3,x3)
∧ N(NC)E

S2(e3,x3)

〉
: u ∈ U

}
.

Since
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

are INCSESs in U. So IN−
(NC)E

S1(e3,x3)
(u) ≤

N(NC)E
S1(e3,x3)

(u) ≤ IN+
(NC)E

S1(e3,x3)
(u) and IN−

(NC)E
S2(e3,x3)

(u) ≤ N(NC)E
S2(e3,x3)

(u) ≤ IN+
(NC)E

S2(e3,x3)
(u). Also

IN−
(NC)E

S1(e3,x3)
(u) ∨ IN−

(NC)E
S2(e3,x3)

(u) ≤ N(NC)E
S1(e3,x3)

(u) ∧ N(NC)E
S2(e3,x3)

(u)

≤ IN+
(NC)E

S1(e3,x3)
(u) ∨ IN+

(NC)E
S2(e3,x3)

(u)

for all u ∈ U and (e3, x3) ∈ (E2 ∩ E2, X1 ∩ X2) . Hence
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is
INCSESs in U.

2. The following example yields that R-intersection of two INCSESs need not be a INCSESs.

Example 5. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U, where



Symmetry 2019, 11, 289 13 of 26

(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.1, 0.2], [0.3, 0.5], [0.3, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.6], [0.3, 0.6], [0.5, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S3(ei)

= ([0.1, 0.2], [0.3, 0.5], [0.5, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.4)}.

As 0.4 /∈ [0.1, 0.2], 0.6 /∈ [0.3, 0.5] and 0.4 /∈ [0.5, 0.7].

Hence
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is not a INCSES in U.
The following theorem gives the condition that R-intersection of two INCSESs is to be a INCSES.

Theorem 3. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two INCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and (

(NC)E
S2, E2, X2

)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such

that
inf{IN+

(NC)E
S (ei)

(x), IN+
(NC)E

S2(ei)
(u)} ≥

{
N(NC)E

S (ei)
(u) ∨ N(NC)E

S2(ei)
(u)
}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is a INCSES
in U.

Proof. Similar to the proof of the Theorem 2.

3. The following example yields that R-union of two ENCSESs need not be an ENCSESs.

Example 6. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.4], [0.4, 0.7], [0.3, 0.6]), N(NC)E
S (ei)

= (0.5, 0.3, 0.7)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.6], [0.3, 0.5], [0.5, 0.6]), N(NC)E
S2(ei)

= (0.1, 0.2, 0.4)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.6], [0.4, 0.7], [0.5, 0.6], N(NC)E
S3(ei) = (0.1, 0.2, 0.7)}.

As 0.1 /∈ [0.3, 0.6], 0.2 /∈ [0.4, 0.7] and 0.7 /∈ [0.5, 0.6].

Hence R-union is not a ENCSESs in U.
The following theorem gives the condition that R-union of two ENCSESs to be a ENCSESs.

Theorem 4. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and
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(
(NC)E

S2, E2, X2
)

=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such that

{inf{sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

≤ {sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)}},

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is a ENCSES
in U.

Proof. By Definition 20, we know
(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

, where
E3 = E1 ∪ E2, X3 = X1 ∪ X2,

(NC)E
S3(e3, x3) =


(NC)E

S1(e3, x3) if (e3, x3) ∈ (E1 × X1)− (E2 × X2)

(NC)E
S2(e3, x3) if (e3, x3) ∈ (E2 × X2)− (E1 × X1)

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) if (e3, x3) ∈ (E1 × E2) ∩ (X1 × X2)

where

(NC)E
S1(e3, x3) ∨R (NC)E

S2(e3, x3) =

{〈
u, IN

(NC)E
S1(e3,x3)

∨ IN
(NC)E

S2(e3,x3)
,

N(NC)E
S1(e3,x3)

∧ N(NC)E
S2(e3,x3)

〉
: u ∈ U

}

= {
〈 u,


T̃IN

(NC)E
S1(e3,x3)

(u) ∨ T̃IN
(NC)E

S2(e3,x3)
(u),

ĨIN
(NC)E

S1(e3,x3)
(u) ∨ ĨIN

(NC)E
S2(e3,x3)

(u),

F̃IN
(NC)E

S1(e3,x3)
(u) ∧ T̃IN

(NC)E
S2(e3,x3)

(u)




TN
(NC)E

S1(e3,x3)
(u) ∧ TN

(NC)E
S2(e3,x3)

(u),

IN
(NC)E

S1(e3,x3)
(u) ∧ IN

(NC)E
S2(e3,x3)

(u),

FN
(NC)E

S1(e3,x3)
(u) ∨ FN

(NC)E
S2(e3,x3)

(u)



〉

If (e3, x3) ∈ (E1 ∩ E2 × X1 ∩ X2) , take

h =

 {inf{sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)},
sup{IN−

(NC)E
S1(ei)

(u), IN+
(NC)E

S2(ei)
(u)}}


and

k =

 {sup{IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)},
sup IN−

(NC)E
S1(ei)

(u), IN+
(NC)E

S2(ei)
(u)}}


Then h is one of (

IN+
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u), IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)
)

.

If we choose h = IN−
(NC)E

S2(ei)
(u) or IN+

(NC)E
S2(ei)

(u), then

IN−
(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u) ≤ IN−
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S2(ei)

(u)
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and so k = IN+
(NC)E

S1(ei)
(u). Thus

 sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)} = IN−
(NC)E

S2(ei)
(u)

= h >
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

.

 .

Hence 
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

/∈ (sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)},
sup{IN+

(NC)E
S1(ei)

(u), IN+
(NC)E

S2(ei)
(u)}).

 .

Now if h = IN+
(NC)E

S2(ei)
(u) then IN−

(NC)E
S1(ei)

(u) ≤ IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u) and so

sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}. Assume k = IN−
(NC)E

S1(ei)
(u), then we have

IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u).

So, we can write 
IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) <{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

= IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

 .

For the case 
IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u)

<
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

= IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)


which contradicted the fact that

(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U.
For the case 

IN−
(NC)E

S2(ei)
(u) ≤ IN−

(NC)E
S1(ei)

(u) ={
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)


we have 

{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

/∈ (sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)})

= IN−
(NC)E

S1(ei)
(u) =

{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}
 .

Again, assume that k = IN−
(NC)E

S2(ei)
(u), then we have

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)
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or

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u).

For the case

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) <
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

which contradict
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U. For the case

IN−
(NC)E

S1(ei)
(u) ≤ IN−

(NC)E
S2(ei)

(u) =
{

N(NC)E
S1(ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

< IN+
(NC)E

S2(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

we have {
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

/∈ {((sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}),

(sup{IN+
(NC)E

S1(ei)
(u), IN+

(NC)E
S2(ei)

(u)})}

because

((sup{IN−
(NC)E

S1(ei)
(u), IN−

(NC)E
S2(ei)

(u)}) =, IN−
(NC)E

S2(ei)
(u) =

{
N(NC)E

S1(ei)
(u) ∧ N(NC)E

S2(ei)
(u)
}

.

If ei = (e3, x3) ∈ (E1 × X1)− (E2 × X2) or if ei = (e3, x3) ∈ (E2 × X2)− (E1 × X1) then the result is
trivial. Hence

(
(NC)E

S1, E1, X1
)
∪R
(
(NC)E

S2, E2, X2
)

is a ENCSES in U.

4. The following example shows that R-intersection of two ENCSESs need not be ENCSESs.

Example 7. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.4], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.2, 0.3, 0.4)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)
=
(
(NC)E

S3, E3, X3
)

(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.4)}.

As 0.4 /∈ [0.2, 0.3], 0.6 /∈ [0.3, 0.5] and 0.4 /∈ [0.6, 0.7]. Hence
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is not a
ENCSES in U.

The following theorem gives the condition that R-intersection of two ENCSESs is also a ENCSES.

Theorem 5. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,
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where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and (

(NC)E
S2, E2, X2

)
=

{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such that

{inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∨ N(NC)E
S2(ei)

(u)
}

≤ {sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all u ∈ U and (g, z) ∈ (E1 ∩ E2 × X1 ∩ X2). Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is ENCSESs
in U.

Proof. Similar to the proof of Theorem 4.

5. The following example shows that P-union of two ENCSESs need not to be a ENCSES.

Example 8. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.6, 0.8, 0.4)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6], N(NC)E
S3(ei) = (0.6, 0.8, 0.4)}.

As 0.6 /∈ [0.3, 0.5], 0.8 /∈ [0.4, 0.7] and 0.4 /∈ [0.5, 0.6].

Hence P-union of
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

is not ENCSES in U.
The following theorem gives the condition under which P-union of two ENCSESs is a ENCSESs.

Theorem 6. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and (

(NC)E
S2, E2, X2

)
=

{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such that

sup{inf{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, {IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∨ N(NC)E
S2(ei)

(u)
}

≤ inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∪P
(
(NC)E

S2, E2, X2
)

is a ENCSES over U.

Proof. Similar to the proof of Theorems 2 and 4.

6. The following example shows that P-intersection of two ENCSESs need not be a ENCSES.
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Example 9. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U, where(
(NC)E

S1, E1, X1

)
= {IN

(NC)E
S1(ei)

= ([0.3, 0.5], [0.4, 0.7], [0.5, 0.6]), N(NC)E
S1(ei)

= (0.6, 0.8, 0.4)}

and (
(NC)E

S2, E2, X2

)
= {IN

(NC)E
S2(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7]), N(NC)E
S2(ei)

= (0.4, 0.6, 0.5)}.

Now by Definition 20, we have(
(NC)E

S3, E3, X3

)
= {IN

(NC)E
S3(ei)

= ([0.2, 0.3], [0.3, 0.5], [0.6, 0.7], N(NC)E
S3(ei) = (0.4, 0.6, 0.5)}.

As 0.4 /∈ [0.2, 0.3], 0.6 /∈ [0.3, 0.5] and 0.5 /∈ [0.6, 0.7].

Hence P-intersection of
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

is not ENCSES in U.

Theorem 7. Let {(NC)E
Si}i∈I = {

(
(NC)E

Si, Ei, Xi
)
}i∈I be a family of internal cubic soft expert set (INCSESs)

sets over U, u ∈ U for any ei ∈ Ei, x ∈ Xi}. Then ∪Pi∈I{(NC)E
Si} and ∩Pi∈I{(NC)E

Si} are internal cubic soft
expert set (INCSESs) sets over U.

Proof. As {(NC)E
Si}i∈I be a family of internal generalized cubic soft expert set (INCSESs) over U so

we have IN−
(NC)E

Si(e,x)
(u) ≤ N(NC)E

Si(e,x)(u) ≤ IN−
(NC)E

Si(e,x)
(u) for each i ∈ I this implies that

∪Pi∈I IN−
(NC)E

Si(e,x)
(u) ≤ ∪Pi∈I N(NC)E

Si(e,x)(u) ≤ ∪Pi∈I IN−
(NC)E

Si(e,x)
(u)

and
∩Pi∈I IN−

(NC)E
Si(e,x)

(u) ≤ ∩Pi∈I N(NC)E
Si(e,x)(u) ≤ ∩Pi∈I IN−

(NC)E
Si(e,x)

(u).

Hence ∪p
i∈I

{
(NC)E

Si
}

and ∩p
i∈I

{
(NC)E

Si
}

are (INCSESs) over U.

Theorem 8. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and

(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such that

sup{inf{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, {IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

<
{

N(NC)E
S (ei)

(u) ∧ N(NC)E
S2(ei)

(u)
}

≤ inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
)

is also an ENCSESs
and INCSESs over U.

Proof. Similar to the proof of Theorems 2 and 4.

Theorem 9. Let
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

be two ENCSESs in U,

where
(
(NC)E

S1, E1, X1
)
=
{
(NC)E

S1(e, x) = {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1

}
and
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(
(NC)E

S2, E2, X2
)
=
{
(NC)E

S2( f , y) = {
〈

u, IN
2( f ,y)(u), N2( f ,y)(u)

〉
, u ∈ U}, ( f , y) ∈ E2 × X2

}
such

that

(
N(NC)E

S (eix)
∨ N

(NC)E
S2(ei)

)
(u)∈

inf{sup{IN+
(NC)E

S (ei)
(u), IN−

(NC)E
S2(ei)

(u)}, sup{IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S2(ei)

(u)}},
{inf{IN+

(NC)E
S (ei)

(u), IN−
(NC)E

S2(ei)
(u)}, inf{IN−

(NC)E
S (ei)

(u), IN+
(NC)E

S2(ei)
(u)}}

for all e ∈ (A ∩ A× B ∩ B) and u ∈ U. Then
(
(NC)E

S1, E1, X1
)
∩R
(
(NC)E

S2, E2, X2
)

is a ENCSES and
INCSES over U.

Proof. Similar to the proof of Theorems 2 and 4.

Theorem 10. Let
(
(NC)E

S1, E1, X1
)
, and

(
(NC)E

S2, E2, X2
)

, be any two NCSESs in U. Then
(i)
(
(NC)E

S1, E1, X1
)
∪P
((
(NC)E

S1, E1, X1
)
∩P
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)
,

(ii)
(
(NC)E

S1, E1, X1
)
∩P
((
(NC)E

S2, E2, X2
)
∪P
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)

,
(iii) (

(
(NC)E

S1, E1, X1
)
∪R
((
(NC)E

S2, E2, X2
)
) ∩R

(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)
,

(iv)
(
(NC)E

S1, E1, X1
)
∩R
((
(NC)E

S2, E2, X2
)
∪R
(
(NC)E

S2, E2, X2
))

=
(
(NC)E

S1, E1, X1
)

.

Proof. The proof is straightforward.

Next we define some more operations on NCSESs.

Definition 21. For two neutrosophic cubic soft expert sets (NCSESs)
(
(NC)E

S1, E1, X1
)

and(
(NC)E

S2, E2, X2
)

over U, P-AND is denoted as(
(NC)E

S1, E1, X1

)∧
P

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where (
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y))

= (NC)E
S1(e, x) ∩P (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 22. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, R-AND is denoted as(
(NC)E

S1, E1, X1

)∧
R

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where (
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 23. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, P-OR is denoted as(
(NC)E

S1, E1, X1

)∨
P

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,
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where (
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Definition 24. For any two NCSESs
(
(NC)E

S1, E1, X1
)

and
(
(NC)E

S2, E2, X2
)

over U, R-OR is denoted as(
(NC)E

S1, E1, X1

)∨
R

(
(NC)E

S2, E2, X2

)
=
(
(NC)E

S3, (E1 × E2), (X1 × X2)
)

,

where (
(NC)E

S3, (E1 × E2), (X1 × X2)
)
= (NC)E

S3((e, f ), (x, y)) = (NC)E
S1(e, x) ∩R (NC)E

S2( f , y)

= {
〈

u, IN
1(e,x)(u), N1(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}

and {
〈

u, IN
2(e,x)(u), N2(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E1 × X1}.

Theorem 11. Let
(
(NC)E

S1, E1, X1
)
, be a neutrosophic cubic soft expert sets in U. If

(
(NC)E

S1, E1, X1
)
, is an

INCSESs (resp., ENCSESs). Then
(
(NC)E

S1, E1, X1
)C is INCSESs (resp., ENCSESs) respectively.

Proof. Since
(
(NC)E

S1, E1, X1
)
, is an INCSESs (resp., ENCSESs) in U, so for any e ∈ E1 we have

(NC)E
S1(e) = {

〈
x, IN

(NC)E
S1(ei)

(x), N(NC)E
S1(ei)

(u)
〉

: u ∈ U}. As

IN−
(NC)E

S1(ei)
(u) ≤ N(NC)E

S1(ei)
(u) ≤ IN+

(NC)E
S1(ei)

(u)

⇒ 1− IN+
(NC)E

S1(ei)
(u) ≤ 1− N(NC)E

S1(ei)
(u) ≤ 1− IN−

(NC)E
S1(ei)

(u).

Hence
(
(NC)E

S1, E1, X1
)C is an INCSES. Also

N(NC)E
S1(ei)

(u) /∈ (IN−
(NC)E

S1(ei)
(u), IN+

(NC)E
S1(ei)

(u)) ∀ u ∈ U

⇒ (1− N(NC)E
S1(ei)

(u) /∈ (1− IN+
(NC)E

S1(ei)
(u), 1− IN−

(NC)E
S1(ei)

(u))

Hence
(
(NC)E

S1, E1, X1
)C is an ENCSES.

5. Applications

In this section, we use NCSESs to construct an algorithm and applied it to a decision-making
problem. The series between Pakistan and India remains a hot cake for cricket lovers and this cricket
rivalry existed between them at the start of partition. The first series between the two teams took
place in 1951–52, when Pakistan made a tour of India. India made a tour of Pakistan for the first time
in 1954–55. Between 1962 and 1977, no cricket was played between the two countries owing to two
major wars in 1965 and 1971. The 1999 Kargil War and the 2008 Mumbai terrorist attacks have also
interrupted the game of cricket between the two nations. The growth of large expatriate populations
from India and Pakistan across the world led to neutral venues such as the United Arab Emirates and
Canada hosting several bilateral and multilateral ODI series involving the two teams. Tickets for The
India-Pakistan match in the 2015 World Cup in Australia sold out in 12 min at the ticket counters.

We try to use NCSESs in India–Pakistan cricket rivalry to conclude which country is suffering
more from the above mentioned conflicts.
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For this we first define the neutrosophic cubic soft expert weight average operator (NCSEWAO)
and score function.

Definition 25. Let ((NC)E
S , E, X) =

{
(NC)E

S (e, x) = {
〈

u, IN
(e,x)(u), N(e,x)(u)

〉
, u ∈ U}, (e, x) ∈ E× X

}
be a NCSESs. Then neutrosophic cubic soft expert weight average operator (NCSEWAO) is denoted and
define as

Qwi (IN
(NC)E

S (ei)
(x), N(NC)E

S (ei)
(x))

=





n

∏
i=1

(
1+IN−

(NC)E
S (ei)

(u)wi

)
−

n

∏
i=1

(
1−IN−

(NC)E
S (ei)

(u)wi

)
n

∏
i=1

(
1+IN−

(NC)E
S (ei)

(u)wi

)
+

n

∏
i=1

(
1−IN−

(NC)E
S (ei)

(u)wi

) ,

n

∏
i=1

(
1+IN+

(NC)E
S (ei)

(u)wi

)
−

n

∏
i=1

(
1−IN+

(NC)E
S (ei)

(u)wi

)
n

∏
i=1

(
1+IN+

(NC)E
S (ei)

(u)wi

)
+

n

∏
i=1

(
1−IN+

(NC)E
S (ei)

(u)wi

)


,

n

∏
i=1
{N(NC)E

S (ei)
(u)wi}


where wi is the weight of expert opinion, wi ∈ [0, 1] and

n

∑
i=1

wi = 1.

Definition 26. Let (NC)E
S =

〈[
IN−
(NC)E

S (ei)
(u), IN+

(NC)E
S (ei)

(u)
]

, N(NC)E
S (ei)

(u)
〉

be neutrosophic cubic soft

expert value. A score function Q of (NC)E
S is defined as Q((NC)E

S ) =
IN−
(NC)E

S (ei)
(u)+IN+

(NC)E
S (ei)

(u)−N
(NC)E

S (ei)
(u)

9 ,
where Q((NC)E

S ) ∈ [−3, 3].

Decision-making problems have been studied using fuzzy soft sets. Now, we are going to present
multicriteria neutrosophic cubic soft set in decision-making along with weights and score function.
For this we propose the following algorithmic steps as pictured in Figure 1.

Step 1: Define a decision problem by inputting the neutrosophic cubic soft expert set (NC)E
S (ei, xi).

Step 2: Use the opinions of experts in the form of NCSESs to determine the opinions regarding
given criteria. Make a separate table for the opinion of each expert.

Step 3: Assign weight to each expert according to their expertise.
Step 4: Apply neutrosophic cubic soft expert weighted average operator to each above table and

find the neutrosophic cubic soft expert weighted average corresponding to each attribute.
Step 5: Calculate the

∨
P

of Uj.

Step 6 : Calculate the score of each Uj.
Step 7: Generate the non-increasing order of all the alternatives according to their scores.

Example 10. Let U = {u1 = India, u2 = Pakistan} be the set of countries playing a cricket series, E = {e1 =

Pakistan Cricket Board (PCB), e2 = The Board of Control for Cricket in India (BCCI), e3 = Bilateral relations
between Pakistan and India} be the set of factors affecting the series, X = {p, q, r} be the set of experts giving
their expert opinion. The expert may consider the most burning parameter as “ICC’s Future Tours Programme
(FTP)" when they are giving their opinion by considering three times of frames as past, present, and future.
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Step 1: After a serious discussion, the committee constructed the following neutrosophic cubic
soft expert set.

(NC)E
S (e1, p) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e2, p) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(NC)E
S (e3, p) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e1, q) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(NC)E
S (e2, q) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(NC)E
S (e3, q) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e1, r) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(NC)E
S (e2, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(NC)E
S (e3, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

Step 2: Opinion of expert p

(e1, p) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(e2, p) =

{
(u1, [0.5, 0.7] , [0.2, 0.4] , [0.1, 0.4] , 0.8, 0.5, 0.6) ,
(u2, [0.4, 0.6] , [0.3, 0.5] , [0.6, 0.8] , 0.7, 0.2, 0.4) ,

}

(e3, p) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

Opinion of expert q

(e1, q) =

{
(u1, [0.5, 0.8] , [0.1, 0.3] , [0.1, 0.4] , 0.4, 0.4, 0.5) ,
(u2, [0.1, 0.3] , [0.6, 0.8] , [0.4, 0.6] , 0.6, 0.5, 0.3) ,

}

(e2, q) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(e3, q) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}
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Opinion of expert r

(e1, r) =

{
(u1, [0.6, 0.7] , [0.3, 0.4] , [0.6, 0.8] , 0.8, 0.7, 0.5) ,
(u2, [0.3, 0.5] , [0.7, 0.8] , [0.6, 0.7] , 0.6, 0.5, 0.8) ,

}

(e2, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

(e3, r) =

{
(u1, [0.4, 0.6] , [0.2, 0.5] , [0.1, 0.5] , 0.3, 0.1, 0.7) ,
(u2, [0.6, 0.7] , [0.5, 0.6] , [0.6, 0.8] , 0.8, 0.7, 0.9) ,

}

Step 3: Let w = (0.5, 0.25, 0.25) be the weight vector assigned to the experts p, q and r respectively.
Step 4: The neutrosophic cubic soft expert weighted average (NCSEWA) of each attribute is

displayed in Table 1.
Step 5: Calculate the

∨
P

of the first and second columns of Table 1 by using Definition 23.

Thus we have

U1 =
3∨

j=1

= ([0.66, 0.75], [0.80, 0.99], [0.61, 0.90], (0.95, 0.92, 0.91))

U2 =
3∨

j=1

= ([0.97, 0.99] , [0.98, 0.99], [0.98, 0.99], (0.68, 0.47, 0.51))

Step 6: Using Definition 26, we have Q(u1) = 0.2244, Q(u2) = 0.4711.
Step 7: The score of the NCSESs values corresponding to

∨
P

of Uj implies the following order

u2 > u1.
Thus, we can conclude that the country u2 = Pakistan is affected more by the factors, e1 = PCB,

e2 = BCCI, e3 = Bilateral relations between Pakistan and India.

Figure 1. Flow chart of NCSESs based on MADM Problem.
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Table 1. NCSEWA of each attribute.

u1 u2

e1

 ([0.009, 0.051] , [0.77, 0.87],
[0.61, 0.90]),

(0.41, 0.15, 0.58)

  ([0.97, 0.98] , [0.98, 0.99],
[0.98, 0.99]),

(0.52, 0.14, 0.19)


e2

 ([0.66, 0.75], [0.40, 0.49],
[0.54, 0.80]),

(0.46, 0.028, 0.048)

  (
[0.78, 0.99], [0.57, 0.86],

[0.80, 0.99]

)
,

(0.68, 0.47, 0.34)


e3

 ([0.34, 0.671], [0.80, 0.99],
[0.23, 0.71]),

(0.95, 0.92, 0.91)

  ([0.43, 0.67], [0.76, 0.98],
[0.34, 0.61]),

(0.25, 0.32, 0.51)


6. Comparison Analysis

In this paper, we extend the concept of soft expert sets to neutrosophic cubic soft expert sets.
This new idea generalizes the different types of expert sets presented by Alkhazaleh and Salleh [33,36],
Broumi and Smarandache [40], Qayyum et al. [48] and Sahin et al. [43].

1. If we consider only truth part or indeterminacy part or falsity part, then our model and the
model presented by Qayyum et al. [48] coincides with each other.

2. Since NCSESs consists of interval neutrosophic soft expert soft sets and neutrosophic soft
expert sets and if we consider only the part containing the neutrosophic soft expert sets then our model
reduces to the model presented by Sahin et al. [43].

3. If we consider the part containing the interval neutrosophic soft expert soft sets, we get a special
class of soft expert sets.

4. Similarly imposing some extra conditions to our model it will reduce it to those models
presented by Alkhazaleh and Salleh [33,36], Broumi and Smarandache [40].

7. Conclusions

The model of NCSESs can be used in many decision-making problems and it will produce more
reliable results as compared to the previously defined versions of soft expert sets. This paper is of
introductory nature where we establish this new generalized theory of soft expert sets with its basic
properties and provide an application. In future we shall apply this model to other areas to illustrate
its novelty. We have defined different operations of NCSESs including different versions of NCSESs.
We have designed aggregation operators and score functions of neutrosophic cubic soft expert value.
We have also constructed an algorithm based on this new concept and applied the developed approach
to a numerical example.

The substantial impact of our outcome for the research field is that we gave a generalized form of
soft expert system which certainly improves the decision-making theory due to its wide range of values
in the form of truth, indeterminacy, and falsity. We have not used any software for the decision-making,
since the preliminary research is on a small scale. We intend to expand the research to a larger scale on
an applied problem so that we can develop a software and related interface. We also intend to apply
the developed approach to a variety of games, signature theory and others, since the nature of NCSESs
enables us to deal with vague and inconsistent data. In decision-making theory, we often deal with
data which are inconsistent and vague. Thus, ex-ante decision-making problems can also be handled
easily through NCSESs. In future, arguments and modern theories linked to behavioral patterns could
strengthen the idea of NCSESs, especially using aggregation operators and methods that effectively
deal with the uncertainty and inaccuracy of the input data [49].
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