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ABSTRACT 
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Introduction and Preliminaries 

The idea of neutrosophic sets was first presented by Smarandache [ 7, 8 ] as a generalization of intuitionistic 

fuzzy sets where we have the degree of membership, the degree of indeterminacy and the degree of non – membership 

of each component in X. 

 

Definition 1 [7] 

   A Neutrosophic set A on the universe of discourse X is defined as 

A = {〈x, μA(x), σA(x), γA(x)〉: x ∈ X } 

Where μA, σA, γA: X→] -0, 1+ [and -0 ≤ μA(x) + σA(x) +  γA(x) ≤ 3+ From a philosophical point of view, the 

Neutrosophic set takes the value from real standard or non-standard subsets of] -0, 1+ [. But in real life application in 

science and engineering problems it is difficult to use Neutrosophic set with values from real standard or non-standard 

subset of] -0, 1+ [. Hence we consider the Neutrosophic set which takes the value from the subsets of [0,1]. Set of all 

Neutrosophic set over X is denoted by 𝒩(X). 

 

Definition 2 [12] 

Let A, B ∈ 𝒩(X), Then 

i. (Inclusion) If μA(x) ≤ μB(x) , σA(x) ≥ σB(x) and γA(x) ≥ γB(x) for all x ∈ X, then A is Neutrosophic subset of 

B and denoted by A ⊑ B. 

ii. (Equality) If A ⊑ B and B ⊑ A, then A=B. 

iii. (Intersection) Neutrosophic intersection of A and B, denoted by A ⊓ B. And defined by 

A ⊓ B = {〈x, μA(x) ∧ μB(x) , σA(x) ∨ σB(x) , γA(x) ∨ γB(x)〉 : x ∈ X}. 

iv.  (Union) Neutrosophic union of A and B, denoted by  A ⊔ B. and defined by 

A ⊔ B = {〈x, μA(x) ∨ μB(x) , σA(x) ∧ σB(x), γA(x) ∧ γB(x)〉 : x ∈ X}. 

v. (Complement) Neutrosophic complement of A denoted by Ac and defined by 

Ac = {〈x, γA(x), 1 − σA(x), μA(x)〉: x ∈ X} 

vi. (Universal Set) If  μA(x) = 1 , σA(x) = 0 and γA(x) = 0 for all x ∈ X, A is said to be Neutrosophic universal set, 

denoted by X.̃ 

vii. (Empty Set) If  μA(x) = 0 , σA(x) = 1 and γA(x) = 1 for all x ∈ X, A is said to be Neutrosophic empty set, 

denoted by  ∅̃. 
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Definition 3 [12] 

   Let  τ ⊆  𝒩(X), then τ is called a Neutrosophic topology on X if 

i. X ̃and ∅̃ belongs to τ. 

ii. The union of any number of Neutrosophic sets in τ belongs to τ. 

iii. The intersection of any number of Neutrosophic sets in τ belongs to τ. 

The pair (X, τ) is called a Neutrosophic topological space over X. Moreover the members of τ are said to be 

Neutrosophic open sets in X. If Ac ∈ τ then A ∈ 𝒩(X) is said to be Neutrosophic closed set in X. 

  

Definition 4 [12] 

  Let (X,τ) be a neutrosophic topological space over X and A ∈ 𝒩(X). Then, the neutrosophic interior of 

A, denoted by int(A) is the union of all neutrosophic open subsets of A, Clearly int(A) is the biggest neutrosophic 

open sets over X which containing A. 

 

Definition 5 [12] 

  Let (X,τ) be a neutrosophic topological space over X and A, B ∈ 𝒩(X). Then, 

i. int(∅̃)= ∅̃  and int(X ̃)= X ̃. 

ii. int(A) ⊑ A. 

iii. A is neutrosophic open set if and only if A =int(A) 

iv. int(int(A)) = int(A) 

v. A ⊑ B implies int(A) ⊑ int(B). 

vi. int(A) ⊔ int(B) ⊑ int(A ⊔ B) 

vii. int(A ⊓ B) = int(A) ⊓ int(B) 

 

Definition 6 [12] 

  Let (X,τ) be a neutrosophic topological space over X and A ∈ 𝒩(X). Then, the neutrosophic closure of 

A, denoted by cl(A) is the intersection of all neutrosophic closed super sets of A, Clearly cl(A) is the smallest 

neutrosophic  closed sets over X which contains A 

 

Definition 7 [12] 

  Let (X,τ) be a neutrosophic topological space over X and A, B ∈ 𝒩(X). Then, 

i. cl(∅̃)= ∅̃  and cl(X ̃)= X ̃. 

ii. A⊑  cl(A). 

iii. A is neutrosophic  closed set if and only if A = cl(A) 

iv. cl(cl(A)) = cl(A) 

v. A ⊑ B implies cl(A) ⊑ cl(B). 

vi. cl(A ⊔ B) = cl(A) ⊔ cl(B) 

vii. cl(A ⊓ B) ⊑  cl(A) ⊓ cl(B) 

Definition 8 [12] 

  Let (X,τ) be neutrosophic topological space over X and A, B ∈ 𝒩(X). Then  

i. int(Ac) = (cl(A))c 

ii. cl(A c) = (int(A))c 
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Definition 9 [1] 

  A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi open set 

(briefly NSOS) if A ⊆ Ncl(Nint(A)) 

Definition 10 [1] 

  A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi closed set 

(briefly NSCS) if Nint(Ncl(A)) ⊆ A 

Definition 11 [1]  

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic α −open set 

(briefly NαOS) if A ⊆ Nint (Ncl(Nint(A))). 

Definition 12 [1] 

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic α −closed set 

(briefly NαCS) if Ncl(Nint(Ncl(A))) ⊆ A. 

Definition 13 [1] 

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic pre open (briefly 

NPOS) if A ⊆ Nint(Ncl(A)). 

Definition 14 [1] 

A neutrosophic set A in a topological space (X, τ) is called neutrosophic pre closed (briefly NPCS) if 

Ncl(Nint(A)) ⊆ A. 

Definition 15 [1] 

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic regular open 

(briefly NROS) if A = Nint(Ncl(A)). 

Definition 16 [1] 

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic regular closed 

(briefly NRCS) if A = Ncl(Nint(A)). 

Definition 17 [1] 

 A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi pre open or 

β −open (briefly NβOS) if   A ⊆ Ncl(Nint(Ncl(A))) 

Definition 18 [11] 

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic ω closed 

(Nω −closed set for short) if Ncl(A) ⊆ G whenever A ⊆ G and G is Nω −closed. 

Definition 19 [11] 

  A neutrosophic set A in X is called Nω −open in X if Ac is an Nω −closed in X.  

1. Generalized Alpha Closed Sets in Neutrosophic 

Definition 1.1.  

Neutrosophic set A in (X,τ) is said to be Neutrosophic generalized alpha closed sets (NGαCS in 

short) if Ntrαcl(A) ⊆ U whenever A ⊆ U and U is NαOS in (X,τ). 

The family of all NGαCS of a Neutrosophic topological space (X,τ) is denoted by NGαCS(X). 

Note 1.1 

 In this paper we denote neutrosophic closure as Ntrcl neutrosophic interior as Ntrint  and neutrosophic alpha 

closure as Ntrαcl. 
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Example 1.2: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Take                                                  

G = {〈x, (0.4 ,0.6 ,0.7), (0.8, 0.7, 0.8)〉}. Here the only α −open set are ∅, X, G then the neutrosophic set                      

A= {〈x, (0.6, 0.6, 0.7), (0.8, 0.7, 0.8)〉} is NGαCS in (X,τ). 

Theorem 1.3: Every Neutrosophic Closed Set (NCS in short) in (X,τ) is NGαCS, but not conversely. 

Proof:  

 Let A be any set which contained in U and U is NαOS in (X,τ). Since Ntrαcl(A)  ⊆ Ntrcl(A) and A is NCS, 

Ntrαcl(A) ⊆ Ntrcl(A) = A ⊆ U. Therefore A is an NGαCS in X. 

 

Example 1.4: 

Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology and (X, τ) on X. Take                                           

G= {〈x, (0.3 ,0.5 ,0.3), (0.3, 0.5, 0.4)〉}. Let A= {〈x, (0.6, 0.5, 0.3), (0.5, 0.5, 0.4)〉} be any NS in X, here 

Ntrαcl(A)  ⊆ X whenever A ⊆ X for all NαOS G in X. A is NGαCS. But not a NCS in X. since Ntrcl(A) = Gc ≠ A 

 

Theorem 1.5: Every Neutrosophic α-closed Set (NαCS in short) is NGαCS but not conversely. 

Proof:  

 Let A be any set which contained in U and U is NαOS in (X,τ). By the hypothesis Ntrαcl(A) = A. Hence 

Ntrαcl(A) ⊆ U. Therefore A is NGαCS in X. 

 

Example 1.6: 

   Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology and (X, τ)  on X. Take                                 

G = {〈x, (0.3 ,0.5 ,0.3), (0.3, 0.5, 0.4)〉}.Let A= {〈x, (0.6, 0.5, 0.3), (0.5, 0.5, 0.4)〉} be any NS in X, here 

Ntrαcl(A)  ⊆ X whenever A ⊆ X for all NαOS G in X. therefore A is NGαCS. But not a NGαCS in X. since 

Ntrcl(A) = Gc ⊆ A. 

 

Theorem 1.7: Every Neutrosophic Regular Closed Set (NRCS in short) is an NGαCS but not conversely. 

Proof: 

 Let A is a NRCS in (X,τ). By Definition, A= Ntrcl(Ntrint(A)), This implies Ntrcl(A) = Ntrcl(Ntrint(A)). 

Therefore Ntrcl(A) = A. That is A is an NCS in X. By theorem 1.3 A is an NGαCS in X. 

 

Example 1.8: 

       Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Take                                            

G = {〈x, (0.3 ,0.5 ,0.3), (0.3, 0.5, 0.4)〉}. Let  A= {〈x, (0.8, 0.5, 0.3), (0.5, 0.5, 0.5)〉} be any NS in X, here A is a 

NGαCS. But not a NRCS in (X,τ), since Ntrcl(Ntrint(A)) = Gc ≠ A    

 

Example 1.9: 

       Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology and (X, τ)on X. Take                               

G = {〈x, (0.4 ,0.4 ,0.4), (0.6, 0.6, 0.6)〉}.Let A= {〈x, (0.5, 0.5, 0.5), (0.3, 0.7, 0.7)〉} be any NS in X, here A is a 

NGCS in X. consider the NαOS G1 = {〈x, (0.2 ,0.2 ,0.3), (0.8, 0.6, 0.7)〉}. Here A ⊆ G1 but Ntrαcl(A)  ⊆  G1. 

Hence A is not a NGαCS in (X, τ). 
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Theorem 1.10: Every Neutrosophic Generalized α −closed Set (NGαCS in short) is an NαGCS in X. But converse 

is not true in general. 

Proof:  

 Let A be any set which contained in U and U is NαOS in (X,τ). Since every open set is α open set we have 

Ntrαcl(A)  ⊆ U whenever A ⊆ U and U is an NOS in (X,τ). Hence A is an NαGCS in X. 

 

Example 1.11: 

         Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Where                                                          

G = {〈x, (0.2 ,0.2 ,0.3), (0.8, 0.6, 0.7)〉}. Let  A = {〈x, (0.6, 0.2, 0.4), (0.9, 0.6, 0.8)〉} be any NS in X, here A is a 

NαGCS in X consider the NαOS G1 ={〈x, (0.3 ,0.2 ,0.8), (0.7, 0.7, 0.3)〉}. Here A ⊆ G1 but  Ntrαcl(A)  ⊆ G1. 

Hence A is not a NGαCS in (X, τ) 

Theorem 1.12: Every Neutrosophic Generalized α −closed Set (NGαCS in short) is NSGCS but its converse may 

not be true. 

Proof: 

 Let A be any set which contained in U and U is an NSOS in (X,τ). By hypothesis Ntrαcl(A)  ⊆ A, which implies 

Ntrcl( Ntrint(Ntrcl(A))) ⊆ U. That is Ntrint(Ntrcl(A)) ⊆ U, which implies A ⋃ Ntrint(Ntrcl(A)) ⊆ U. Then 

Ntrscl(A) ⊆ U, U is NSOS. Therefore A is NSGCS in (X,τ) 

Example 1.13: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Take                                              

G = {〈x, (0.3 ,0.4 ,0.6), (0.6, 0.6, 0.4)〉}.Here only α −open sets are {∅, X}.Let                                                                 

A= {〈x, (0.3, 0.2, 0.5), (0.6, 0.6, 0.8)〉} be any NS in X. Then Ntrscl(A) = X. Clearly Ntrscl(A) ⊆ X whenever       

A ⊆ X for all NSOS G in X. A is NSGCS in (X,τ). But not a NGαCS in X since Ntrαcl(A)  = Gc ⊆ G 

Theorem 1.14: Every Neutrosophic Generalized α −closed Set (NGαCS in short) is NGSCS but its converse may 

not be true. 

Proof: 

 Let A be any set which contained in U and U is an NαOS in (X,τ). By hypothesis Ntrαcl(A) ⊆ U, which implies 

Ntrcl( Ntrint( Ntrcl(A))) ⊆ U. That is Ntrint( Ntrcl(A)) ⊆ U, which implies A ⋃ Ntrint( Ntrcl(A))  ⊆ U. Therefore 

Ntrscl(A)⊆ U, U is NOS. Therefore A is NGSCS of (X,τ). 

Example 1.15: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology  (X, τ)  on X. where                           

G = {〈x, (0.3 ,0.2 ,0.3), (0.8, 0.6, 0.7)〉}. Here only α −open sets are {∅, X} Let                                                           

A= {〈x, (0.3, 0.2, 0.6), (0.8, 0.9, 0.8)〉} be any NS in X, here Ntrscl(A) = X. Clearly Ntrscl(A) ⊆ X whenever      

A ⊆ X for all NOS G in X. A is NGSCS in (X,τ). But not a NGαCS since Ntrαcl(A)  = Gc ≠ A 

 

Theorem 1.16: Every Neutrosophic Generalized α −closed Set (NGαCS in short) is Neutrosophic Generalized Pre 

Closed Set (NGPCS in short) but its converse may not be true. 

Proof: 

Let A be any set which contained in U and U is an NαOS in (X,τ), By hypothesis Ntrαcl(A)⊆U, which implies 

Ntrcl(Ntrint(Ntrcl(A))) ⊆ U. That is Ntrcl(Ntrint(A)) ⊆ U, which implies A ⋃ Ntrcl(Ntrint(A))  ⊆ U. Therefore 

Ntrpcl (A) ⊆ U, U is NOS. Therefore A is NGPCS in (X,τ). 

Example 1.17: 

Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology   on X. Where                                              

G = {〈x, (0.6 ,0.2 ,0.8), (0.2, 0.6, 0.1)〉}. Here only α −open sets are {∅, X}.Let                                                         

A= {〈x, (0.3, 0.4, 0.4), (0.4, 0.6, 0.5)〉} be any NS in X, here Ntrpcl(A)  ⊆ X. Therefore A is a NGPCS in (X,τ) but 

not a NGαCS since Ntrαcl(A) = Gc ⊆ G 
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The following diagram implications are true: 

                               NGPCS 

 

 

NRCS                        NCS                       N𝜶C    NGSCS         NG𝜶CS          N𝜶GCS 

   

       

      NSGCS     

Remark1.18: 

A NP closedness in independent of an NGα closedness. 

 

Example 1.19: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology   on X. Where                                  

G = {〈x, (0.3 ,0.4 ,0.5), (0.8, 0.6, 0.9)〉}. Here only α −open sets are {∅, X} Let                                                             

A= {〈x, (0.5, 0.6, 0.4), (0.8, 0.3, 0.2)〉} be any NGαCS(x), But not a NPCS(X) since Ntrcl(Ntrint(A)) = Gc ⊆ A 

 

Example 1.20: 

Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology   on X. Where                                    

G = {〈x, (0.2 ,0.1 ,0.3), (0.8, 0.4, 0.7)〉}.  A= {〈x, (0.4, 0.2, 0.4), (0.7, 0.6, 0.8)〉} be any NPCS(x), But not a 

NGαCS(x) since Ntrαcl(A) = Gc ⊆ G 

 

Remark 1.21: 

  A neutrosophic closed set and neutrosophic generalized α − closed set are independent to each other. 

 

Example 1.22: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Where                                           

G = {〈x, (0.2 ,0.2 ,0.3), (0.8, 0.6, 0.7)〉}.Let A= {〈x, (0.5, 0.8, 0.4), (0.5, 0.5, 0.8)〉} be any NGαCS(x), here 

Ntrαcl(A)  ⊆ G But not a NSCS(X)  since Ntrint(A) = X ⊆ A. 

 Example 1.23: 

   Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Where                                        

G = {〈x, (0.3 ,0.2 ,0.3), (0.5, 0.6, 0.5)〉}.Let  A= {〈x, (0.1, 0.2, 0.4), (0.3, 0.6, 0.8)〉} be any NSCS(X) but not a 

NGαCS(x)  since Ntrαcl(A) = Gc ⊆ G. 

Remark 1.24: 

  The intersection of any two NGαCS is not a NGαCS in general as seen from the following example. 

Example 1.25: 

 Let X = {a, b} and τ = {∅, X, G} is a neutrosophic topology on X. Where                                       

G = {〈x, (0.1 ,0.2 ,0.1), (0.8, 0.1, 0.7)〉}. Let A= {〈x, (0.6, 0.7, 0.4), (0.7, 0.6, 0.8)〉},                                                         

B = {〈x, (0.3, 0.2, 0.4), (0.4, 0.6, 0.8)〉} are NGαCS but   A ∩ B is  not a NGαCS in X. 
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Theorem 1.26: If A is an NOS and NGαCS in(X,τ), then A is s NαCS in X. 

Proof: 

 Let A is a NOS in X. Since A ⊆ A, by hypothesis Ntrαcl(A) ⊆ A. But from the definition A ⊆ Ntrαcl(A). 

Therefore Ntrαcl(A) = A. Hence A is a NαCS(X). 

2. Generalized Alpha Open Sets in Neutrosophic 

In this section we introduce neutrosophic generalized alpha open set and studied some of its properties. 

Definition 2.1: 

 A neutrosophic set A is said to be neutrosophic generalized alpha open set (NG𝛼OP in short) in (X,𝜏) if the 

the complement of Ac is a NG𝛼CS in X. 

The family of all NG𝛼OS of a NTS (X,𝜏) is denoted by NG𝛼O(X) 

 

Note 

 In this paper we denote neutrosophic closure as 𝑁𝑡𝑟𝑐𝑙 neutrosophic interior as 𝑁𝑡𝑟𝑖𝑛𝑡  and neutrosophic alpha 

closure as 𝑁𝑡𝑟𝛼𝑐𝑙. 

Theorem 2.2: 

 For any NTS (X,𝜏), we have the following  

 Every NOS is a NG𝛼OS 

 Every N𝛼OS is a NG𝛼OS, 

 Every NROS is a NG𝛼OS. But the converses are not true in general. 

Proof: 

 Straight forward 

Example 2.3: 

 Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                               

G = {〈𝑥, (0.2 ,0.3 ,0.8), (0.7, 0.6, 0.7)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.  Let                                                                         

A= {〈𝑥, (0.6, 0.7, 0.4), (0.3, 0.4, 0.3)〉}, be any NS in X. A is an NG𝛼OS, but not an NOS in X. 

 

Example 2.4 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                               

G = {〈𝑥, (0.3 ,0.2 ,0.7), (0.6, 0.6, 0.7)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.  Let                                                                        

A= {〈𝑥, (0.6, 0.6, 0.4), (0.3, 0.2, 0.2)〉}, be any NS in X. A is an NG𝛼OS, but not an N𝛼OS in X 

 

Example 2.5 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                                  

G = {〈𝑥, (0.1 ,0.2 ,0.3), (0.9, 0.6, 0.7)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.  Let                                                                         

A= {〈𝑥, (0.7, 0.2, 0.4), (0.8, 0.6, 0.7)〉}, be any NS in X. A is an NG𝛼OS, but not an NROS in X 

 

Thorem 2.6 

 For any NTS (X,𝜏), we have the following: 

 Every NG𝛼OS is a NGSOS 

 Every NG𝛼OS is a NSGOS 

 Every NG𝛼OS is a NGPOS. But the converses are not to be true in general. 

Proof: 

  Straight forward 
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Example 2.7: 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                                    

G = {〈𝑥, (0.2 ,0.4 ,0.3), (0.7, 0.7, 0.7)〉}. Here only 𝛼 −open sets are  {∅, 𝑋}.  Let A= 

{〈𝑥, (0.5, 0.2, 0.5), (0.4, 0.6, 0.2)〉}, be any NS in X. A is an NGSOS, but not an NG𝛼OS in X 

Example 2.8: 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                                   

G = {〈𝑥, (0.4 ,0.2 ,0.3), (0.3, 0.2, 0.1)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.  Let                                                                          

A= {〈𝑥, (0.3, 0.2, 0.3), (0.3, 0.6, 0.1)〉}, be any NS in X. A is an NSGOS, but not an NG𝛼OS in X 

 

Example 2.9 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                                     

G = {〈𝑥, (0.2 ,0.1 ,0.3), (0.2, 0.6, 0.7)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.  Let A= {〈𝑥, (0.6, 0.7, 0.4), (0.3, 0.6, 0.8)〉}, 

be any NS in X. A is an NGPOS, but not an NG𝛼OS in X 

Remark 2.10 

  The union of any two any NG𝛼OS is not an NG𝛼OS in general as seen from following example. 

Example 2.11: 

  Let X = {a, b} and 𝜏 = {∅, 𝑋, 𝐺} is a neutrosophic topology on X. Where                                                   

G = {〈𝑥, (0.2 ,0.2 ,0.3), (0.8, 0.6, 0.7)〉}. Here only 𝛼 −open sets are {∅, 𝑋}.Let                                                                     

A= {〈𝑥, (0.5, 0.2, 0.4), (0.6, 0.7, 0.8)〉}, and B= {〈𝑥, (0.7, 0.2, 0.4), (0.8, 0.6, 0.7)〉} are NG𝛼OS but A ∪ B is not an 

NG𝛼OS. 
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