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FUZZY-ROUGH MULTI-OBJECTIVE PRODUCT BLENDING FIXED-CHARGE
TRANSPORTATION PROBLEM WITH TRUCK LOAD CONSTRAINTS

THROUGH TRANSFER STATION

Shyamali Ghosh and Sankar Kumar Roy∗

Abstract. In this contribution, for the first time, an efficient model of multi-objective product blending
fixed-charge transportation problem with truck load constraints through transfer station is formulated.
Transfer station inserts transfer cost and type-I fixed-charge. Our aim is to analyze an extra cost
that treats as type-II fixed-charge and truck load constraints in the designed model that required
when the amount of items exceeds the capacity of vehicle for fulfilling the shipment by more than one
trip. Type-II fixed-charge is added with transportation cost and other cost from transfer station. We
consider here an important issue of the multi-objective transportation problem as product blending
constraints for transporting raw materials with different purity levels for customers’ satisfaction. In
realistic point of view, the parameters of the model are imprecise in nature due to existing several
unpredictable factors. These factors are apprehended by incorporating the fuzzy-rough environment
on the parameters. Expected-value operator is utilized to derive the deterministic form of fuzzy-rough
data, and the model is experienced with help of fuzzy programming, neutrosophic linear programming
and global criteria method. Two numerical examples are illustrated to determine the applicability of
the proposed model.
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1. Introduction

Transportation problem (TP) is a particular type of linear programming problem (LPP) initiated by Hitchcock
[13] and also known as Hitchcock-Koopmans TP. This transportation system becomes more eco-friendly by
considering the transfer station (TS). It optimizes the productivity of vehicles by giving the report of passing
average number of vehicles per day, per month, per year. It reduces maintenance cost of collected vehicles which
stay on station with minimum transfer cost and encourage for fuel saving. Also air pollution is reduced by
using the less number of vehicles being on the road and reduced the traffic. Therefore transfer cost exists for
existing TS that defined an optimal strategy. Transfer cost is the total opportunity cost for transporting the
products from various sources to different destinations through some TSs. TS considers fixed-charge by adding
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Figure 1. Graphical presentation of source, TS and destination for TP.

with transfer cost, and this fixed-charge is assumed as type-I fixed-charge which is independent of transporting
items. Therefore the items are transferred with transportation cost, transfer cost and fixed-charge (type-I and
type-II). Zhao and Pan [39] introduced transfer cost for a TP with uncertain situation. Hashmi et al. [11]
analyzed two stage TP with fixed-charge under fuzzy nature with multi-objective ground. Kaur et al. [14]
investigated a capacitated TP with two-stage and restricted flow for the aim of time minimization. A graphical
presentation of transportation from sources to destinations through TS is depicted in Figure 1.

To carry the items, full vehicles such as heavy duty trucks, light duty vehicles or medium duty vehicles are
used. Whenever lot size may exceed the capacity of vehicles then the shipment is to be completed by performing
more than one trip. Due to increasing number of trips for transporting the product, there exists fixed-charge
which is proportional to the number of trips performed. In this case, truck load constraints are considered into
the TP. Hence this charge depends on transported amount of items and vehicle capacity. Based on the real-life
scenario, we choose this charge as type-II fixed-charge for the first time, and for another realization we assume
it as a general charge in the case of truck load constraints. Balaji et al. [3] analyzed truck load constraints on
a TP with fixed-charge. Generally fixed-charge transportation problem (FCTP) is an extension of general TP
that consists of binary variables which specify whether the product is transported from the supply points to the
demand centres, and this charge is independent on the transported amount of items. However, while including
the truck load constraints in TP, the binary variables reduced into the integer variables which are the number
of trips and it depends on the transported amount of items. Hence the problem is more critical and important
than the general FCTP. Fixed-charge appears as renting cost of vehicle, landing fees at an airport, toll charges
on a high way, establishment cost for machines, permit fees, set up cost of the process, etc. FCTP has a wide
variety of applications, such as facility location, manufacturing and transportation. At first, Hirsch and Dantzig
[12] defined the concept of FCTP. Also there exist some methods [23, 24, 31] on FCTP which are provided in
the literature review. This type of FCTPs was solved by interval programming or rough programming or other
type of programming. Midya and Roy [23] also introduced a stochastic FCTP with multi-objective, and with
single-sink. Midya and Roy [24] discussed FCTP in different situations and analyzed by interval programming.
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Roy et al. [31] presented a FCTP with random rough variables. They analyzed the problem in multi-objective
ground under rough programming.

In TP product blending is an important concept and common issue. In many planning industries such as
chemical, petroleum, gasoline, etc., blending of raw materials with different attributes and purity levels which
meet with minimum quality of final products is called product blending. Whenever the blending of raw materials
has been declined then the profit becomes high. An important part of product blending for raw materials is
to minimize transportation shipping cost by producing a variety of products that satisfy the market demand
with keeping minimum quality of items. An organization finds an opportunity to realize considerable cost
saving by blending raw materials. The intrinsic flexibility of such blending process can be utilized to optimize
the allocation and transportation of raw materials to production centres through TS. Some important studies
related on product blending are given as: Papageorgiou et al. [27] who first analyzed TP in the presence of
product blending including fixed-charge. Gao and Kar [9] introduced product blending on a solid transportation
problem (STP). Roy and Midya [29] represented product blending on a FCTP in intuitionistic fuzzy situations
with solid nature under multi-objective environment.

For transporting items, different types of conveyances are used such as bus, train, truck, car, ship, flight, etc.,
and engines of such conveyances cause the emission of CO2 gas and other green house gasses. The most parts
of green house gasses emit by light-duty vehicles, passenger car, minibus, etc. and the remaining part are from
heavy-duty vehicles such as truck, ships, freight transport, etc. Nowadays the greenhouse gas emission is high
risk for the environmental and air pollution. The carbon emission depends on its fuel type, engine type, traffic
rule, road condition, driving rules, etc. Here we include carbon emission as an important fact of TP to minimize
the rate of air pollution/CO2 emission during transportation. Many researchers have studied on carbon emission
in TP, some of them [4, 5, 20, 34] are delineated here. Das and Roy [4] studied the effect of carbon emission,
treat as variable on a multi-objective problem with neutrosophic field and p-facility location TP. Das et al. [5]
applied carbon tax, cap and offset policy for carbon emission about a green STP with multiple objectives. Also
they discussed dwell time for the problem of transportation-location in the presence of type-2 fuzzy uncertainty.
Maity et al. [20] represented time variant for sustainable development by minimizing pollution factor of TP
with interval valued in multi-objective scenario. Sengupta et al. [34] considered carbon emission on a STP and
solved by Gamma type-2 defuzzification approach.

For some economic systems on TP, there exist transportation cost, transfer cost, fixed-charge, carbon emission,
average delivery time of product, product blending constraints, etc. at the time of passing a homogeneous product
from a source to different destinations through TS, and so multi-objective functions are invited in the formulated
model. Hence multi-objective optimization problem is included by extending the traditional single objective
TP to tackle the conflicting system. There exist some researches studying on multi-objective transportation
problem (MOTP) in some realistic environments. A few of them [1, 2, 15, 19, 25, 32] are presented including
their works. Most of them were analyzed by fuzzy programming (FP), rough programming, neutrosophic linear
programming (NLP), goal programming (GP), etc. Allah et al. [1] defined a multi-objective transportation
model in the presence of neutrosophic environment. Anukokila and Radhakrishan [2] formulated multi-objective
fractional TP in fuzzy environment and then solved it by GP approach. Li and Lai [15] analyzed multi-objective
problem on transportation system using FP. Maity et al. [19] briefly defined a TP in uncertain system related
with multi-objective ground. Midya and Roy [25] discussed a MOTP with fixed-charge and solved with the help
of rough programming. A STP with fixed-charge was provided by Roy et al. [32] in the presence of two-fold
uncertainty.

In general multi-objective fixed-charge transportation problem (MOFCTP), where the decision maker (DM)
always confirms the nature of parameters. In industrial problems/realistic applications, where all the parameters
may not be clearly (i.e., not precisely) defined but they may be imprecise nature due to existence of insuffi-
cient information, lack of evidence, competitive economic condition, fluctuations of financial market, etc. There
exist various uncertainties provided by literature review such as fuzzy, interval, rough, stochastic, randomness,
intuitionistic fuzzy, neutrosophic, etc. Between randomness and fuzziness, roughness is also another type of
uncertainty. The roughness introduces in a problem whenever the DM has not precise information about data
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and coefficients of problem. Then the feasible region of the problem is more flexible due to this roughness. Thus
rough MOFCTP has a realistic background. Many investigations have been done on MOFCTP under various
uncertainties, but there are some critical realistic situations/industrial problems where single uncertainty is not
enough to tackle the situation. Due to this fact, we introduce fuzzy-rough variable in our proposed MOFCTP.
Also to transform the fuzzy-rough MOFCTP into crisp MOFCTP, fuzzy-rough expected-value operator is used.
Zadeh [38] first defined fuzzy set theory, and Zimmermann [41] introduced the FP for different objective func-
tions. Also Menni and Chaabane [22] investigated possibilistic optimization on fuzzy environment with integer
efficient set. There exist several methodologies in literature for solving crisp or fuzzy problems with single
objective or multi-objectives. Ebrahimnejad [8] addressed a problem including interval-valued trapezoidal fuzzy
variables and provided a method for linear programming. Newton method for multi-objective optimization prob-
lems was developed by Ghaznavi et al. [10] and obtained Pareto-optimal solutions in fuzzy environment. Roy
et al. [30] defined a new approach for solving a TP in intuitionistic fuzzy nature with multi-objective ground.
Ebrahimnejad [7] represented LR flat fuzzy numbers on TP and defined a new approach for solving such problem.
For solving linear programming problem, a stepwise solution procedure of FP described by Marbini et al. [21].
They used possibility and necessity relations for fuzzy constraints and then extended the method for objective
function with fuzzy parameter. Pawlak [28] was the first mathematician who introduced rough set theory, and he
provided an important mathematical tool for the analyzing such vagueness. Xu and Yo [36] represented random
rough coefficients for presenting a multi-objective programming problem. Zhimiao and Xu [40] applied rough
programming for solving STP. Ebrahimnejad [6] defined a new approach to solve TP in fuzzy environment.

A list of some recent remarkable articles on TP in different environments is summarised in Table 1 for clear
comparison of current study with previous ones.

The comparisons from Table 1 and literature survey are focused on research gap which are traced out as:

– Literature survey reveals that most of the researchers analyzed MOTP with various conditions, but they
did not think about the case of low vehicle capacity for transporting the items as truck load constraints and
type-II fixed-charge that depend on transported amount of items.

– Also for transporting the items from sources to destinations, researchers (cf. [25, 31, 32]) did not consider a
stage that separates the whole system into two different steps, which may help to obtain some facilities for
TP.

– For environment improvement and for customers satisfaction, minimum CO2 emission from transportation
with minimum time of transportation are required as these are essential objectives as of minimum trans-
portation cost. But most of researchers did not include all these objectives together. Also product blending
constraints did not incorporate together, but this is also an important fact of customer satisfaction.

– Most of the research studies on TP are considered on single type of uncertainty but some critical realistic
situations occur which cannot tackle by such single type of uncertainty, so it is essential to incorporate a
couple of uncertainty to tackle critical realistic situations.

– Balaji et al. [3] introduced truck load constraints with FCTP. They analyzed that the case of truck load
constraints with fixed-charge which provide less transportation cost then the case of general fixed-charge
(i.e., type-I fixed-charge). They did not separately consider two cases as the truck load constraints with
general charge, and fixed-charge (i.e., type-II) depending on transported amount and vehicle capacity. Also
they analyzed only single objective TP as of authors (cf. [9,27,34,39]), did not include other objectives (such
as transportation time, carbon emission, deterioration, etc. together) which are conflicting nature, and may
be effected on the cost objective function. In fact they (except [39]) did not consider any station in between
source and demand centre that may be essential for some situations.

– Zhao and Pan [39] considered TP in single uncertainty with transfer cost. The authors of [11,39] represented
the problem in two stages but they did not think a couple of uncertainty that may be required in some
situations. Again the authors of [39] considered only single objective as cost function, but they did not
include other objective or constraints related with TP such as product blending constraints, truck load
constraints, safety factor/budget constraints, etc. Literature survey revealed that many authors (cf. [1,4,11,
19,20,30,34,40]) did not consider extra constraints relating with TP.
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Table 1. Survey of research works of TP under various environments.

References Nature of
problem

Environment No. of objective
function

Additional functions

Allah et al. [1] TP Neutrosophic Multi No
Balaji et al. [3] TP Crisp Single Fixed-charge, truck load

constraints
Das et al. [4] TP Crisp Multi No
Gao and Kar [9] STP Uncertain Single Product blending constraints
Hashmi et al. [11] TP Fuzzy

linguistic
Multi Fixed-charge

Maity et al. [19] TP Uncertain Multi No
Maity et al. [20] TP Interval Multi No
Midya and Roy [25] TP Rough Multi Fixed-charge
Papageorgiou et al.
[27]

TP Crisp Single Fixed-charge, product
blending constraints

Roy et al. [30] TP Intuitionistic
fuzzy

Multi No

Roy et al. [31] TP Random
rough

Multi Fixed-charge

Roy and Midya [29] STP Intuitionistic
fuzzy

Multi Fixed-charge, product blending
constraints

Roy et al. [32] STP Two-fold
uncertainty

Multi Fixed-charge

Sengupta et al. [34] STP Gamma
type-2

Single No

Zhao and Pan [39] TP Uncertain Single Transfer cost
Zhimiao and Xu [40] STP Rough Multi No
Proposed model TP Fuzzy-rough

uncertainty
Multi Product blending constraints, truck

load constraints, transfer cost,
fixed-charge

– Roy and Midya [29] proposed MOFCTP with conveyance constraints, product blending constraints in intu-
itionistic fuzzy uncertainty, but did not analyze the case of low vehicle capacity as truck load constraints and
the type-II fixed-charge which depend on transported items and vehicle capacity. Also they included only
single uncertainty, not type-2 uncertainty which may be required on some critical situations. They analyzed
the problem in single stage, not in two/multi stage situation which are significant in some positions. Again
they did not consider carbon emission case which is a global problem arisen from transportation sector.

Now studying the research gaps in mentioned above, as well as the work of [39] on transfer cost, the work
of [3] on truck load constraints and the work of [29] about product blending constraints, we are motivated to
formulate a new mathematical model on MOFCTP. The main focuses of the proposed problem are described
as follows:

– To add transfer cost and type-I fixed-charge from the TS for transferring the items of transportation system
in the proposed model on MOFCTP.
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– To impact truck load constraints and type-II fixed-charge in the suggested model on MOFCTP for trans-
portation policies and for analyzing the situation to select a suitable choice among them by providing the
advantages or disadvantages.

– To incorporate product blending constraints in the designed model of MOFCTP for purity levels of the
customers’ satisfaction and for some economical facility of related demand company.

– To introduce minimum transportation cost with other extra cost in the considered model on MOFCTP for
the beneficial effect by optimum delivery time to improve customers’ demand and minimum carbon emission
that helpful for the government policy to reduce air pollution.

– To apprehend the realistic situations of the expressed model, fuzzy-rough variable is chosen as two-fold
uncertainty that overcomes the gap of single type uncertainty.

– To extract the deterministic form of the exposed model, expected value operator is used.
– To verify the presented model, three advanced and updated techniques as FP, NLP and global criteria

method (GCM) are utilized in presence of fuzzy-rough environment.

The remaining part of the paper is structured as follows: Section 2 defines the motivation of our study.
Some basic definitions on fuzzy set, rough set, neutrosophic set, fuzzy-rough set are presented in Section 3. In
Section 4, notations, assumptions and the mathematical model are described. Section 5 introduces the solution
methodology and the main contributions with limitations of our proposed model. Case study with two numerical
examples are illustrated in Section 6. Section 7 depicts the results and discussion. Managerial insights are covered
in Section 8. Conclusions and future research scopes are provided in Section 9.

2. Motivation for this study

Most of the commonly used vehicles are low duty, medium duty and heavy duty vehicles. All times the
capacity of vehicle may not be equal to the amount of items that to be transported. Generally a TP has been
analyzed for two cases of vehicle capacities. At a time when vehicle capacity is greater than the amount of
items that to be carried out from sources to destinations and this case includes as STP. Hence the transported
cost is defined as cijk for transporting xijk unit of items from ith source to jth destination using kth type of
conveyance. But in other case, when amount of items is greater than the vehicle capacity then the amount
cannot be transported with single slot and slot will be repeated times. For example, if a vehicle capacity is 5
ton and amount that to be transported is 8.5 ton then item will be transported in 2 slots. As 8.5/5 = 1.7 ≡ 2
(integer variable) and for this slot the cost is added with transportation cost. Again when vehicle capacity is 4
ton then 8.5/4 = 2.125 ≡ 3 (integer variable) and hence 3 slots arise. Hence the slots are represented as integer
variables and for such existing integer variables, the types of problems are referred to as truck load constraints.
Whenever vehicle capacity decreases then number of slot increases and total transportation cost increases, i.e.,
cost varies as inversely proportional to the capacity of vehicle. Again whenever the vehicle capacity gradually
increases in compare to the amount of items that to be transported and the problem is treated as STP. Now we
analyze this vehicle cost as in the following. From above example let transported amount (x) be 8.5 ton, vehicle
capacity (W ) = 5 ton, carrying cost (F ) per slot = 75$. Hence 8.5/5 = 1.7 ≡ 2 (integer variable). Therefore two
types of cost exist which are 1.7× 75$ = 127.5$ and 2× 75$ = 150$. It is obvious that the cost for second case
is greater than first case. If the second case includes as truck load constraints and then the total cost depends
on the number of slots. Other case is the general problem where cost considers as fixed-charge (i.e., type-II
fixed-charge) that related per unit of weight. Therefore by our investigation, we analyze truck load constraints
for MOTP in the presence of TS. We always prefer vehicle capacity depending on the weight of items, and as a
result we choose the cost as the type-II fixed-charge not on the number of slots for truck load constraints.

3. Basic fundamental definitions

In the purpose of model formulation, we describe some useful definitions and theorems which are related with
fuzzy set, rough set, neutrosophic set and fuzzy-rough set.
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Definition 3.1 ([16]). Considering a non-empty set Λ and ∆ be an element of A, where A be a σ-algebra of
subsets of Λ. Considering π as a non-negative, real-valued and additive set function. Thereafter (Λ, ∆, A, π) is
defined as rough space.

Trust theory is initiated from rough programming and the possibility theory for FP. Liu [16] generated the
trust measure with both the probability measure and the possibility measure to describe two-fold uncertainty,
such as random-rough uncertainty and fuzzy-rough uncertainty.

Definition 3.2 ([28]). Let U is the set of objects defined as the universe. Again let R ⊆ U × U be an indis-
cernibility relation with R is an equivalence relation that induced by any element x, denoted as R(x). Now let
X be a subset of U and the elementary notions of rough set theory are defined as follows:

– Xu and Tao [35]. The lower approximation of a set X with respect to R is the set of all objects, which
are certainly as X with respect to R. This approximation is denoted by R(X) and is defined as follows:
R(X) = ∪{R(x) : R(x) ⊆ X,X ∈ U}

– Xu and Tao [35]. The upper approximation of a set X with respect to R is the set of all objects which are
possibly classified as X with respect to R. It is denoted by R(X) and is described as : R(X) = ∪{R(x) :
R(x) ∩X 6= φ,X ∈ U}.

– Xu and Tao [35]. The boundary region of a set X with respect to R is the set of all objects, which can be
classified neither as X nor as X (i.e., not-X) with respect to R. The boundary region is denoted by BNR(X)
and is described as: BNR(X) = R(X)−R(X).

– Pawlak [28]. Now the set X is defined rough (i.e., imprecise with respect to R), if the boundary region of X
is non-empty, otherwise the set X is defined crisp (i.e., exact with respect to R), if the boundary region of
X is empty.

3.1. Arithmetics operations on rough intervals

Let there be two rough intervals in the form: r∗ = ([r∗1 , r∗1 ], [r∗2 , r∗2 ]); r∗2 ≤ r∗1 < r∗1 ≤ r∗2 and
r′ = ([r′1, r′1], [r′2, r′2]); r′2 ≤ r′1 < r′1 ≤ r′2. Let ◦ ∈ {+,−,×, /} be a binary operation on the set of crisp
intervals. Then the rough interval arithmetic operations are defined by r∗ ◦ r′ = ([r∗ ◦ r′], [r∗ ◦ r′]), where r∗ ◦ r′
becomes a rough interval.

– Addition: r∗ + r′ = ([r∗ + r′], [r∗ + r′]).
– Subtraction: r∗ − r′ = ([r∗ − r′], [r∗ − r′]).
– Multiplication: r∗ × r′ = ([r∗ × r′], [r∗ × r′]).
– Division: r∗/r′ = ([r∗1/r′1, r

∗
1/r
′
1], [r∗2/r′2, r

∗
2/r
′
2]) if 0 /∈ [r′2, r′2].

Definition 3.3 ([38]). A fuzzy set Ã in a universal set X is characterized by a membership function µÃ(x)
which associates with each element x in X, a real number in the interval [0, 1]. A fuzzy set Ã is normal iff sup
µÃ(x)=1. A fuzzy set Ã is convex iff for every pair of points x1, x2 in X, the membership function of Ã satisfies
the inequality µÃ(δx1 + (1− δ)x2) ≥ min{µÃ(x1), µÃ(x2)}, where δ ∈ [0, 1]. A fuzzy number (FN) is a convex
normalized fuzzy set of the real line R with continuous membership function.

In fuzzy set, trapezoidal fuzzy number (TzFN) is a quadruplet defined as ã = (a1, a2, a3, a4) where a1 ≤ a2 ≤
a3 ≤ a4. Therefore for a TzFN Ã, the membership function µÃ(x) is defined as follows:

µÃ(x) =


0, if x < a1
x−a1
a2−a1

, if a1 ≤ x ≤ a2

1, if a2 ≤ x ≤ a3
a4−x
a4−a3

, if a3 ≤ x ≤ a4

0, if x > a4.
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Definition 3.4 ([33]). The concept of neutrosophic set is an analytical sight to represent the indeterminate
and inconsistent information and applied in scientific and engineering applications. Let X be the universal
set. A single valued neutrosophic set Ãn over X is of the form Ãn = {〈x, µÃn(x), σÃn(x), γÃn(x)〉 : x ∈ X},
where µÃn(x) : X → [0, 1], σÃn(x) : X → [0, 1], γÃn(x) : X → [0, 1] with 0 ≤ sup{µÃn(x)} + sup{σÃn(x)} +
sup{γÃn(x)} ≤ 3,∀ x ∈ X. Here µÃn(x), σÃn(x) and γÃn(x) are the degrees of truth membership, indeterminacy
membership and falsity membership of x in Ãn respectively.

Definition 3.5 ([16]). A fuzzy-rough variable is a function ζ from a rough space (Λ, ∆, A, π) to a collection of
fuzzy variables such that for any Borel set B of R, the function ζ(B)(λ)=Pos {ζ(λ) ∈ B}, where the abbreviation
Pos is a mapping that represents possibility measure of λ.

For example let ζ = (x − 3, x − 2, x + 2, x + 3) be a trapezoidal fuzzy-rough number with x = ([p, q], [r, s]),
0 ≤ r ≤ p < q ≤ s, where x is a rough variable then, ζ is a fuzzy-rough variable, and symbolically it is denoted
by x |= ([p, q], [r, s]).

Definition 3.6 ([16]). Let ζ be a fuzzy-rough variable, on the rough space (Λ, ∆, A, π). Then, the expected
value of ζ is described as follows:

E[ζ] =
∫ ∞

0

Tr{λ ∈ Λ : E[ζ(λ)] ≥ r}dr −
∫ 0

−∞
Tr{λ ∈ Λ : E[ζ(λ)] ≤ r}dr,

provided that at least one of the integrals exist, where E is the expected-value operator and the abbreviation
Tr represents the trust measure of ζ [16].

Definition 3.7 ([16]). If ζ = ([p, q][r, s]) is a rough variable, then trust measure of ζ can be defined as:

Tr{ζ ≥ x} =



0, for x ≥ s
(s−x)
2(s−r) , for q ≤ x ≤ s
1
2

( (s−x)
(s−r) + (q−x)

(q−p)
)
, for p ≤ x ≤ q

1
2

( (s−x)
(s−r) + 1

)
, if r ≤ x ≤ p

1, if x ≤ r.

T r{ζ ≤ x} =



0, for x ≤ r
(x−r)
2(s−r) , for r ≤ x ≤ p
1
2

( (x−r)
(s−r) + (x−p)

(q−p)
)
, for p ≤ x ≤ q

1
2

( (x−r)
(s−r) + 1

)
, if q ≤ x ≤ s

1, if x ≥ s.

So the expected value of ζ calculated from Definition 3.6 is 1
4 (p+ q + r + s).

Definition 3.8 ([16]). Let X̃ is a normalized fuzzy variable. The expected value of this fuzzy variable
is presented by the help of Credibility measure (presented by Liu and Liu [18]) which is defined as:
E(X̃) =

∫∞
0
Cr{X̃ ≥ r}dr −

∫ 0

−∞ Cr{X̃ ≤ r}dr, provided that at least one of two integral is finite.
If Ã = (a, b, c, d) be a TzFN, then by the above definition the expected value of Ã is 1

4 (a+ b+ c+ d).
Here E is the expected-value operator and the abbreviation Cr represents the Credibility measure.

Theorem 3.9 ([17]). Let ζ be the fuzzy-rough variable with finite expected value. As a useful expression of
expected value, we have E[ζ] =

∫ 1

0
φ−1(β)dβ, where φ−1 is the inverse of uncertainty distribution of the fuzzy-

rough variable ζ.
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Proposition 3.10 ([37]). Let ζ be a trapezoidal fuzzy-rough variable with ζ = (a1, a2, a3, a4), where a1, a2, a3

and a4 are rough variables (i.e., rough interval) defined on a rough space (Λ, ∆, A, π), and we have

a1 = ([p2, p3], [p1, p4]), p1 ≤ p2 < p3 ≤ p4,

a2 = ([q2, q3], [q1, q4]), q1 ≤ q2 < q3 ≤ q4,
a3 = ([r2, r3], [r1, r4]), r1 ≤ r2 < r3 ≤ r4,
a4 = ([s2, s3], [s1, s4]), s1 ≤ s2 < s3 ≤ s4.

Then, the expected value of ζ is given by: E[ζ] = 1
16

∑4
i=1(pi + qi + ri + si).

Proof. The proof of the proposition is apparent by taking the expected values of fuzzy-rough variable from
Definitions 3.7 and 3.8. �

Theorem 3.11 ([16]). Let ζ and η be the fuzzy-rough variables with finite expected values. Then, for any real
numbers p and q, we have E[pζ + qη] = pE[ζ] + qE[η].

Proof. Let ζ = (a1, a2, a3, a4) and η = (b1, b2, b3, b4) be two fuzzy-rough variables with a1, a2, a3, a4 and
b1, b2, b3, b4 are rough variables defined on a rough space (Λ, ∆, A, π), and we have

a1 = ([p2, p3], [p1, p4]), p1 ≤ p2 < p3 ≤ p4, a2 = ([q2, q3], [q1, q4]), q1 ≤ q2 < q3 ≤ q4,
a3 = ([r2, r3], [r1, r4]), r1 ≤ r2 < r3 ≤ r4, a4 = ([s2, s3], [s1, s4]), s1 ≤ s2 < s3 ≤ s4;
b1 = ([x2, x3], [x1, x4]), x1 ≤ x2 < x3 ≤ x4, b2 = ([y2, y3], [y1, y4]), y1 ≤ y2 < y3 ≤ y4,
b3 = ([u2, u3], [u1, u4]), u1 ≤ u2 < u3 ≤ u4, b4 = ([v2, v3], [v1, v4]), v1 ≤ v2 < v3 ≤ v4.

Therefore [pζ + qη] = (p · a1 + q · b1, p · a2 + q · b2, p · a3 + q · b3, p · a4 + q · b4), where

(p · a1 + q · b1) = ([p · p2 + q · x2, p · p3 + q · x3], [p · p1 + q · x1, p · p4 + q · x4]),
p · p1 + q · x1 ≤ p · p2 + q · x2 < p · p3 + q · x3 ≤ p · p4 + q · x4,

(p · a2 + q · b2) = ([p · q2 + q · y2, p · q3 + q · y3], [p · q1 + q · y1, p · q4 + q · y4]),
p · q1 + q · y1 ≤ p · q2 + q · y2 < p · q3 + q · y3 ≤ p · q4 + q · y4,

(p · a3 + q · b3) = ([p · r2 + q · u2, p · r3 + q · u3], [p · r1 + q · u1, p · r4 + q · u4]),
p · r1 + q · u1 ≤ p · r2 + q · u2 < p · r3 + q · u3 ≤ p · r4 + q · u4,

(p · a4 + q · b4) = ([p · s2 + q · v2, p · s3 + q · v3], [p · s1 + q · v1, p · s4 + q · v4]),
p · s1 + q · v1 ≤ p · s2 + q · v2 < p · s3 + q · v3 ≤ p · s4 + q · v4.

From the Proposition 3.10 we have that expected value

E[pζ + qη] =
1
16

4∑
i=1

((p · pi + q · xi) + (p · qi + q · yi) + (p · ri + q · ui) + (p · si + q · vi))

=
1
16

4∑
i=1

(p · (pi + qi + ri + si) + q · (xi + yi + ui + vi))

= p
1
16

4∑
i=1

(pi + qi + ri + si) + q
1
16

4∑
i=1

(xi + yi + ui + vi)

= pE[ζ] + qE[η].

�
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Theorem 3.12 ([37]). Let x̃ijk are a trapezoidal fuzzy-rough variable, defined as:
x̃ijk = (xijk1, xijk2, xijk3, xijk4) with xijks |= ([xijks2, xijks3], [xijks1, xijks4]), for i = 1, 2, . . . ,m; j = 1, 2, . . . , n;
k = 1, 2, . . . ,K; s = 1, 2, 3, 4, where xijks1 ≤ xijks2 < xijks3 ≤ xijks4, then E[x̃ijk] =
1
16

∑4
s=1

∑4
u=1 xijksu ∀ i, j, k.

Proof. This theorem is the generalized form of Proposition 3.10. The proof of this theorem is also apparent by
taking the expected values of fuzzy-rough variable from Definitions 3.7 and 3.8. �

Authors [32] used this defuzzification technique in their proposed study to transform two-fold uncertainty
into deterministic form and applied in a MOFCTP with multi-item and conveyance constraints.

Whenever x̃ijk are triangular fuzzy-rough variable, defined as: x̃ijk = (xijk1, xijk2, xijk3) with
xijks |= ([xijks2, xijks3], [xijks1, xijks4]), for i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . ,K; s = 1, 2, 3,
where xijks1 ≤ xijks2 < xijks3 ≤ xijks4, then E[x̃ijk] = 1

12

∑3
s=1

∑4
u=1 xijksu ∀ i, j, k.

4. Problem background

In this section, the first subsection contains a list of notations with their usual meanings, and assumptions
are considered in next subsection to formulate a model of MOFCTP with truck load constraints and product
blending constraints in fuzzy-rough environment.

4.1. Notations

The following notations are used to describe our proposed mathematical model as:

Parameters

i: number of sources,
j: number of TSs,
k: number of destinations,
c̃
1
ij : transportation cost for unit quantity of the products from ith source to jth TS,

c̃
2
jk: transportation cost for unit quantity of the products from jth TS to kth destination,

D1
ij : distance from ith source to jth TS,

D2
jk: distance from jth TS to kth destination,

F̃
1

ij : type-II fixed-charge or general charge for truck load constraints of the product transported from ith
source to jth TS,

F̃
2

jk: type-II fixed-charge or general charge for truck load constraints of the product transported from jth TS
to kth destination,

W : weight capacity of the vehicle,
α̃j : transfer cost for unit product at jth TS,
f̃ j : type-I fixed-charge for unit product at jth TS,

t̃
1

ij : time of transportation of the products from ith source to jth TS,

t̃
2

jk: time of transportation of the products from jth TS to kth destination,
ãi: amount of product available at ith source,
b̃k: demand of product at kth destination,

eCO2 : rate of carbon emission of the vehicle per unit item and per unit distance,
pi: normal purity of product available at ith source,

pmin
j : minimum purity of product required at jth TS,
pmin
k : minimum purity of product required at kth destination,
Z̃l: the objective function in fuzzy-rough (i.e., two-fold uncertainty) nature (l = 1, 2, 3),
Zl: the expected value of objective function Z̃l, (l = 1, 2, 3).
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Decision variables

xij : amount of products that to be transported from ith source to jth TS,
yjk: amount of products that to be transported from jth TS to kth destination,
δ1ij : integer variable occurs from ith source to jth TS for truck load constraints which is defined as:

δ1ij =


0, if xij = 0,

integral part of
(xij

W

)
+ 1, if xij > 0 and remainder of

(xij

W

)
> 0,

integral part of
(xij

W

)
, if xij > 0 and remainder of

(xij

W

)
= 0,

δ2jk: integer variable uses from jth TS to kth destination for truck load constraints which is stated as:

δ2jk =


0, if yjk = 0,

integral part of
(yjk

W

)
+ 1, if yjk > 0 and remainder of

(yjk

W

)
> 0,

integral part of
(yjk

W

)
, if yjk > 0 and remainder of

(yjk

W

)
= 0.

Binary variables

φ (
∑
ixij): binary variable takes the value “1” if

∑
i xij > 0 used and “0” otherwise, i.e.,

φ
(∑

i
xij

)
=
{

1, if
∑
ixij > 0,

0, otherwise,

η1
ij : binary variable selects the value “1” if the xij > 0 and “0” otherwise, i.e.,

η1
ij =

{
1, if xij > 0,
0, otherwise,

η2
jk: binary variable chooses the value “1” if the yjk > 0 and “0” otherwise, i.e.,

η2
jk =

{
1, if yjk > 0,
0, otherwise.

4.2. Assumptions

The following assumptions are taken into consideration to describe our proposed mathematical model as:

– ãi > 0, b̃k > 0 ∀ i, k.
– x, y are the vectors consisting of xij , yjk ∀ i, j, k respectively.
– No items deteriorate during transportation.
– Elapsed time of TS is not considered.

4.3. Model formulation

Transportation cost has a major role on the total network charge and therefore we concentrate our focus
on transportation cost and also on transportation time, carbon emission. These objects are optimized through
proper planning and management. The best optimal allocation for transportation with low vehicle capacity
based on source, demand, product blending constraints and truck load constraints are used in this model. To
formulate the mathematical model, we consider xij and yjk are two continuous decision variables which denote
the amount of product transported from ith source to jth TS and jth TS to kth destination respectively. Also
pi be the normal quality of product such that the average value quality of product meets at jth TS and kth

destination as
∑

i pixij∑
i xij

and
∑

j p
min
j yjk∑
j yjk

, j = 1, 2, . . . , n, k = 1, 2, . . . ,K respectively.
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Since, pmin
j and pmin

k are the minimum quality of the product which are required at jth TS and kth destination,

therefore we introduce the following constraints as:
∑

i pixij∑
i xij

≥ pmin
j ;

∑
j p

min
j yjk∑
j yjk

≥ pmin
k , i.e., the linear forms are∑

i(pi − pmin
j )xij ≥ 0 and

∑
j(p

min
j − pmin

k )yjk ≥ 0, j = 1, 2, . . . , n; k = 1, 2, . . . ,K. In our formulated model,
we add these constraints as product blending constraints which are defined the average quality of all products
received at TSs and destinations. The aim of our formulated model is to minimize total transportation cost
including type-I fixed-charge and transfer cost. Also to minimize carbon emission and time which are required
for transporting products from supplier to consumer through TS. Hence three objective functions have different
units. The respective units are as cost in $, total carbon emission in ton and time in hour. Therefore three
objective functions cannot follow the arithmetic addition and we are not able to minimize them by summing
them adjacently. Again we consider the parameter related to carbon emission in crisp nature, whereas cost
parameter and time parameter are considered in fuzzy-rough nature depending on several unpredictable data.
Also transportation time and carbon emission during transportation are contradict to each other. To reduce
transportation time, the vehicle speed is to be increased and then total carbon emission with total cost of
transportation are increased. Therefore transportation time is inversely proportional to carbon emission and
cost. With such circumstances, the problem becomes multi-objective with each objective function contradicts
to each other. Henceforth the formulated model of MOFCTP with product blending linear constraints, TS and
truck load constraints is defined as:

Model 1

minimize Z̃1(x, y) =
m∑
i=1

n∑
j=1

(
c̃
1
ijxij + F̃

1

ijδ
1
ij

)
+

n∑
j=1

K∑
k=1

(
c̃
2
jkyjk + F̃

2

jkδ
2
jk

)

+
n∑
j=1

f̃ j · φ

(
m∑
i=1

xij

)
+

n∑
j=1

α̃j ·

(
m∑
i=1

xij

)

minimize Z2(x, y) =

 m∑
i=1

n∑
j=1

D1
ijxij +

n∑
j=1

K∑
k=1

D2
jkyjk

 eCO2

minimize Z̃3(x, y) =
m∑
i=1

n∑
j=1

t̃
1

ijη
1
ij +

n∑
j=1

K∑
k=1

t̃
2

jkη
2
jk

subject to
n∑
j=1

xij ≤ ãi (i = 1, 2, . . . ,m),

n∑
j=1

yjk ≥ b̃k (k = 1, 2, . . . ,K),

m∑
i=1

(
pi − pmin

j

)
xij ≥ 0 (j = 1, 2, . . . , n),

n∑
j=1

(
pmin
j − pmin

k

)
yjk ≥ 0 (k = 1, 2, . . . ,K),

m∑
i=1

xij =
K∑
k=1

yjk (j = 1, 2, . . . , n),

xij ≥ 0, yjk ≥ 0,∀ i, j, k.
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The feasibility condition of this TP is chosen as follows:

m∑
i=1

ãi ≥
K∑
k=1

b̃k.

In Model 1, we consider most of parameters are in fuzzy-rough nature. In this model, the first and second part
of objective function of Z̃1(x, y) represent the transportation cost and type-II fixed-charge or general charge for
truck load constraints from ith source to jth TS and from jth TS to kth destination respectively. Hence fixed-
charge is considered for vehicle capacity that reduces into truck load constraints, and this fixed-charge depends
on the transported amount of items. The third part is the general fixed-charge (i.e., type-I fixed-charge) at jth
TS which is independent on transported amount of items, and fourth part exists for transfer cost at jth TS.
Second objective function Z2(x, y) considers the carbon emission from ith source to kth destination through jth
TS. Also third objective function Z̃3(x, y) presents the total transportation time from ith source to jth TS and
then jth TS to kth destination. In this model, we choose two types of fixed-charges, one is type-I fixed-charge
f̃ j for jth TS, and second one is type-II fixed charge F̃ ij and F̃ jk which are also used as general charge for
truck load constraints. Also δ1ij and δ2jk are defined the number of slots (i.e., integer variable) for the case of
truck load constraints and fractional variables for the case of type-II fixed-charge. The 1st and 2nd constraints
are defined as source and demand constraints. Also 3rd and 4th constraints are product blending constraints.
5th constraints indicate the transfer constraints, i.e., total supplied items are distributed to their destinations
without any deterioration. Supply and demand parameters are considered in fuzzy-rough nature and the purity
levels are in crisp nature. Non-negativity restrictions are defined by 6th constraints. We use the notation with
abbreviation (̃:) for fuzzy-rough parameters in the model.

4.4. Equivalent deterministic model

We cannot directly extract the solution of MOFCTP due to the existence of fuzzy-rough variables. So we
take the advantage of the expected-value operator E (defined in Def. 3.6) to transform Model 1 into crisp form.

Theorem 4.1 ([17]). Let c̃
1
ij, c̃

2
jk, F̃

1

ij, F̃
2

jk, f̃ j, α̃j, t̃
1

ij, t̃
2

jk, ãi and b̃k are independent fuzzy-rough variables
corresponding to the regular fuzzy-rough distributions φ

c̃
1
ij

, φ
c̃
2
jk

, φ
F̃

1

ij

, φ
F̃

2

jk

, φ˜
fj

, φα̃j
, φ

t̃
1
ij

, φ
t̃
2
jk

, φãi
and φ˜

bk

respectively.

Therefore, the deterministic equivalents expected value model is presented by Model 2 as follows:

Model 2

minimize E
[
Z̃1(x, y)

]
=

m∑
i=1

n∑
j=1

[
xij

∫ 1

0

φ−1

c̃
1
ij

(β)dβ + δ1ij

∫ 1

0

φ−1

F̃
1

ij

(β)dβ
]

+
n∑
j=1

K∑
k=1

[
yjk

∫ 1

0

φ−1

c̃
2
jk

(β)dβ + δ2jk

∫ 1

0

φ−1

F̃
2

jk

(β)dβ
]

+
n∑
j=1

[
φ

(
m∑
i=1

xij

)
·
∫ 1

0

φ−1
˜
fj

(β)dβ

]
+

n∑
j=1

[(
m∑
i=1

xij

)
·
∫ 1

0

φ−1

α̃j
(β)dβ

]

minimize Z2(x, y) =

 m∑
i=1

n∑
j=1

D1
ijxij +

n∑
j=1

K∑
k=1

D2
jkyjk

 eCO2
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minimize E
[
Z̃3(x, y)

]
=

m∑
i=1

n∑
j=1

[
η1
ij

∫ 1

0

φ−1

t̃
1
ij

(β)dβ
]

+
n∑
j=1

K∑
k=1

[
η2
jk

∫ 1

0

φ−1

t̃
2
jk

(β)dβ
]

subject to
n∑
j=1

xij ≤
[∫ 1

0

φ−1

ãi
(β)dβ

]
(i = 1, 2, . . . ,m), (4.1)

n∑
j=1

yjk ≥
[∫ 1

0

φ−1
˜
bk

(β)dβ
]

(k = 1, 2, . . . ,K), (4.2)

m∑
i=1

[
pi − pmin

j

]
xij ≥ 0 (j = 1, 2, . . . , n), (4.3)

n∑
j=1

[
pmin
j − pmin

k

]
yjk ≥ 0 (k = 1, 2, . . . ,K), (4.4)

m∑
i=1

xij =
K∑
k=1

yjk (j = 1, 2, . . . , n), (4.5)

xij ≥ 0, yjk ≥ 0,∀ i, j, k. (4.6)

The feasibility condition of this TP is written as:

m∑
i=1

∫ 1

0

φ−1

ãi
(β)dβ ≥

K∑
k=1

∫ 1

0

φ−1
˜
bk

(β)dβ.

Models 1 and 2 have (mn + nK) number of variables in second and third objective function, and in the first
objective function exists (mn+nK+n) number of variables (for type-II fixed-charge case) and (2mn+2nK+n)
number of variables (for truck load constraints case). Total number of constraints in each model is equal to
(m+ 2n+ 2K +mn+ nK).

Definition 4.2. Pareto-optimal solution of Model 2 is a feasible solution (x∗, y∗) = {(x∗ij , y∗jk) : i = 1, 2, . . . ,m;
j = 1, 2, . . . , n; k = 1, 2, . . . ,K} such that there exists no other feasible solution (x, y) = {(xij , yjk) : i =
1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . ,K} with Zl(x, y) ≤ Zl(x∗, y∗), l = 1, 2, 3 and Zl(x, y) < Zl(x∗, y∗)
for at least one l.

5. Solution methodology

In multi-objective optimization problem, there does not always subsist a solution which is the best for all the
objective functions. Again objective functions are contradict to each other. That is the solution will be the best
for one objective function and that may be worst for another objective function.

To achieve Pareto-optimal solution there exist various fuzzy and non-fuzzy techniques. Most commonly
used non-fuzzy techniques are as: goal programming (GP), ε-constraint method [31], weighted sum method,
global criteria method (GCM) [5, 31], etc. Again most general fuzzy techniques are fuzzy programming (FP)
[5, 21, 25, 32], fuzzy goal programming (FGP), fuzzy TOPSIS approach [32], Intuitionistic fuzzy programming
(IFP) [29], Intuitionistic fuzzy TOPSIS approach [29], neutrosophic linear programming (NLP) [4]. All these
methods are applicable for finding Pareto-optimal solution of any multi-objective decision making problem.
Among these methods we select two fuzzy methods namely FP and NLP, and one non-fuzzy method is GCM
which are very simple with less computational time for deriving the optimal solution of the proposed model.
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Table 2. Pay-off matrix.

Z1 Z2 Z3

X1
∗ Z1(X1

∗) Z2(X1
∗) Z3(X1

∗)
X2

∗ Z1(X2
∗) Z2(X2

∗) Z3(X2
∗)

X3
∗ Z1(X3

∗) Z2(X3
∗) Z3(X3

∗)

5.1. Fuzzy programming (FP)

FP was initiated by Zimmerman [41] for solving multi-objective optimization problem and it is very easy for
finding solution. Therefore to find overall Pareto-optimal solution, we take the advantage of FP which is applied
to solve MOFCTP. Hence to solve the proposed Model 2 in FP, we depict the steps as:

Step 5.1.1. Transform the fuzzy-rough problem into crisp problem using expected value operator.
Step 5.1.2. Solve each objective function independently with subject to all constraints.
Step 5.1.3. Select the tolerance of each objective function.
Step 5.1.4. Determine the positive ideal solution (PIS) and negative ideal solution (NIS) obtained from pay-off

matrix, displaying in Table 2 and defined as PIS = Zl
∗ = min {Zl(X1

∗), Zl(X2
∗), Zl(X3

∗)} (l = 1, 2, 3)
and NIS = Zl

′ = max {Zl(X1
∗), Zl(X2

∗), Zl(X3
∗)} (l = 1, 2, 3) respectively.

Step 5.1.5. Formulate the membership function µl(Zl(x, y)) corresponding to each objective function
Zl(x, y); (l = 1, 2, 3).

µl(Zl(x, y)) =


1, if Zl(x, y) ≤ Ll,
Ul−Zl(x,y)
Ul−Ll

, if Ll ≤ Zl(x, y) ≤ Ul,
0, if Zl(x, y) ≥ Ul,

Here Ul = PIS for Zl, and Ll = NIS for Zl.
Step 5.1.6. Maximize the formulated membership function, and then single objective linear programming

model with θ as aspiration level, is defined as:

Model 3A

maximize θ

subject to µl(Zl(x, y)) ≥ θ, (l = 1, 2, 3),
θ ∈ [0, 1],
Constraints (4.1)−(4.6).

Model 3A is transformed into simplified form which is Model 3B as:

Model 3B

maximize θ

subject to Zl(x, y) + (Ul − Ll)θ ≤ Ul, (l = 1, 2, 3),
θ ∈ [0, 1],
Constraints (4.1)−(4.6).

Step 5.1.7. Solve Model 3B by LINGO iterative scheme and GAMS software with parameter θ.

Theorem 5.1. If (x∗, y∗) = {(xij , yjk) : i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . ,K} is an optimal solution
of Model 3B then it is also Pareto-optimal (non-dominated) solution of Model 2.
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Proof. Let (x∗, y∗) is not a Pareto optimal (non-dominated) solution of Model 2. Therefore, from Def. 4.1,
we consider that there exist at least one x and at least one y such that Zl(x, y) ≤ Zl(x∗, y∗) for l = 1, 2, 3
and Zl(x, y) < Zl(x∗, y∗) for at least one l. Therefore membership function µl(Zl(x, y)) is strictly decreasing
with respect to the corresponding objective function Zl in [0, 1]. Hence µl(Zl(x, y)) ≥ µl(Zl(x∗, y∗)) ∀ l and
µl(Zl(x, y)) > µl(Zl(x∗, y∗)) for at least one l. Now θ = min {µl(Zl(x, y))} ≥ min {µl(Zl(x∗, y∗))} = θ∗ which
is a contradiction that (x∗, y∗) is an optimal solution of Model 3B. Here θ∗ is the value of θ at (x∗, y∗). This
completes the proof of the theorem. �

5.2. Neutrosophic linear programming (NLP)

Here, we improve NLP to derive the Pareto-optimal solution of multi-objective decision making problem.
NLP is a modified and extended method that finds the Pareto-optimal solution of multi-objective problem.
Neutrosophic set was defined by Smarandache [33] with incorporating truth membership function, indeterminacy
membership function and falsity membership function for every objective function. In this programming we
maximize the truth and indeterminacy membership functions whereas minimize falsity membership function.
As the truth membership function is chosen for maximum and the falsity membership function is minimum, so
the solution that extracted from NLP is very close to Pareto-optimal solution of the corresponding model. To
solve the proposed model by NLP, we describe the following steps as:

Step 5.2.1. Transform the fuzzy-rough problem into crisp problem by expected value operator.
Step 5.2.2. Solve each objective function individually with subject to all constraints.
Step 5.2.3. Determine the upper bound and lower bound i.e., PIS and NIS for each objective function from

pay-off matrix defined in Step 5.1.4.
Step 5.2.4. Design the truth membership function and indeterminacy membership function with highest degree

and falsity membership function with least degree.
Step 5.2.5. Setting the tolerance and constructing the membership functions according to the bounds as:

Tl(Zl(x, y)) =


1, if Zl(x, y) ≤ LTl ,
1− Zl(x,y)−LT

l

UT
l −L

T
l

, if LTl ≤ Zl(x, y) ≤ UTl ,
0, if Zl(x, y) ≥ UTl ,

Il(Zl(x, y)) =


0, if Zl(x, y) ≤ LIl ,
1− Zl(x,y)−LI

l

UI
l −L

I
l

, if LIl ≤ Zl(x, y) ≤ U Il ,
0, if Zl(x, y) ≥ U Il ,

Fl(Zl(x, y)) =


0, if Zl(x, y) ≤ LFl ,
1− Zl(x,y)−LF

l

UF
l −L

F
l

, if LFl ≤ Zl(x, y) ≤ UFl ,
1, if Zl(x, y) ≥ UFl ,

Here UTl = Ul = PIS for Zl, and LTl = Ll = NIS for Zl; UFl = UTl , LFl = LTl + tl(UTl − LTl ); LIl = LTl ,
U Il = LTl + sl(UTl − LTl ); tl, sl ∈ (0, 1) are predetermined real numbers.

Step 5.2.6. Choose the values of θ, η and ζ in [0, 1] for each neutrosophic number as the truth, indeterminacy
and falsity degrees respectively.

Step 5.2.7. Constitute NLP that represents in Model 4A.
Model 4A

maximize Tl(Zl(x, y)) (l = 1, 2, 3)
maximize Il(Zl(x, y)) (l = 1, 2, 3)
minimize Fl(Zl(x, y)) (l = 1, 2, 3)

subject to Constraints (4.1)−(4.6).

Model 4A can be reduced to Model 4B as:
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Model 4B

maximize θ

maximize η

minimize ζ

subject to Tl(Zl(x, y)) ≥ θ, Il(Zl(x, y)) ≥ η, Fl(Zl(x, y)) ≤ ζ,
θ + η + ζ ≤ 3, θ + η + ζ ≥ 0, θ ≥ ζ, θ ≥ η,
θ, η, ζ ∈ [0, 1], (l = 1, 2, 3),
Constraints (4.1)−(4.6).

Now the simplified model of NLP (Model 4B) that derives the Pareto-optimal solution of MOTP (i.e., Model
4C) as follows:

Model 4C

maximize θ + η − ζ
subject to Zl(x, y) + (UTl − LTl )θ ≤ UTl ,

Zl(x, y) + (U Il − LIl )η ≤ U Il ,
Zl(x, y)− (UFl − LFl )ζ ≤ UFl ,
θ + η + ζ ≤ 3, θ + η + ζ ≥ 0, θ ≥ ζ, θ ≥ η,
θ, η, ζ ∈ [0, 1], (l = 1, 2, 3),
Constraints (4.1)−(4.6).

Step 5.2.8. Solve Model 4C by LINGO iterative scheme and GAMS software, and obtain Pareto-optimal
solution.

Theorem 5.2. If (x∗, y∗) = {(xij , yjk) : i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . ,K} is an optimal
solution of Model 4C then it is also Pareto-optimal (non-dominated) solution of Model 2.

Proof. Let (x∗, y∗) is not a Pareto optimal (non-dominated) solution of Model 2. Therefore, from Def. 4.1,
we choose that there exist at least one x and one y such that Zl(x, y) ≤ Zl(x∗, y∗) for l = 1, 2, 3 and
Zl(x, y) < Zl(x∗, y∗) for at least one l. Therefore truth and indeterminacy membership functions µl(Zl(x, y))
and σl(Zl(x, y)) are strictly decreasing with respect to the corresponding objective function Zl in [0, 1]
respectively. Again the falsity membership function νl(Zl(x, y)) strictly increases with respect to the objec-
tive function Zl in [0, 1]. Hence µl(Zl(x, y)) ≥ µl(Zl(x∗, y∗)) ∀ l and µl(Zl(x, y)) > µl(Zl(x∗, y∗)) for at
least one l. Similarly σl(Zl(x, y)) ≥ σl(Zl(x∗, y∗)) ∀ l and σl(Zl(x, y)) > σl(Zl(x∗, y∗)) for at least one l.
Also νl(Zl(x, y)) ≤ νl(Zl(x∗, y∗)) ∀ l and νl(Zl(x, y)) < νl(Zl(x∗, y∗)) for at least one l. Now (θ + η − ζ)
= min {µl(Zl(x, y)), σl(Zl(x, y)), νl(Zl(x, y))} ≥ min {µl(Zl(x∗, y∗)), σl(Zl(x∗, y∗)), νl(Zl(x∗, y∗))} =
(θ∗ + η∗ − ζ∗) which is a contradiction that (x∗, y∗) is an optimal solution of Model 4C. Here θ∗, η∗ and
ζ∗ are the values of θ, η and ζ at (x∗, y∗) respectively. This ends the proof of the theorem. �

5.3. Global criteria method (GCM)

Here we recall another modified and advanced approach GCM that provides the Pareto-optimal solution
of multi-objective problem by minimizing the distance between some reference points in the feasible objective
region. Since Model 2 does not provide overall Pareto-optimal solution, therefore to find overall Pareto-optimal
solution, GCM for Model 2 can be depicted by the following steps as:
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Step 5.3.1. Transform the fuzzy-rough problem into crisp problem with help of expected value operator.
Step 5.3.2. Solve each objective function independently with subject to all constraints.
Step 5.3.3. Determine the PIS (UTl ) and NIS (LTl ) value of each objective function Zl from pay-off table

defined in Step 5.1.4 and formulate the crisp model is as:

Model 5

minimize F (x) =
[∑3

l=1

(
Zl(x)− UTl
LTl − UTl

)q] 1
q

subject to Constraints (4.1)−(4.6).

Here q = 1, used for Manhattan distance; q = 2, used for Euclidean distance; and q =∞, used for Tchebycheff
distance.

Step 5.3.4. Solve Model 5 by LINGO iterative scheme and GAMS software, and we achieve the Pareto-optimal
solution.

Definition 5.3. The Pareto-optimal solution of GCM is defined as the minimum distance between the ideal
solution and the desired solution in feasible region. If Zl∗ is the ideal solution of the objective function Zl then
the Pareto-optimal solution of Model 2 is defined as Zl∗ = min ||Zl′ − Zl||∞ ∀ l.

5.4. Contributions and limitations of proposed approach

In this subsection, we define main contributions and limitations of our proposed model as:

– Our proposed model is solved with help of three methods such as FP, NLP and GCM in which NLP which
is modified and the most preferable approach, as it is not only find the membership function value but also
maximize truth and indeterminacy membership value and minimize falsity membership value. This method
leads the Pareto-optimal solution which is very close to an exact solution.

– In competitive economic condition and industrial problem, where single uncertainty is not capable to tackle
the situation, and hence this situation is tackled by considering fuzzy-rough environment which is known as
two-fold uncertainty.

– TP always relates with vehicle capacity, and again that capacity may be greater or less than the compared
transported amount of items. For the fact of low vehicle capacity we consider truck load constraints and
the transportation is completed with repeated number of slots which are the integers defined as δ1ij and δ2jk.
For transportation cost, we consider two situations. One case is type-II fixed-charge that depends on total
amount of items. Another case is the truck load constraints, where cost depends on a number of slots. These
two cases lead to contradictory situation as the total transportation cost is different in two cases. Hence
we verify two cases and also prefer a better case by observing the outcomes and investigating the results of
numerical examples.

– TS is another step between source and destination that made the transportation system is to more flexible
and easy. As it helps to reduce air pollution, reduce traffic, gives information about passing of average
number of vehicles for a period of time and minimize maintenance cost by transferring the product item
with small transfer cost and fixed-charge (type-I). Our proposed problem is handled by considering two
decision variables, one from source to TS and another from TS to destination by keeping fixed with all other
required conditions.

– For industrial planning problem where product blending is an important fact to provide the materials with
minimum quality that to be required at destination. In our model, we include product blending constraints
that may optimize the allocation of transportation by blending raw materials with different purity levels.

– The first limitation of our proposed model is that we cannot consider the vehicle capacity which is larger
than the transported amount (i.e., STP case). And on that case we do not analyze the transportation cost,
fixed-charge, transfer cost, transported time and carbon emission, etc. Also here we choose only one type
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Table 3. Purity level, weight capacity and CO2 emission.

Purity level p1 = 98%, p2 = 90%, p1
1 = 95%, p2

1 = 85%, p1
2 = 93%, p2

2 = 90%, p3
2 = 80%.

Weight capacity W = 1351.5(litres)= 8.5(barrel).
CO2 emission eCO2 = 0.00013 ton/km.

Table 4. Distance D1
ij and D2

jk in km.

D1
ij D1

11 = 250, D1
12 = 300;

D1
21 = 275, D1

22 = 315

D2
jk D2

11 = 300, D2
12 = 270,

D2
13 = 250; D2

21 = 350,
D2

22 = 200, D2
23 = 215.

Table 5. Supply and demand in fuzzy-rough.

Supply ã1 = (a1 − 5, a1 − 4, a1 + 4, a1 + 5),
a1 = ([42.5, 43.0][42.0, 43.5]);
ã2 = (a2 − 5, a2 − 4, a2 + 4, a2 + 5),
a2 = ([52.0, 52.5][51.5, 53.0]).

Demand b̃1 = (b1 − 6, b1 − 5, b1 + 5, b1 + 6),
b1 = ([21.2, 21.8][21.0, 22.0]);

b̃2 = (b2 − 6, b2 − 5, b2 + 5, b2 + 6),
b2 = ([21.0, 21.5][20.8, 22.0]);

b̃3 = (b3 − 6, b3 − 5, b3 + 5, b3 + 6),
b3 = ([20.0, 20.5][19.0, 21.0]).

of vehicle (i.e., same weight capacity), not different type of vehicles (i.e., different weight capacities) which
may be made the system more flexible.

6. Case study

To validate the formulated model, we consider two numerical examples. Example 1 is a simple problem with
small size, but Example 2 is a case study with large size in realistic data which is obtained from three industrial
plants. These two problems with the data are briefly defined subsequently as follows:

Example 6.1. Here we assume two sources (i = 1, 2), two TSs (j = 1, 2) and three destinations (k = 1, 2, 3)
with maximum availability and minimum demand. Type-I fixed-charge for TS, transfer cost, weight capacity of
vehicle, rate of carbon emission, normal purity of product available at source, required at TS and destination,
supply from source, demand of destination, transportation cost, distance, transportation time, type-II fixed-
charge or general charge are all given in Tables 3–12. Hence all the data except distance, carbon emission, weight
capacity of vehicle and purity of product are all fuzzy-rough nature.

Utilizing the data from Tables 3–12 in Model 2, we offer Model 6 as below:
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Table 6. Type-1 fixed-charge and transfer cost in fuzzy-rough.

Fixed-charge f̃1 = (f1 − 3, f1 − 2, f1 + 2, f1 + 3), f1 = ([5, 9][4, 11]);

f̃2 = (f2 − 3, f2 − 2, f2 + 2, f2 + 3), f2 = ([7, 10][5, 12]).

Transfer cost α̃1 = (α1 − 4, α1 − 3, α1 + 3, α1 + 4), α1 = ([6, 8][5, 10]);
α̃2 = (α2 − 4, α2 − 3, α2 + 3, α2 + 4), α2 = ([7, 10][6, 12]).

Table 7. Transportation cost c̃
1
ij ($) in fuzzy-rough.

c̃
1
ij

c̃
1
11 (c111 − 2, c111 − 1, c111 + 1, c111 + 2),

c111 = ([6, 10][4, 13]);

c̃
1
12 (c112 − 2, c112 − 1, c112 + 1, c112 + 2),

c112 = ([4, 7][3, 12]);

c̃
1
21 (c121 − 2, c121 − 1, c121 + 1, c121 + 2),

c121 = ([5, 9][4, 15]);

c̃
1
22 (c122 − 2, c122 − 1, c122 + 1, c122 + 2),

c122 = ([8, 11][6, 17]).

Table 8. Transportation cost c̃
2
jk ($) in fuzzy-rough.

c̃
2
jk

c̃
2
11 (c211 − 2, c211 − 1, c211 + 1, c211 + 2),

c211 = ([4, 6][3, 8]);

c̃
2
12 (c212 − 2, c212 − 1, c212 + 1, c212 + 2),

c212 = ([5, 9][3, 13]);

c̃
2
13 (c213 − 2, c213 − 1, c213 + 1, c213 + 2),

c213 = ([6, 8][4, 10]);

c̃
2
21 (c221 − 2, c221 − 1, c221 + 1, c221 + 2),

c221 = ([6, 10][5, 12]);

c̃
2
22 (c222 − 2, c222 − 1, c222 + 1, c222 + 2),

c222 = ([5, 7][3, 10]);

c̃
2
23 (c223 − 2, c223 − 1, c223 + 1, c223 + 2),

c223 = ([7, 9][5, 14]).

Model 6

minimize Z1 = (8.25 + 71.25/8.5)x11 + (6.5 + 67.5/8.5)x12 + (8.25 + 75/8.5)x21

+(10.5 + 82.5/8.5)x22 + (5.25 + 78.75/8.5)y11 + (7.5 + 72.5/8.5)y12
+(7 + 83.75/8.5)y13 + (8.25 + 81.25/8.5)y21 + (6.25 + 85/8.5)y22
+(8.75 + 87.5/8.5)y23 + 7.25φ(x11 + x21) + 8.5φ(x12 + x22)
+7.25(x11 + x21) + 8.75(x12 + x22)
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Table 9. Transportation time t̃
1

ij (hour) in fuzzy-rough.

t̃
1

ij

t̃
1

11 (t111 − 4, t111 − 3, t111 + 3, t111 + 4),
t111 = ([8, 9][6, 12]);

t̃
1

12 (t112 − 4, t112 − 3, t112 + 3, t112 + 4),
t112 = ([4, 7][2, 10]);

t̃
1

21 (t121 − 4, t121 − 3, t121 + 3, t121 + 4),
t121 = ([8, 11][7, 16]);

t̃
1

22 (t122 − 4, t122 − 3, t122 + 3, t122 + 4),
t122 = ([5, 7][3, 10]).

Table 10. Transportation time t̃
2

jk (hour) in fuzzy-rough.

t̃
2

jk

t̃
2

11 (t211 − 4, t211 − 3, t211 + 3, t211 + 4),
t211 = ([4, 8][2, 10]);

t̃
2

12 (t212 − 4, t212 − 3, t212 + 3, t212 + 4),
t212 = ([6, 9][5, 12]);

t̃
2

13 (t213 − 4, t213 − 3, t213 + 3, t213 + 4),
t213 = ([7, 10][5, 14]);

t̃
2

21 (t221 − 4, t221 − 3, t221 + 3, t221 + 4),
t221 = ([5, 8][3, 10]);

t̃
2

22 (t222 − 4, t222 − 3, t222 + 3, t222 + 4),
t222 = ([7, 10][5, 14]);

t̃
2

23 (t223 − 4, t223 − 3, t223 + 3, t223 + 4),
t223 = ([9, 11][7, 15]);

Table 11. Type-II fixed-charge or general charge F̃
1

ij ($) in fuzzy-rough.

F̃
1

ij

F̃
1

11 (F 1
11 − 3, F 1

11 − 2, F 1
11 + 2, F 1

11 + 3),
F 1

11 = ([60, 80][55, 90]);

F̃
1

12 (F 1
12 − 3, F 1

12 − 2, F 1
12 + 2, F 1

12 + 3),
F 1

12 = ([55, 80][50, 85]);

F̃
1

21 (F 1
21 − 3, F 1

21 − 2, F 1
21 + 2, F 1

21 + 3),
F 1

21 = ([70, 80][65, 85]);

F̃
1

22 (F 1
22 − 3, F 1

22 − 2, F 1
22 + 2, F 1

22 + 3),
F 1

22 = ([80, 85][75, 90]).
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Table 12. Type-II fixed-charge or general charge F̃
2

jk ($) in fuzzy-rough.

F̃
2

jk

F̃
2

11 (F 2
11 − 3, F 2

11 − 2, F 2
11 + 2, F 2

11 + 3),
F 2

11 = ([70, 90][60, 95]);

F̃
2

12 (F 2
12 − 3, F 2

12 − 2, F 2
12 + 2, F 2

12 + 3),
F 2

12 = ([65, 80][55, 90]);

F̃
2

13 (F 2
13 − 3, F 2

13 − 2, F 2
13 + 2, F 2

13 + 3),
F 2

13 = ([75, 95][65, 100]);

F̃
2

21 (F 2
21 − 3, F 2

21 − 2, F 2
21 + 2, F 2

21 + 3),
F 2

21 = ([75, 85][70, 95]);

F̃
2

22 (F 2
22 − 3, F 2

22 − 2, F 2
22 + 2, F 1

22 + 3),
F 2

22 = ([80, 90][70, 100]);

F̃
2

23 (F 2
23 − 3, F 2

23 − 2, F 2
23 + 2, F 1

23 + 3),
F 2

23 = ([85, 90][80, 95]).

minimize Z2 = 0.00013(250x11 + 300x12 + 275x21 + 315x22 + 300y11 + 270y12
+250y13 + 350y21 + 200y22 + 215y23)

minimize Z3 = 8.75η1
11 + 5.75η1

12 + 10.5η1
21 + 6.25η1

22 + 6η2
11 + 8η2

12 + 9η2
13 + 6.5η2

21

+9η2
22 + 10.5η2

23

subject to x11 + x12 ≤ 42.75, x21 + x22 ≤ 52.25,
y11 + y21 ≥ 21.5, y12 + y22 ≥ 21.325, y13 + y23 ≥ 20.125,
0.03x11 − 0.05x21 ≥ 0, 0.13x12 + 0.05x22 ≥ 0,
0.02y11 − 0.08y21 ≥ 0, 0.05y12 − 0.05y22 ≥ 0, 0.15y13 + 0.05y23 ≥ 0,
x11 + x21 = y11 + y12 + y13, x12 + x22 = y21 + y22 + y23,

xij ≥ 0, yjk ≥ 0,∀ i, j, k.

Example 6.2. In this example, we represent a case study with realistic data which are collected from three
(m = 3) reputed petroleum refinery companies. They collect crude oil by outsourcing through vessels and
keep into storage tanks. Since crude oils are collected from various sources, the average purity levels of each
company might differ and these are blended in charging tanks prior to distribution. The characteristic of a
particular gasoline blend is to prevent igniting too early and it is measured by its octane rating, which is
produced in several classes. Gasoline is a blending product and the requirement of minimum RON (research
octane number) in market is 91. Actually, an isomeric form of octane i.e., isooctane (2,2,4 trimethyl pentane)
has octane number 100. All refineries do not produce the same product. Different companies often blend different
hydrocarbons aromatics and other ingredients in varying proportions with the crude oil as per their own choice
and requirement for maintaining quality of the gasolines they produce. We connect with three companies namely
Indian Oil Corporation Limited (IOCL) from Paradip Refinery (Odisha), IOCL from Haldia Refinery company
(West Bengal), and Hindustan Petroleum Corporation Limited (HPCL) from Visakhapatnam Refinery (Andhra
Pradesh) who supply different types of gasoline. In this problem we have survey that the report of one type
of blended gasoline collected from these three companies with different purity levels for existence of different
rating of octane number. The average octane ratings of gasoline 1, gasoline 2 and gasoline 3 obtained from
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Table 13. Distance D1
ij and D2

jk in km.

D1
ij D1

11 = 410, D1
12 = 365, D1

13 = 280;
D1

21 = 320, D1
22 = 395, D1

23 = 430;
D1

31 = 340, D1
32 = 385, D1

33 = 420.

D2
jk D2

11 = 325, D2
12 = 390, D2

13 = 440,
D2

14 = 500; D2
21 = 380, D2

22 = 405,
D2

23 = 460; D2
24 = 305; D2

11 = 290,
D2

12 = 340, D2
13 = 415, D2

14 = 495.

Table 14. Supply and demand in fuzzy-rough.

Supply

ã1 = (a1 − 8, a1, a1 + 8), a1 = ([54, 58][50, 62]);
ã2 = (a2 − 6, a2, a2 + 6), a2 = ([48, 50][46, 52]);
ã3 = (a3 − 8, a3, a3 + 8), a3 = ([56, 60][52, 64]).
Demand

b̃1 = (b1 − 4, b1, b1 + 4), b1 = ([32, 34][30, 36]);

b̃2 = (b2 − 5, b2, b2 + 5), b2 = ([40, 45][35, 50]);

b̃3 = (b3 − 7, b3, b3 + 7), b3 = ([42, 44][40, 46]);

b̃4 = (b4 − 6, b4, b4 + 6), b4 = ([39, 41][37, 43]);

three sources are at least p1 = 90%, p2 = 95% and p3 = 98% respectively. The shifted gasolines are then
transported to various distribution centers by tankers through TS. Here we select four distribution centers
(K = 4) which are situated in the states of Jharkhand, Bihar, Madhya Pradesh and Chattisgarh of India
and three TSs (n = 3) between distribution centers and supply centers. The required average octane rating
of gasoline of TS and distribution centers are respectively defined as (p1

1 = 87%, p1
2 = 93%, p1

3 = 96%) and
(p2

1 = 85%, p2
2 = 90%, p2

3 = 92%, p2
4 = 95%). Our problem is to transport these gasolines to their destinations by

minimum transportation cost, transfer cost with type-I fixed-charge and type-II fixed-charge or general charge,
minimum carbon emission and minimum time by considering product blending constraints without ignoring
the source and demand. In this processing system most of the data (except distance, carbon emission, weight
capacity of vehicle and purity of product) are considered as fuzzy-rough (triangular) due to various unexpected
critical situations. All the data are represented in Tables 13–21. Here cost considering in $ per unit, total carbon
emission in ton and time in hour. Also weight capacity, W = 1271.84/1272(litres) = 8(barrel) and rate of CO2

emission, eCO2 = 0.00020 ton/km.

Here the tabulated data are transformed into crisp data by expected value operator defined by Definition 3.6
and the deterministic model is formulated as of Model 6/Model 2. To find overall Pareto-optimal solution of
both examples, we use FP, referred to Subsection 5.1; NLP, mentioned to Subsection 5.2 and GCM, discussed
to Subsection 5.3.

7. Computational results and discussion

In this section we compute the results of our proposed problem that obtained with the help of three methods.
The following is the Pareto-optimal solution of each method.

FP: Following the Subsection 5.1 and using the LINGO iterative scheme and GAMS, we calculate the solutions
for both examples as:
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Table 15. Type-1 fixed-charge and transfer cost in fuzzy-rough.

Fixed-charge

f̃1 = (f1 − 4, f1, f1 + 4), f1 = ([7, 11][3, 15]);

f̃2 = (f2 − 2, f2, f2 + 2), f2 = ([5, 6][4, 7]);

f̃3 = (f3 − 3, f3, f2 + 3), f3 = ([7, 9][5, 11]).
Transfer cost

α̃1 = (α1 − 2, α1, α1 + 2), α1 = ([4, 5][3, 6]);
α̃2 = (α2 − 3, α2, α2 + 3), α2 = ([6, 8][4, 10]);
α̃3 = (α3 − 4, α3, α3 + 4), α2 = ([7, 9][5, 11]);

Table 16. Transportation cost c̃
1
ij ($) in fuzzy-rough.

c̃
1
ij

c̃
1
11 = (c111 − 3, c111, c

1
11 + 3), c111 = ([5, 6][4, 7]);

c̃
1
12 = (c112 − 2, c112, c

1
12 + 2), c112 = ([6, 7][5, 8]);

c̃
1
13 = (c113 − 1, c113, c

1
13 + 1) c113 = ([8, 10][6, 12]);

c̃
1
21 = (c121 − 2, c121, c

1
21 + 2), c121 = ([4, 5][3, 6]);

c̃
1
22 = (c122 − 2, c122, c

1
22 + 2), c122 = ([7, 9][5, 11]);

c̃
1
23 = (c123 − 2, c123, c

1
23 + 2) c123 = ([5, 7][3, 9]).

Table 17. Transportation cost c̃
2
jk ($) in fuzzy-rough.

c̃
2
jk

c̃
2
11 = (c211 − 3, c211, c

2
11 + 3), c211 = ([6, 9][3, 12]);

c̃
2
12 = (c212 − 3, c212, c

2
12 + 3), c212 = ([7, 10][4, 13]);

c̃
2
13 = (c213 − 3, c213, c

2
13 + 3), c213 = ([6, 7][5, 8]);

c̃
2
14 = (c214 − 3, c214, c

2
14 + 3), c214 = ([6, 8][4, 10]);

c̃
2
21 = (c221 − 2, c221, c

2
21 + 2), c221 = ([5, 6][4, 7]);

c̃
2
22 = (c222 − 2, c222, c

2
22 + 2), c222 = ([7, 8][6, 9]);

c̃
2
23 = (c223 − 2, c223, c

2
23 + 2), c223 = ([8, 11][5, 14]);

c̃
2
24 = (c224 − 2, c224, c

2
24 + 2), c224 = ([7, 9][5, 11]);

c̃
2
31 = (c231 − 2, c231, c

2
31 + 2), c223 = ([5, 6][4, 7]);

c̃
2
32 = (c222 − 2, c222, c

2
22 + 2), c222 = ([8, 10][6, 12]);

c̃
2
33 = (c223 − 2, c223, c

2
23 + 2), c223 = ([8, 9][7, 10]);

c̃
2
34 = (c224 − 2, c224, c

2
24 + 2), c224 = ([5, 7][3, 9]).



FUZZY-ROUGH MULTI-OBJECTIVE PRODUCT BLENDING FIXED-CHARGE TRANSPORTATION PROBLEM S2947

Table 18. Transportation time t̃
1

ij (hour) in fuzzy-rough.

t̃
1

ij

t̃
1

11 = (t111 − 4, t111, t
1
11 + 4), t111 = ([11, 13][9, 15]);

t̃
1

12 = (t112 − 4, t112, t
1
12 + 4), t112 = ([10, 12][8, 14]);

t̃
1

13 = (t113 − 4, t113 + 3, t113 + 4) t113 = ([6, 8][4, 10]);

t̃
1

21 = (t121 − 3, t121, t
1
21 + 3), t121 = ([7, 9][5, 11]);

t̃
1

22 = (t122 − 3, t122, t
1
22 + 3), t122 = ([9, 10][8, 11]);

t̃
1

23 = (t123 − 3, t123, t
1
23 + 3) t123 = ([11, 12][10, 13]);

t̃
1

31 = (t131 − 3, t131, t
1
31 + 3), t131 = ([8, 10][6, 12]);

t̃
1

32 = (t132 − 3, t132, t
1
32 + 3), t132 = ([6, 8][4, 10]);

t̃
1

33 = (t133 − 3, t133, t
1
33 + 3) t133 = ([10, 11][9, 12]).

Table 19. Transportation time t̃
2

jk (hour) in fuzzy-rough.

t̃
2

jk

t̃
2

11 = (t211 − 4, t211, t
2
11 + 4), t211 = ([7, 9][5, 11]);

t̃
2

12 = (t212 − 4, t212, t
2
12 + 4), t212 = ([8, 10][6, 12]);

t̃
2

13 = (t213 − 4, t213, t
2
13 + 4), t213 = ([10, 12][8, 14]);

t̃
2

14 = (t214 − 4, t214, t
2
14 + 4), t214 = ([11, 13][9, 15]);

t̃
2

21 = (t221 − 3, t221, t
2
21 + 3), t221 = ([9, 10][8, 11]);

t̃
2

22 = (t222 − 3, t222, t
2
22 + 3), t222 = ([9, 11][7, 13]);

t̃
2

23 = (t223 − 3, t223, t
2
23 + 3), t223 = ([11, 12][10, 13]);

t̃
2

24 = (t224 − 3, t224, t
2
24 + 3), t224 = ([7, 8][6, 9]);

t̃
2

31 = (t231 − 2, t231, t
2
31 + 2), t231 = ([6, 8][4, 10]);

t̃
2

32 = (t232 − 2, t232, t
2
32 + 2), t232 = ([8, 9][7, 10]);

t̃
2

33 = (t233 − 2, t233, t
2
33 + 2), t233 = ([10, 11][9, 12]);

t̃
2

34 = (t234 − 2, t234, t
2
34 + 2), t234 = ([12, 13][11, 14]).

Ex 1 (LINGO): θ = 1; x11 = 33.667, x12 = 9.083, x21 = 20.2, y11 = 21.5, y12 = 21.325, y13 = 11.042,
other variables are zero.

Ex 1 (GAMS): θ = 1; x11 = 42.75, x21 = 20.2, y11 = 21.5, y12 = 21.325, y13 = 20.125, other variables are
zero.

Ex 2 (LINGO): θ = 1; x11 = 22.995, x12 = 16.49, x13 = 16.515, x21 = 40.9, x22 = 3.6, x32 = 8.454,
x33 = 49.546, y11 = 23.534, y12 = 21.25, y13 = 19.111, y22 = 21.25, y24 = 7.294, y31 = 9.466,
y33 = 23.889, y34 = 32.706, other variables are zero.

Ex 2 (GAMS): θ = 1; x13 = 56, x21 = 49, x31 = 15.025, x32 = 36.795, x33 = 1.68, y12 = 28.33,
y13 = 35.692, y21 = 16.153, y23 = 7.308, y24 = 13.333, y31 = 16.847, y32 = 14.167, y34 = 26.667,
other variables are zero.
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Table 20. Type-II fixed-charge or general charge F̃
1

ij ($) in fuzzy-rough.

F̃
1

ij

F̃
1

11 = (F 1
11 − 3, F 1

11, F
1
11 + 3), F 1

11 = ([52, 54][50, 56]);

F̃
1

12 = (F 1
12 − 3, F 1

12, F
1
12 + 3), F 1

12 = ([46, 47][45, 48]);

F̃
1

13 = (F 1
13 − 3, F 1

13, F
1
13 + 3) F 1

13 = ([40, 42][38, 44])

F̃
1

21 = (F 1
21 − 4, F 1

21, F
1
21 + 4), F 1

21 = ([56, 57][55, 58]);

F̃
1

22 = (F 1
22 − 4, F 1

22, F
1
22 + 3), F 1

22 = ([54, 56][52, 58]).

F̃
1

23 = (F 1
23 − 4, F 1

23, F
1
23 + 3) F 1

23 = ([50, 52][48, 54])

F̃
1

31 = (F 1
31 − 2, F 1

31, F
1
31 + 2), F 1

31 = ([45, 50][40, 55]);

F̃
1

32 = (F 1
32 − 2, F 1

32, F
1
32 + 2), F 1

32 = ([47, 49][45, 51]).

F̃
1

33 = (F 1
33 − 2, F 1

33, F
1
33 + 2) F 1

23 = ([55, 60][50, 65])

Table 21. Type-II fixed-charge or general charge F̃
2

jk ($) in fuzzy-rough.

F̃
2

jk

F̃
2

11 = (F 2
11 − 3, F 2

11, F
2
11 + 3), F 2

11 = ([40, 45][35, 50]);

F̃
2

12 = (F 2
12 − 3, F 2

12, F
2
12 + 3), F 2

12 = ([48, 50][46, 52]);

F̃
2

13 = (F 2
13 − 3, F 2

13, F
2
13 + 3), F 2

13 = ([40, 42][38, 44]);

F̃
2

14 = (F 2
14 − 3, F 2

14, F
2
14 + 3), F 2

14 = ([45, 47][43, 49]);

F̃
2

21 = (F 2
21 − 4, F 2

21, F
2
21 + 4), F 2

21 = ([42, 44][40, 46]);

F̃
2

22 = (F 2
22 − 4, F 2

22, F
1
22 + 4), F 2

22 = ([50, 55][45, 60]);

F̃
2

23 = (F 2
23 − 4, F 2

23, F
1
23 + 4), F 2

23 = ([45, 47][43, 49]);

F̃
2

24 = (F 2
24 − 4, F 2

24, F
1
24 + 4), F 2

24 = ([41, 42][40, 43]);

F̃
2

21 = (F 2
21 − 4, F 2

21, F
2
21 + 4), F 2

31 = ([53, 56][50, 59]);

F̃
2

32 = (F 2
32 − 1, F 2

32, F
1
32 + 1), F 2

22 = ([60, 65][55, 70]);

F̃
2

23 = (F 2
33 − 1, F 2

33, F
1
33 + 1), F 2

23 = ([62, 64][60, 66]);

F̃
2

24 = (F 2
34 − 4, F 2

34, F
1
34 + 1), F 2

24 = ([50, 52][48, 54]).

NLP: Pursuing the Subsection 5.2 and using the LINGO iterative scheme and GAMS, we obtain the solutions
for both examples as:
Ex 1 (LINGO): θ = 1, η = 1, ζ = 0; x11 = 42.75, x21 = 20.2, y11 = 21.5, y12 = 21.325, y13 = 20.125,

other variables are zero.
Ex 1 (GAMS): θ = 1, η = 1, ζ = 0; x11 = 40.802, x12 = 1.948, x22 = 20.2, y11 = 21.5, y12 = 19.377,

y13 = 20.125, y22 = 1.948, other variables are zero.
Ex 2 (LINGO): θ = 1, η = 1, ζ = 0.10765 × 10−6; x12 = 44.833, x13 = 6.667, x21 = 49, x32 = 38,

x33 = 20, y11 = 33, y12 = 10.042, y13 = 5.958, y22 = 32.457, y23 = 37.042, y24 = 13.333, y34 = 26.667,
other variables are zero.
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Table 22. Obtained solution from FP, NLP and GCM.

Example 1(LINGO) Example 1(GAMS)

Method Zf
1 Zt

1 Z2 Z3 Zf
1 Zt

1 Z2 Z3

FP 2534.739 2860.037 4.37 58.5 2512.615 2754.162 4.352 42.25
NLP 2512.615 2754.162 4.352 42.25 2512.955 2833.747 4.348 57
GCM 2576.016 3063.945 4.314 73.75 2576.087 3063.992 4.316 73.75

Table 23. Obtained solution from FP, NLP and GCM.

Example 2(LINGO) Example 2(GAMS)

Method Zf
1 Zt

1 Z2 Z3 Zf
1 Zt

1 Z2 Z3

FP 5301.793 5723.767 24.356 140.5 5465.16 5786.638 22.14 118
NLP 5313.663 5628.161 23.533 113 5462.924 5782.924 21.828 108
GCM 5291.54 5555.915 23.613 122.5 5255.89 5628.516 21.89 110.5

Figure 2. Objective function Zf1 , Z
t
1 in FP, NLP and GCM.

Ex 2 (GAMS): θ = 1, η = 1, ζ = 0.002; x13 = 56, x21 = 44.5, x32 = 56.32, x33 = 1.68, y11 = 32.412,
y13 = 12.088, y22 = 12.075, y23 = 30.912, y24 = 13.333, y31 = 0.588, y32 = 30.425, y34 = 26.667,
other variables are zero.

GCM: Imitating the Subsection 5.3 and using the LINGO iterative scheme and GAMS, we derive the solutions
for both examples as:
(Here we consider q = 2, i.e., for the Euclidean distance)
Ex 1 (LINGO): x11 = 39.915, x12 = 2.835, x21 = 9.692, x22 = 10.508, y11 = 21.5, y12 = 10.662,

y13 = 17.445, y22 = 10.662, y23 = 2.68, other variables are zero.
Ex 1 (GAMS): x11 = 39.915, x12 = 2.835, x21 = 9.692, x22 = 10.508, y11 = 21.5, y12 = 10.663,

y13 = 17.445, y22 = 10.663, y23 = 2.68, other variables are zero.
Ex 2 (LINGO): x12 = 44.833, x13 = 6.667, x21 = 49, x32 = 38, x33 = 20, y11 = 20.583, y12 = 21.25,

y13 = 7.167, y21 = 12.417, y22 = 21.25, y23 = 35.833, y24 = 13.333, y34 = 26.667, other variables are
zero.

Ex 2 (GAMS): x13 = 56, x21 = 44.5, x32 = 56.32, x33 = 1.68, y11 = 2.391, y13 = 42.109, y22 = 42.5,
y23 = 0.487, y24 = 13.333, y31 = 30.609, y33 = 0.405, y34 = 26.667, other variables are zero.

Hence in our numerical examples we solve two types of problem, one is type-II fixed-charge and another is
truck load constraints. We also calculate the value of three objective functions defined in Tables 22 and 23. Here
Zf1 represents the transportation cost for the case of type-II fixed-charge. Zt1 expresses the transportation cost
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Figure 3. Objective function Z2, Z3 in FP, NLP and GCM.

for truck load constraints. Also Z2 and Z3 are the objective values of carbon emission and time of transportation
respectively. The optimal values of these objective functions are calculated in three approaches, which are FP,
NLP and GCM. Henceforth on comparing the results from Tables 22, 23 and Figures 2, 3, we always select the
case of type-II fixed-charge for low vehicle capacity. The obtained optimal solutions of our proposed model from
three methods are revealed that NLP provides a better result (indicated by bold face) than other two methods.

8. Managerial insights

Here, minimum transportation cost, transportation time and carbon emission are added in the formulation
model, that can be applicable to any private organization relating to transportation sector. The proposed model
provides a plan that helps to optimize the transportation policy by considering source, demand and product
blending constraints. The following managerial insights are drawn out through this study as follows:

– The proposed two-stage TP becomes more flexible in the presence of fuzzy-rough environment and helps the
decision makers to take the right decision easily in presence of any uncertainty.

– To justify the using of low vehicle capacity, there exist two different choices between truck load constraints
and type-II fixed-charge.

– For more flexibility of minimum transportation cost, type-II fixed-charge addresses an improved result for
multiple slots of low vehicle capacity and also provides less computational efforts than truck load constraints.

– From the discussion among the optimum values of the objectives, the organization can easily determine the
impact of truck load constraints and type-II fixed-charge, and with this experiment he/she will be certainly
select the best potential type of vehicles to pay minimum expense.

– Introduction of product blending as constraints in this formulated model plays positive role for customers’
satisfaction. Organization can improve the way for obtaining an economical opportunity by blending raw
materials. Also, both supply plants and demand plants are facilitated to realize considerable cost saving by
blending raw materials in flexible way that we define in our formulated model.

– From Tables 22 and 23, it is analyzed that transportation cost with other objectives leads to considerable
amount that can affect to design of any transportation network of any organizations or supply chain process
with multiple slots.

9. Conclusion and outlook to future research scopes

In our formulated MOTP, we have considered two conflicting cases for low vehicle capacity such as truck
load constraints and type-II fixed-charge. For truck load constraints, the cost depends only the number of slots
whereas for type-II fixed-charge, the cost depends on the transported amount of items. In the presence of TS, we
have incorporated the product blending constraints for transporting raw materials with different purity levels
that meet the consumer with minimum purity level. TS supplies several facilities to the whole transportation
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sector. These sectors obtain the survey report from TS about the flow of average number of conveyances per
day/per month/per year by connecting distinct supply plant to various demand plants. Also TS provides some
urgent/basic essential maintenance of vehicles that reduce some major/minor risks and a smooth transportation
obtain with optimum cost. By these services, TS yields transportation system to encourage fuel saving and helps
to shrink the rate of air pollution by controlling traffic system in relaxed way. In a complex uncertain system, we
have chosen fuzzy-rough data that adequate to tackle the situation. We have adopted three methods namely FP,
NLP and GCM for solving our designed multi-objective model. Two numerical examples have been illustrated
for showing the applicability and feasibility of the proposed model. A comparative study has been drawn among
the derived Pareto-optimal solutions from the three methods, and we have concluded that a better result has
been provided from NLP in compare to FP and GCM.

The content of the paper may be opened as a separate investigation for MOFCTP with truck load constraints
and TS extended in various uncertain environments such as random rough uncertainty [31], type-2 fuzzy set
[5], intuitionistic fuzzy set [26,29,30], etc. with linear or non-linear membership functions to accommodate the
real-life scenario. As the formulated model has a very generic structure, it can be easily applied in different
application based examples that face deep uncertainty and which involve various conflicting criteria/objectives,
such as supply chain network design, environmental risk with climate change, decision support systems and
portfolio management.
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