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Abstract
In this paper, we introduce some operations on a fuzzy neutrosophic soft set (fns-set)
by utilizing the theories of fuzzy sets, soft sets and neutrosophic sets. We introduce
fns-mappings by using a cartesian product with relations on fns-sets and establish
some results on fixed points of an fns-mapping. We present an algorithm to deal with
uncertainties in the multi-criteria decision making to slenderize energy crises by using
an fns-average operator and a comparison table for fns-sets.
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1 Introduction
Most of the problems in engineering, medical science, economics, environments etc. have
various uncertainties. To deal with uncertainties there are different theories including the
fuzzy set introduced by Zadeh [1], the soft set introduced by Molodtsov [2], the fuzzy soft
set (fs-sets) [3] and the fuzzy parameterized fuzzy soft set (fpfs-sets) [4, 5]. The intuition-
istic fuzzy set (if-set) introduced by Atanassov [6], which is an abstraction of fuzzy set.
Smarandache [7] introduced the neutrosophic logic and neutrosophic set with its opera-
tions and some significant outcomes.

A fuzzy set [1] is a significant mathematical model to characterize an assembling of
objects whose boundary is obscure. A soft set [2] is a mathematical tool to handle the
uncertainties associated with real world data-based problems. Fuzzy parameterized fuzzy
soft sets introduced in [4, 5] provide a very interesting extension of fuzzy sets and soft
sets. fpfs-sets provide a suitable degree of membership to both parameters and elements
of the initial universe.

This is motivated by the reality that humans tend to convey their views using a simple
language, which is always indeterminate, imprecise, incomplete, and inconsistent. This pa-
per introduces the concept of fuzzy neutrosophic soft (fns), in which truth-membership,
falsity-membership, and indeterminacy-membership are represented. That is why fns-
sets have a sound logic to represent the rationale of human choice and are a very useful
technique for finding fixed points of fns-mapping and modeling uncertainties in multi-
criteria decision making.

Abbas et al. [8, 9] introduced the notion of soft contraction mapping based on the the-
ory of soft elements of soft metric spaces. They studied fixed points of soft contraction
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mappings and obtained among others results, a soft Banach contraction principle. Akram
et al. [10, 11] presented certain types of soft graphs based on the soft set and some novel
applications of fuzzy soft graphs and m-polar fuzzy hypergraphs. Arockiarani et al. [12]
presented fns-topological spaces and showed some important resolutions on it. Feng et al.
studied soft sets, rough sets, fuzzy soft sets and presented an attribute analysis of informa-
tion systems based on elementary soft implications. They also established an adjustable
approach to fuzzy soft set-based decision making (see [13–16]). Smarandache et al. [17]
suggested the idea of single valued neutrosophic set. Karaaslan [18] investigated the neu-
trosophic soft set (ns-set) by Maji [19] and then redefine the notion of ns-set and cer-
tain operations with some changes and corrections. He showed some applications based
on ns-sets to decision-making problems. Riaz et al. [20–25] established some concepts
of soft sets together with soft algebra, soft σ -algebra, soft σ -ring, measurable soft set and
measurable soft mappings. They established certain properties of soft metric spaces. They
also studied a fuzzy parameterized fuzzy soft set (fpfs-set), anfpfs-topology and an fpfs-
metric space and presented certain applications based on fpfs-sets and fpfs-mappings to
the decision-making problems. Recently, Samet [26] defined generalized Meir-Keeler type
functions and proved some coupled fixed point theorems under a generalized Meir-Keeler
contractive condition. Jleli and Samet [27] introduced the concept of G-metric spaces and
the fixed point existing results of contractive mappings defined on such spaces. Chen and
Lin [28] obtained a soft metric version of the celebrated Meir-Keeler fixed point theorem.
Wardowski [29] familiarized a concept of mapping on soft sets and determined its fixed
point. A vast amount of mathematical activity has been carried out to obtain fixed points
of various mappings, as studied by many authors [8, 9, 26, 28–31]. In the present study, we
obtain some results on fixed points of fns-mappings. We introduce fns-mappings by using
the cartesian product with relations on fns-sets. We establish an outranking approach of
fpfs-set to reduce energy crises. The purpose of this research is to explore some occur-
rences of fixed points of fns-mapping and a very solid application of fpfs-sets, which will
be helpful to diminish energy crises.

Definition 1.1 ([7, 17]) Let X be the universal set and a neutrosophic set N is defined by
N = {〈δ, TN (δ), IN (δ), FN (δ)〉, δ ∈ X}, where T , I, F : X → ]–0, 1+[ and

–0 ≤ TN (δ) + IN (δ) + FN (δ) ≤ 3+,

where TN (δ) is the degree of membership, IN (δ) is the degree of indeterminacy and FN (δ)
is the degree of falsity of elements of the given set. The neutrosophic set yields the value
from real standard or non-standard subsets of ]–0, 1+[. It is difficult to utilize these values
in daily life science and technology problems. We consider the fuzzy neutrosophic set
to be given by [12], which takes the values of the degree of membership, the degree of
indeterminacy and the degree of falsity from the subset of [0, 1].

Definition 1.2 ([1]) A fuzzy set F in X is measured up by a mathematical mapping with
the domain as X and membership degrees in [0, 1]. The aggregation of all fuzzy sets in
universal set X is symbolized by F(X).
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Definition 1.3 ([12]) A fuzzy neutrosophic set (fn-set) A on the universal set X is defined
as A = {〈ζ , TA(ζ ), IA(ζ ), FA(ζ )〉, ζ ∈ X}, where T , I, F : X → [0, 1] and

0 ≤ TA(ζ ) + IA(ζ ) + FA(ζ ) ≤ 3.

Definition 1.4 ([2]) Let X be the universal set and R be the set of parameters or attributes
with A ⊆ R, the pair (F , A) is said to be a soft set over X, where F is a mathematical function
given by F : A → P(X). It can be written as

(F , A) =
{(

δ, F(δ)
)

: δ ∈ A
}

.

Definition 1.5 ([12]) Let X be the universal set and R be the set of attributes. We consider
the non-empty set A ⊆ R. Let P̂(X) denotes the assembling of all fuzzy neutrosophic sets
of X. The aggregation �A is called the fuzzy neutrosophic soft set (fns-set) over X, where
�A is a mathematical function given by �A : A → P̂(X). We can write it as

�A =
{(

δ,
{〈

ϕ, TA(δ)(ϕ), IA(δ)(ϕ), FA(δ)(ϕ)
〉
: ϕ ∈ X

})
: δ ∈ A

}
.

Note that if �A(δ) = {〈ϕ, 0, 1, 1〉 : ϕ ∈ X}, the fns-element (δ,�A(δ)) does not seem to be in
the fns-set �A. The assembling of all fns-sets over X is symbolized by fns(XR) or fns(X, R).

We define some operations for fns-sets which are different from operations of the fns-sets
in [12].

Definition 1.6 Let �A ∈ fns(XR). If TA(ζ )(ρ) = 0, IA(ζ )(ρ) = 1, FA(ζ )(ρ) = 1 ∀ζ ∈ R,ρ ∈ X,
then �A is named as null fns-set and symbolized by �φ .

Definition 1.7 Let �A ∈ fns(XR). If TA(ζ )(ρ) = 1, IA(ζ )(ρ) = 0, FA(ζ )(ρ) = 0 ∀ζ ∈ R,ρ ∈ X,
then �A is named as universal fns-set and symbolized by �R̂.

Definition 1.8 Let �A,�B ∈ fns(XR). �A is said to be fns-subset of �B, if TA(ζ )(ρ) ≤
TB(ζ )(ρ), IA(ζ )(ρ) ≥ IB(ζ )(ρ), FA(ζ )(ρ) ≥ FB(ζ )(ρ),∀ζ ∈ R,ρ ∈ X. We denote it by �A 
 �B.
�B is said to be an fns-superset of �A.

Definition 1.9 Let �A ∈ fns(XR). Then the complement of the fns-set �A is symbolized
by �c

A and delineated as follows:

�c
A =

{(
ζ ,

{〈
ρ, FA(ζ )(ρ), 1 – IA(ζ )(ρ), TA(ζ )(ρ)

〉
: ρ ∈ X

})
: ζ ∈ R

}
.

Definition 1.10 Let �A,�B ∈ fns(XR). Then the fns-union of the fns-sets �A and �B is
symbolized by �A � �B and delineated as follows:

�A � �B =
{(

ζ ,
{〈

ρ, TA(ζ )(ρ) ∨ TB(ζ )(ρ), IA(ζ )(ρ) ∧ IB(ζ )(ρ), FA(ζ )(ρ) ∧ FB(ζ )(ρ)
〉
:

ρ ∈ X
})

: ζ ∈ R
}

.
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Definition 1.11 Let �A,�B ∈ fns(XR). Then the fns-intersection of fns-sets �A and �B

is symbolized by �A � �B and delineated as follows:

�A � �B =
{(

ζ ,
{〈

ρ, TA(ζ )(ρ) ∧ TB(ζ )(ρ), IA(ζ )(ρ) ∨ IB(ζ )(ρ), FA(ζ )(ρ) ∨ FB(ζ )(ρ)
〉
:

ρ ∈ X
})

: ζ ∈ R
}

.

2 Some results on fns-mapping
In this section, we introduce the idea of fns-mappings and present some important defi-
nitions and properties of fns-mappings.

Definition 2.1 An fns-topological space (�N , τ ) is called fns-Hausdorff space if for dis-
tinct fns-elements �

ζ

A, �ζ ′
B of �N , there exist disjoint fns-open sets �A1 and �B1 such that

�
ζ

A ∈ �A1 and �
ζ ′
B ∈ �B1 .

Proposition 2.2 Let (�N , τ ) be an fns-topological space. An fns-set �A 
 �N is an fns-
open if and only if for every �

ζ
B ∈ �A there exists an fns-set �C ∈ τ such that

�
ζ
B ∈ �C 
 �A.

Proof Let �A ∈ τ . Then obviously for every �
ζ

A1
∈ �A we have �

ζ

A1
∈ �A 
 �A. Let �A 


�N be such that for every �
ζ

A1
∈ �A there subsists an fns-open set �

ζ

A1
such that �

ζ

A1
∈

�Aζ
1

 �A, which means that �

ζ

A1
(ζ ) ∈ �Aζ

1
(ζ ′) 
 �A(ζ ′) for each ζ ′ ∈ R, �A(ζ ) = �{�ζ

A1
:

�
ζ

A1
∈ �A} 
 ��Aζ

1
(ζ ) 
 �A(ζ ). Therefore, �A = {��Aζ

1
: ζ ∈ R} ∈ τ . �

Definition 2.3 The cartesian product of two fns-sets �A and �B is defined as an fns-
set �C = �A×̂�B where C = A × B and �C : C → fns(X, R) is delineated by �C(ζ , ζ ′) =
�A(ζ )×̂�B(ζ ′) for all (ζ , ζ ′) ∈ C, where �A(ζ )×̂�B(ζ ′) = {〈ρ, min{TA(ζ )(ρ), TB(ζ ′)(ρ)},
max{IA(ζ )(ρ), IB(ζ ′)(ρ)}, max{FA(ζ )(ρ), FB(ζ ′)(ρ)}〉 : ρ ∈ X}.

Example 2.4 Let X = {ρ1,ρ2} and R = {ζ1, ζ2} = A = B. Define fns-sets �A and �B as
follows: �A = {(ζ1, {〈ρ1, 0.8, 0.1, 0.3〉, 〈ρ2, 0.6, 0.7, 0.4〉}), (ζ2, {〈ρ1, 0.3, 0.7, 0.6〉, 〈ρ2, 0.1, 0.9,
0.3〉})}, �B = {(ζ1, {〈ρ1, 0.9, 0.7, 0.2〉, 〈ρ2, 0.3, 0.4, 0.2〉}), (ζ2, {〈ρ1, 0.1, 0.3, 0.6〉, 〈ρ2, 0.7, 0.3,
0.9〉})}. We use fns-sets in tabular form to make the calculations easy.

�A ζ1 ζ2

ρ1 (0.8, 0.1, 0.3) (0.3, 0.7, 0.6)
ρ2 (0.6, 0.7, 0.4) (0.1, 0.9, 0.3)

and
�B ζ1 ζ2

ρ1 (0.9, 0.7, 0.2) (0.1, 0.3, 0.6)
ρ2 (0.3, 0.4, 0.2) (0.7, 0.3, 0.9)

Then �A×̂�B = �C where C = A × B and �A(ζ )×̂�B(ζ ′) calculated as
�C (ζ1, ζ1) (ζ1, ζ2) (ζ2, ζ1) (ζ2, ζ2)

ρ1 (0.8, 0.7, 0.3) (0.1, 0.3, 0.6) (0.3, 0.7, 0.6) (0.1, 0.7, 0.6)
ρ2 (0.3, 0.7, 0.4) (0.6, 0.7, 0.9) (0.1, 0.9, 0.3) (0.1, 0.9, 0.9)

Definition 2.5 Let �A and �B be fns-sets in fns(X, R). An fns-set R is said to be an fns-
relation from �A to �B if R = �D where D ⊆ C = A × B and �D : D → fns(X, R) on D.
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Example 2.6 Let �A and �B be fns-sets in Example 2.4. Then R = {�A(ζ1)×̂�B(ζ1),
�A(ζ1)×̂�B(ζ2),�A(ζ2)×̂�B(ζ1)} is a fns-relation from �A to �B which itself is an
fns-set with {(ζ1, ζ1), (ζ1, ζ2), (ζ2, ζ1)} as a set of parameters. By �AR�B we mean that
�A(ζ1)×̂�B(ζ2) ∈R.

In the next definition, we introduce an fns-mapping.

Definition 2.7 Let �A and �B be fns-sets in fns(X, R). An fns-relation ϒ from �A to
�B is said to be an fns-mapping from �A to �B symbolized by ϒ : �A → �B if these
properties are gratified. C1: For every fns-element �

ζ

A1
∈ �A, there exists only one fns-

element �
ζ
B1

∈ �B such that

ϒ
(
�

ζ

A1

)
= �

ζ
B1

.

C2: For each empty fns-element �
ζ
φ ∈ �A, ϒ(�ζ

φ) is an empty fns-element for �B.

Definition 2.8 Let �A and �B be fns-sets in fns(X, R) and ϒ : �A → �B be an fns-
mapping. The image of �C 
 �A under fns-mapping ϒ is the fns-set ϒ(�C) defined
by ϒ(�C) = {⊔

�
ζ
A1

∈�C
ϒ(�ζ

A1
) : ζ ∈ R}. It is obvious that ϒ(�φ) = �φ for every fns-

mapping ϒ .

Definition 2.9 Let �A and �B be fns-sets in fns(X, R) and ϒ : �A → �B be an fns-
mapping. The inverse image of �D 
 �B under fns-mapping ϒ is the fns-set symbol-
ized by ϒ–1(�D) and delineated as ϒ–1(�D) = {{⊔

�
ζ
A1

∈�A
ϒ(�ζ

A1
) : ζ ∈ R} : ϒ(�ζ

A1
) ∈

�D for each ζ ∈ R}.

Example 2.10 Let �A and �B be given in Example 2.4. Define ϒ as ϒ(�ζ

A1
) = �̂

ζ
B1

for each ζ ∈ R, where �̂
ζ
B1

is the greatest fns-element for every attribute ζ ∈ R, that
is, if �

ζ
B1

is an arbitrary fns-element in �B then �
ζ
B1


 �̂
ζ
B1

. So, ϒ(�ζ1
A1

) = �̂
ζ1
B1

=
{〈ρ1, 0.9, 0.7, 0.2〉, 〈ρ2, 0.3, 0.4, 0.2〉} for all �

ζ1
A ∈ �A and ϒ(�ζ2

A1
) = �̂

ζ2
B1

= {〈ρ1, 0.1, 0.3, 0.6〉,
〈ρ2, 0.7, 0.3, 0.9〉} for all �

ζ2
A ∈ �A. Moreover, ϒ(�) = {⊔

�
ζ
A∈�C

ϒ(�ζ

A) : ζ ∈ R} =

{{⊔
�

ζ1
A ∈�C

ϒ(�ζ1
A )}, {⊔

�
ζ2
A ∈�C

ϒ(�ζ2
A )}} = {�̂ζ1

B , �̂ζ2
B } = �B.

Definition 2.11 Let (�A, τ ) be an fns-topological space and �B 
 �A. An fns-open cover
for �B is an assembling of fns-open sets {�α}α∈I 
 τ whose fns-union carries �B.

Definition 2.12 An fns-topological space (�A, τ ) is fns-compact if for every fns-open
cover {�α}α∈I of �B there subsists α1,α2,α3, . . . ,αk ∈ I, k ∈ N such that �B 
 ⊔k

n=1 �αn .

Definition 2.13 Let (�A, τ ), (�B, τ ′) be fns-topological spaces and ϒ : �A → �B an fns-
mapping. Then ϒ be an fns-continuous function if for every �B1 ∈ τ ′, ϒ–1(�B1 ) ∈ τ , that
is, the inverse image of an fns-open set is an fns-open set. An fns-set �C 
 �A is an fns-
compact in (�A, τ ) if the fns-topological space (�C , τC) is fns-compact.

Proposition 2.14 Let (�A, τ ) be an fns-compact topological space and ϒ : �A → �A an
fns-continuous function. Then ϒ(�A) is an fns-compact set in (�A, τ ).
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Proof Consider that ϒ(�A) 
 ⊔
i �i, where {�i} is an assembling of fns-open sets in �A.

Then taking the pre-image, we have �A 
 ϒ–1(
⊔

i �i). As ϒ–1(�i) is fns-open in �i so
there must exists fns-open �i 
 ϒ(�A) such that ϒ–1(�i) = �i � �A. So �A 
 ⊔

i(�i �
�A) implies that �A 
 ⊔

i �i. Since �A is an fns-compact set, there exist i1, i2, . . . , iα such
that �A 
 ⊔α

n=1 �in . Thus �A =
⊔

i(�i � �A) =
⊔α

n=1 ϒ–1(�in ) this implies that ϒ(�A) 

⊔α

n=1(�in ). Hence ϒ(�A) is fns-compact. �

3 Fixed points of fns-mappings
Definition 3.1 Let �A ∈ fns(X, R) be an fns-set and ϒ : �A → �A an fns-mapping. An
fns-element �

ζ

A ∈ �A is said to be a fixed point of ϒ if ϒ(�ζ

A) = �
ζ

A.

Example 3.2 If ϒ : �A → �A is an identity mapping, then every fns-element of �A is a
fixed point.

Proposition 3.3 Let (�A, τ ) be an fns-compact topological space and {�Aα : α ∈ N} a
countable assembling of fns-subsets of �A obeying:

(a) �Aα �= �φ for every α ∈ N ,
(b) �Aα is fns-closed for each α ∈ N ,
(c) �Aα+1 
 �Aα for each α ∈ N . Then ⊔α∈N �Aα �= �φ .

Proof Suppose on contrary that ⊔α∈N �Aα = �φ . We know that ( ⊔α∈N �Aα )c =
⊔

α∈N (�Aα )c. From (b), (�Aα )c is fns-open set for each α ∈ N . Hence �Aα 
 �R̃ = (�φ)c =
( ⊔α∈N �Aα )c =

⊔
α∈N (�Aα )c. As �A is fns-compact, there exists i1, i2, . . . , ik ∈ N , i1 <

i2 < · · · < ik , k ∈ N such that �A 
 �c
Ai1

� �c
Ai2

� · · · � �c
Aik

. Hence from (c) we have
�Aik


 �A 
 (�Ai1
��Ai2

�· · ·��Aik
)c = (�Aik

)c = �R̃/�Aik
, which is not possible by (a). �

Example 3.4 Let (�A, τ ) be an fns-topological space and �A given by �A = {(ζ1, {〈ρ1, 0.7,
0.2, 0.1〉, 〈ρ2, 0.5, 0.3, 0.4〉}), (ζ2, {〈ρ1, 0.9, 0.1, 0.3〉, 〈ρ2, 0.6, 0.4, 0.2〉})}. The tabular form is
given by

�A ζ1 ζ2

ρ1 (0.7, 0.2, 0.1) (0.9, 0.1, 0.3)
ρ2 (0.5, 0.3, 0.4) (0.6, 0.4, 0.2)

Let two fns-subsets of �A namely �A1 and �A2 be given as �A1 = {(ζ1, {〈ρ1, 0.6, 0.3, 0.4〉,
〈ρ2, 0.2, 0.9, 0.7〉}), (ζ2, {〈ρ1, 0.7, 0.5, 0.6〉, 〈ρ2, 0.3, 0.6, 0.3〉})} �A2 = {(ζ1, {〈ρ1, 0.7, 0.4, 0.5〉,
〈ρ2, 0.3, 0.9, 0.8〉}), (ζ2, {〈ρ1, 0.8, 0.6, 0.7〉, 〈ρ2, 0.5, 0.7, 0.4〉})} The tabular forms of these sets
are given below:

�A1 ζ1 ζ2

ρ1 (0.6, 0.3, 0.4) (0.7, 0.5, 0.6)
ρ2 (0.2, 0.9, 0.7) (0.3, 0.6, 0.3)

and
�A2 ζ1 ζ2

ρ1 (0.7, 0.4, 0.5) (0.8, 0.6, 0.7)
ρ2 (0.3, 0.9, 0.8) (0.5, 0.7, 0.4)

These sets gratify the properties of Proposition 3.3. Moreover, �A1 
 �A2 and ⊔

2
α=1 �Aα =

�A1 �= �φ .
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Proposition 3.5 Let (�A, τ ) be an fns-topological space and ϒ : �A → �A be an fns-
mapping such that for every non-empty fns-element �

ζ

A ∈ �A, ϒ(�ζ

A) is a non-empty fns-
element of �A. If ⊔α∈N ϒα(�A) contains only one non-empty fns-element �

ζ

A ∈ �A, then
�

ζ

Ais a unique fixed point of ϒ .

Proof Observe that ϒα(�A) 
 ϒα–1(�A) for each α ∈ N . Let �
ζ

A be an fns-element of
�A such that �

ζ

A ∈ ⊔α∈N ϒα(�A). That is, �
ζ

A 
 ⊔α∈N ϒα(�A). Consequently, ϒ(�ζ

A) 

ϒ( ⊔α∈N ϒα(�A)) 
 ⊔α∈N ϒα+1(�A) 
 ⊔α∈N ϒα(�A) = �

ζ

A. Since ϒ(�ζ

A) is a non-empty
fns-element of �A, we get ϒ(�ζ

A) = �
ζ

A. �

Example 3.6 Let (�A, τ ) be an fns-topological space and define ϒ : �A → �A as ϒ(�ζ

A) =
�̂

ζ

A for all �
ζ

A ∈ �A, where �A �= �φ and �̂
ζ

A represents the largest fns-element of �A or
equivalently �

ζ

A 
 �̂
ζ

A for each fns-element �
ζ

A ∈ �A. Then ⊔α∈N ϒα(�A) carries only
one non-empty fns-element �̂

ζ

A. Thus �̂
ζ

A is a unique fixed point of ϒ .

Proposition 3.7 Let (�A, τ ) be an fns-Hausdorff topological space. Then each fns-
compact set in �A is fns-closed in �A.

Proof Let �B be an fns-compact set in (�A, τ ), we here show that �B is fns-closed, that is,
�c

B is fns-open. Let �
ζ

A ∈ �c
B, for every �

ζ ′
A ∈ �B, let Uα , Vα ∈ τ be such that Uα � Vα = �φ

and �
ζ

A ∈ Uα ,�ζ ′
A ∈ Vα where α ∈ I . Since �B is fns-compact, there exist �

ζ ′
A ,�ζ ′

A , . . . ,�ζ ′
A ∈

�B such that �B 
 Vα1 � Vα2 � · · · � Vαk . Denote U = Uα1 � Uα2 � · · · � Uαk and V = Vα1 �
Vα2 � · · · � Vαk . Then �

ζ

A ∈ U ∈ τ , U � V = �φ , which implies that �
ζ

A ∈ U 
 �c
B. Thus �B

is fns-closed. �

Theorem 3.8 Let (�A, τ ) be an fns-Hausdorff topological space and ϒ : �A → �A an fns-
continuous function such that:

(a) for every non-empty fns-element �
ζ

A ∈ �B,ϒ(�ζ

A) is a non-empty fns-element of �B,
(b) for every fns-closed set �C 
 �B if ϒ(�C) = �C then �C contains only one

non-empty fns-element of �B. Then there subsists a unique non-empty fns-element
�

ζ

A ∈ �B such that ϒ(�ζ

A) = �
ζ

A.

Proof Suppose an assembling of fns-subsets of �B of the form Z1 = ϒ(�B), Z2 = ϒ(Z1),
Z3 = ϒ(Z2), . . . , Zα = ϒ(Zα–1) = ϒα(�B) for α ∈ N . It is clear that Zα 
 Zα–1 for every
α ∈ N . By Proposition 3.7, for every α ∈ N , Zα is fns-closed. Using Proposition 3.3,
it is clear that an fns-set �D of the form �D = ⊔α∈N Zα is non-empty. Observe that
ϒ(�D) = ϒ( ⊔α∈N ϒα(�B)) 
 ⊔α∈N ϒα+1(�B) 
 ⊔α∈N ϒα(�B) = �D. Next we will prove
that �D = ϒ(�D). For this purpose, consider that there subsists �

ζ

A ∈ �D such that �
ζ

A is
not an fns-element of ϒ(�D). Put Fα = ϒ–1(�ζ

A) � Zα . Let us observe that Fα �= �φ and
Fα 
 Fα–1 for each α ∈ N . By Proposition 3.3, there exists a non-empty fns-element �

ζ ′
A ∈

ϒ–1(�ζ

A) � �D and thus �
ζ

A = ϒ(�ζ ′
A ) ∈ ϒ(�D), a contradiction. Therefore, ϒ(�D) = �D.

Hence the result follows using Proposition 3.3. �

4 An application of the fns-set to multi-criteria decision making
Definition 4.1 ([32]) We have a matrix, where rows represent the person names p1, p2, p3,
. . . , pn and columns represent the parameters q1, q2, q3, . . . , qm. The entries εαβ are designed
by εαβ = a + b – c, where a is the number premeditated as how many times Tpα (qβ ) exceeds
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Table 1 fns-data

X Over
population

Wastage of
energy

Poor infras-
tructure

Poor distri-
bution
system

Major
accidents
and natural
calamities

Wars and
attacks

Over con-
sumption

ς1 (0.7, 0.1, 0.3) (0.8, 0.2, 0.3) (0.9, 0.2, 0.4) (0.9, 0.2, 0.1) (0.8, 0.1, 0.2) (0.8, 0.3, 0.3) (0.9, 0.2, 0.2)
ς2 (0.3, 0.5, 0.7) (0.4, 0.5, 0.1) (0.6, 0.1, 0.4) (0.4, 0.3, 0.1) (0.6, 0.1, 0.4) (0.5, 0.2, 0.1) (0.7, 0.1, 0.1)
ς3 (0.4, 0.2, 0.1) (0.7, 0.3, 0.2) (0.6, 0.5, 0.1) (0.6, 0.1, 0.2) (0.8, 0.7, 0.6) (0.6, 0.5, 0.3) (0.4, 0.1, 0.1)
ς4 (0.6, 0.2, 0.3) (0.5, 0.4, 0.4) (0.6, 0.5, 0.5) (0.5, 0.2, 0.1) (0.4, 0.1, 0.2) (0.5, 0.1, 0.2) (0.2, 0.1, 0.1)
ς5 (0.9, 0.1, 0.1) (0.8, 0.2, 0.2) (0.7, 0.1, 0.2) (0.9, 0.1, 0.2) (0.9, 0.2, 0.1) (0.8, 0.1, 0.3) (0.7, 0.2, 0.2)
ς6 (0.7, 0.2, 0.3) (0.8, 0.2, 0.2) (0.9, 0.1, 0.2) (0.6, 0.1, 0.2) (0.6, 0.2, 0.3) (0.6, 0.1, 0.4) (0.7, 0.2, 0.5)
ς7 (0.6, 0.1, 0.3) (0.7, 0.1, 0.2) (0.6, 0.1, 0.1) (0.6, 0.3, 0.4) (0.5, 0.1, 0.2) (0.6, 0.2, 0.1) (0.8, 0.1, 0.1)
ς8 (0.4, 0.3, 0.2) (0.5, 0.1, 0.4) (0.3, 0.1, 0.1) (0.4, 0.3, 0.2) (0.5, 0.2, 0.4) (0.4, 0.2, 0.3) (0.5, 0.5, 0.4)

or equals Tpγ (qβ ) for pα �= pγ ∀pγ ∈ X, b is the number premeditated as how many times
Ipα (qβ ) exceeds or equals Ipγ (qβ ) for pα �= pγ ∀pγ ∈ X and c is the number premeditated as
how many times Fpα (qβ ) exceeds or equals Fpγ (qβ ) for pα �= pγ ∀pγ ∈ X.

Application: An energy disaster is any substantial blockage in the provision of energy
resources to an economy. Energy is the supreme significant source of national power. Any
country cannot attain financial success and military strength without passable sources of
energy. Let X = {ς1,ς2,ς3, . . . ,ςm} be the universal set where the ςj, j = 1, 2, 3, . . . , m repre-
sent the possible solutions to reduce energy crises andR = {�1,�2,�3, . . . ,�n} be the assem-
bling of alternatives or causes which increase this problem by the criteria of the fns-set.
Here �i, i = 1, 2, 3, . . . , n is for the alternatives or causes for the criteria of the fns-set. Now
we demonstrate an algorithm for most suitable choice of an object.

Algorithm:
Input:
step 1: Construct the table of given data in the form of the fns-sets.
Output:
step 2: Calculate the average values by using fns-average operator,

Ak =
(∑n

i=1 Tij

n
,
∑n

i=1 Iij

n
,
∑n

i=1 Fij

n

)

for each i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , m.
step 3: Compute the comparison table CT by following Definition 4.1.
step 4: The maximum scored value should be more preferable from set X by using

maxj(Cj).

Example 4.2 Suppose that a country is facing energy crisis problems. The authorities
want to control this problem and create possible solutions to relieve it. Agreeing to a sur-
vey, experts find some main reasons of energy crises. They listed some possible solutions
to curb this problem. We construct here a fns-model to find the order-wise possible solu-
tions to curb this problem. The fns-information about the causes and possible solutions
is given in Table 1.

The set of possible solutions is represented by X = {ς1,ς2,ς3,ς4,ς5,ς6,ς7,ς8}, where:
ς1 = Buy energy efficient products;
ς2 = Lighting controls;
ς3 = Energy simulation;
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Table 2 fns-average table

X Average values

ς1 (0.828, 0.185, 0.257)
ς2 (0.5, 0.257, 0.271)
ς3 (0.585, 0.342, 0.228)
ς4 (0.471, 0.228, 0.257)
ς5 (0.814, 0.142, 0.185)
ς6 (0.7, 0.157, 0.3)
ς7 (0.628, 0.142, 0.2)
ς8 (0.428, 0.242, 0.285)

Table 3 fns-comparison table

CT Comparison values

ς1 7 + 3 – 4 = 6
ς2 2 + 6 – 4 = 4
ς3 3 + 7 – 2 = 8
ς4 1 + 4 – 4 = 1
ς5 6 + 1 – 0 = 7
ς6 6 + 2 – 7 = 1
ς7 4 + 1 – 1 = 4
ς8 0 + 5 – 6 = –1

ς4 = Common stand on climate change;
ς5 = Replacing thermal power fuel;
ς6 = Stand alone power projects;
ς7 = Use solar thermal;
ς8 = Perform energy audit.
The set of some basic causes is given by R = {�1,�2,�3,�4,�5,�6,�7}, where:
�1 = Over population;
�2 = Wastage of energy;
�3 = Poor infrastructure;
�4 = Poor dispersion scheme;
�5 = Major fortuities and instinctive disasters;
�6 = Wars and attacks;
�7 = Over consumption;
By applying the fns-average operator on Table 1 the average values are given in Table 2.
Comparison table for the above fns-set is calculated by using Definition 4.1 given in

Table 3.
The selection possibilities can be identified in the following order: ς3 � ς5 � ς1 � ς2 =

ς7 � ς4 = ς6 � ς8. It can be easily seen from the above relation that the first three maxi-
mum resulting values are given by ς3, ς5 and ς1, which shows that we should work on the
energy simulation and should buy energy efficient products with replacing thermal power
fuel.

5 Conclusion
Fuzzy neutrosophic soft set theory has various applications in science and engineering,
especially in the areas of neural networks, operations research, artificial intelligence and
decision making. On this theme, we put forward the idea of fns-mappings which is based
on an fns-element of an fns-set in the fns-topological space. We introduced the innovative
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idea of fixed points of fns-mappings. We presented an outranking approach of an fns-set
in the decision making to reduce energy crises.
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