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Abstract: Neutrosphic triplet is a new theory in neutrosophy. In a neutrosophic triplet set, there is a 

neutral element and antielement for each element. In this study, the concept of neutrosophic triplet 

partial metric space (NTPMS) is given and the properties of NTPMS are studied. We show that 

both classical metric and neutrosophic triplet metric (NTM) are different from NTPM. Also, we 

show that NTPMS can be defined with each NTMS. Furthermore, we define a contraction for 

NTPMS and we give a fixed point theory (FPT) for NTPMS. The FPT has been revealed as a very 

powerful tool in the study of nonlinear phenomena. This study is also part of the “Algebraic 

Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets” which is a 

special issue. 
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1. Introduction 

Neutrosophy was first studied by Smarandache in [1]. Neutrosophy consists of neutrosophic 

logic, probability, and sets. Actually, neutrosophy is generalization of fuzzy set in [2] and 

intuitionistic fuzzy set in [3]. Also, researchers have introduced neutrosophic theory in [4–6]. 

Recently, Olgun and Bal introduced the neutrosophic module in [7], Şahin, Uluçay, Olgun, and 

Kılıçman introduced neutrosophic soft lattices in [8], and Uluçay, Şahin, and Olgun studied soft 

normed rings in [9]. Furthermore, Smarandache and Ali studied NT theory in [10] and NT groups 

(NTG) in [11,12]. The greatest difference between NTG and classical groups is that there can be more 

than one unit element. That is, each element in a neutrosophic triplet group can be a separate unit 

element. In addition, the unit elements in the NTG must be different from the unit elements in the 

classical group. Also, a lot of researchers have introduced NT theory in [13–16]. Recently, 

Smarandache, Şahin, and Kargın studied neutrosophic triplet G-module in [17], and Bal, Shalla, and 

Olgun introduced neutrosophic triplet cosets and quotient groups in [18]. 

Matthew introduced the concept of partial metric spaces (PMS) in [19]. It is a generalization of 

usual metric space since self-distance cannot be zero in PMS. The most important use of PMS is to 

transfer mathematical techniques to computer science. Also, Matthew introduced Banach 

contraction theorem for PMS and a lot of researchers introduced PMS and its topological properties 

and FPT for PMS in [20–23]. If f is a mapping from a set E into itself, any element x of E, such that f(x) 

= x, is called a fixed point of f. Many problems, including nonlinear partial differential equations 

problems, may be recast as problems of finding a fixed point of a mapping in a space. Recently, 

Shukla introduced FPT for ordered contractions in partial b-metric space in [24]. Kim, Okeke, and 
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Lim introduced common coupled FPT for w-compatible mappings in PMS in [25]. Pant, Shukla, and 

Panicker introduced new FPT in PMS in [26].  

In this paper, we first introduced PMS and contraction in NT theory. So, we obtained a new 

structure for developing NT theory. Thus, researchers can arrive at nonlinear partial differential 

equations problem solutions in NT theory. In Section 2, we give some basic results and definitions 

for NTPM and NTM. In Section 3, NTPMS is defined and some properties of a NTPMS are given. It 

was shown that both the classical metric and NTM are different from the NTPM, and NTPMS can be 

defined with each NTMS. Furthermore, the convergent sequence and Cauchy sequence in NTPMS 

are defined. Also, complete NTPMS are defined. Later, we define contractions for NTPM and we 

give some properties of these contractions. Furthermore, we give a FPT for NTPMS. In Section 4, we 

give conclusions. 

2. Preliminaries 

We give some basic results and definitions for NTPM and NTM in this section. 

Definition 1 ([19]). Let A be nonempty set. If the function 𝑝𝑚:AxA → ℝ+ satisfies the conditions given 

below; p is called a PM. ⩝a, b, c ∈ A; 

(i) 𝑝𝑚(a, a) = 𝑝𝑚(b, b) = 𝑝𝑚(a, b) = 𝑝𝑚(b, a) ⟺ a = b; 

(ii) 𝑝𝑚(a, a) ≤ 𝑝𝑚(a, b);  

(iii) 𝑝𝑚(a, b) = 𝑝𝑚(b, a); 

(iv) 𝑝𝑚(a, c) ≤ 𝑝𝑚(a, b) + 𝑝𝑚(b, c) − 𝑝𝑚(b, b); 

Also, (A, 𝑝𝑚) is called a PMS. 

Definition 2 ([12]). Let N be a nonempty and # be a binary operation. Then, N is called a NT if the given below 

conditions are satisfied. 

(i) There is neutral element (neut(x)) for x ∈ N such that 

x*neut(x) = neut(x)* x = x. 

(ii) There is anti element (anti(x)) for x ∈ N such that  

x*anti(x) = anti(x)* x = neut(x). 

NT is shown by (x, neut(x), anti(x)). 

Definition 3 ([15]). Let (M, #) be a NTS and a#b ∊ N, ⩝ a, b ∊ M. NTM is a map 𝑑𝑇:MxM → ℝ+ ∪ {0} such 

that ⩝a, b, c ∈ M, 

(a) 𝑑𝑇(a, b) ≥ 0 

(b) If a = b, then 𝑑𝑇(a, b) = 0 

(c) 𝑑𝑇(a, b) = 𝑑𝑇(a, b) 

(d) If there exists any element c ∊ M such that  

𝑑𝑇(a, c) ≤ 𝑑𝑇(a, c*neut(b)), then 𝑑𝑇(a, c*neut(b)) ≤ 𝑑𝑇(a, b) + 𝑑𝑇(b, c). 

Also, ((M,*), 𝑑𝑇) space is called NTMS. 

3. Neutrosophic Triplet Partial Metric Space 

Partial metric is the generalization of usual metric space, since self-distance cannot be zero in 

partial metric space. The most important use of PMS is to transfer mathematical techniques to 

computer science. Also, If f is a mapping from a set E into itself, any element x of E such that f(x) = x is 

called a fixed point of f. Many problems, including nonlinear partial differential equations problems, 

may be recast as problems of finding a fixed point of a mapping in a space. In this section, we 

introduced firstly PMS and FPT in NT theory. So, we obtained a new structure for developing NT 

theory. Thus, researchers can arrive at nonlinear partial differential equations problem solutions in 

NT theory. 
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Definition 4. Let (A, #) be a NTS and a#b ∊ A, ⩝ a, b ∊ A. NTPM is a map 𝑝𝑁: AxA → ℝ+∪{0} such that ⩝ a, 

b, c ∈ A 

(i) 0 ≤ 𝑝𝑁(a, a) ≤ 𝑝𝑁(a, b) 

(ii) If 𝑝𝑁(a, a) = 𝑝𝑁(a, b) = 𝑝𝑁(b, b) = 0, then there exits any a, b such that a = b. 

(iii) 𝑝𝑁(a, b) = 𝑝𝑁(a, b) 

(iv) If there exists any element b ∊ A such that 𝑝𝑁(a, c) ≤ 𝑝𝑁(a, c#neut(b)), then 𝑝𝑁(a, c#neut(b)) ≤ 𝑝𝑁(a, b) + 

𝑝𝑁(b, c) − 𝑝𝑁(b, b) 

Additionally, ((A, #), 𝑝𝑁) is called NTPMS. 

Example 1. Let A be a nonempty set and P(A) be power set of A and m(X) be cardinal of X ∈ P(A). Where, it is 

clear that X ∪ X = X. Thus; we give that neut(X) = X and anti(X) = X for X ∈ P(A). So, (P(A), ∪) is a NTS. We 

give the function 𝑝𝑁: P(A)x P(A) → ℝ+ ∪ {0} such that 𝑝𝑁(X,Y) = max{m(X), m(Y)}. From Definition 4, 

(i), (ii) and (iii) are apparent. 

(iv) Let ∅ be empty element of P(X). Then, 𝑝𝑁(X, Y) = 𝑝𝑁(X, Y ∪ ∅) since for 𝑝𝑁(X, Y ∪ ∅) = 𝑝𝑁(X, Y) = 

max{m(X), m(Y)}. Also, it is clear that 

max{m(X), m(Y)} ≤ max{m(X), m(Z)}+ max{m(Z), m(Y)} – max {m(∅), m(∅)}. 

Therefore, 𝑝𝑁(X, Y∪∅) ≤ 𝑝𝑁 (X, ∅) + 𝑝𝑁(∅, Y) – 𝑝𝑁(∅, ∅). Thus, ((P(A), ∪), 𝑝𝑁) is a NTPMS. 

Corollary 1. NTPM is different from the partial metric. Because there isn’t a “#”binary operation and neutral 

of x in PMS. 

Corollary 2. Generally the NTPM is different from NT metric, since for 𝑝𝑁(x, x) ≥ 0. 

Theorem 1. Let A be a nonempty set and P(A) be power set of A and m(X) be cardinal of X ∈ P (A) and (P(A), 

#), d) be a NT metric space (NTMS). If there exists any Z ∈ P(A) such that 𝑚(𝑌#𝑛𝑒𝑢𝑡(𝑍) = m(Y); then 

((P(A), #), 𝑝𝑁) is a NTPMS such that 

𝑝𝑁(X, Y) = 
𝑑(𝑋,𝑌)+𝑚(𝑋)+𝑚(𝑌)

2
  

Proof. 

(i) 𝑝𝑁(X, X) = 
𝑑(𝑋,𝑋)+𝑚(𝑋)+𝑚(𝑋)

2
 = m(X) ≤ 

𝑑(𝑋,𝑌)+𝑚(𝑋)+𝑚(𝑌)

2
 = 𝑝𝑁(X, Y), since for d(X,X) = 0. Thus; 0 

≤ 𝑝𝑁(X, X) ≤ 𝑝𝑁(X, Y) for X, Y ∈ P(A). 

(ii) If 𝑝𝑁(X, X) = 𝑝𝑁(X, Y) = 𝑝𝑁(Y, Y) = 0, then  

(iii) 
𝑑(𝑋,𝑋)+𝑚(𝑋)+𝑚(𝑋)

2
 = 

𝑑(𝑋,𝑌)+𝑚(𝑋)+𝑚(𝑌)

2
 = 

𝑑(𝑌,𝑌)+𝑚(𝑌)+𝑚(𝑌)

2
 = 0 and 𝑑(𝑋, 𝑌) + 𝑚(𝑋) + 𝑚(𝑌 ) = 0. 

Where, m(X) = 0, m(Y) = 0 and 𝑑(𝑋, 𝑌) = 0. Thus, X = Y = ∅ (empty set). 

(iv) 𝑝𝑁(X, Y) = 
𝑑(𝑋,𝑌)+𝑚(𝑋)+𝑚(𝑌)

2
 = 

𝑑(𝑌,𝑋)+𝑚(𝑌)+𝑚(𝑋)

2
 = 𝑝𝑁(Y, X), since for 𝑑(X, Y)= 𝑑(Y, X). 

(v) We suppose that there exists any Z ∈ P(A) such that 𝑚(𝑌#neut(𝑍)) = m(Y) and 𝑝𝑁(𝑋, 𝑌) ≤ 

𝑝𝑁(𝑋, 𝑌#neut(𝑍)). Thus, 

𝑑(𝑋, 𝑌) + 𝑚(𝑋) + 𝑚(𝑌)

2
≤

𝑑(𝑋, 𝑌#neut(𝑍)) + 𝑚(𝑋) + 𝑚(𝑌#neut(𝑍)) 

2
 (1) 

From (1), 𝑑(𝑋, 𝑌) ≤ 𝑑(𝑋, 𝑌#neut(𝑍)). Since (P(A), #), d) is a NTMS, 

𝑑(𝑋, 𝑌#neut(𝑍)) ≤ 𝑑(𝑋, 𝑍) + 𝑑(𝑋, 𝑍) (2) 

From (1), (2) 

𝑑(𝑋,𝑌)+𝑚(𝑋)+𝑚(𝑌)

2
 ≤ 

𝑑(𝑋,Y#neut(Z))+𝑚(𝑋)+𝑚(Y#neut(Z)) 

2
 ≤ 

𝑑(𝑋,𝑍)+ d(𝑍,𝑌)+𝑚(𝑋)+𝑚(𝑌) + 𝑚(𝑍)

2
 = 

𝑑(𝑋,𝑍)+𝑚(𝑋)+𝑚(𝑍)

2
 + 

𝑑(𝑍,𝑌)+𝑚(𝑍)+𝑚(𝑌)

2
 – m(Z). Where, 𝑝𝑁(Z, Z) = m(Z). 

 

Thus, 𝑝𝑁(X, Y*neut(Z)) ≤ 𝑝𝑁(X, Z) + 𝑝𝑁(Z, Y) − 𝑝𝑁(Z, Z). Hence, ((P(A), #), 𝑝𝑁) is a NTPMS. □ 
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Theorem 2. Let (A, #) be a NT set, k ∈ ℝ+ and ((A, #), 𝑑𝑇) be a NTMS. Then; ((A, #), 𝑝𝑁) is a NTPMS such 

that 

𝑝𝑁(a, b) = 𝑑𝑇(a, b) + k, ∀ a, b ∈ A. 

Proof. 

(i) Since for 𝑑𝑇(a, a)= 0, 0 ≤ 𝑝𝑁(a, a) = 𝑑𝑇(a, a) + k = k ≤ 𝑝𝑁(a, b) = 𝑑𝑇(a, b) + k. Thus;  

(ii) 0 ≤ 𝑝𝑁(a, a) ≤ 𝑝𝑁(a, b). 

(iii) There do not exists a, b ∈ A such that 𝑝𝑁(a, a) = 𝑝𝑁(a, b) = 𝑝𝑁(b, b) = 0 since for k ∈ ℝ+ and 

𝑑𝑇(a, a) = 0. 

(iv) 𝑝𝑁(a, b) = 𝑑𝑇(a, b) + k = 𝑑𝑇(b, a) + k, since for 𝑑𝑇(a, b) = 𝑑𝑇(b, a). 

(v) Suppose that there exists any element c ∊ A such that 𝑝𝑁(a, b) ≤ 𝑝𝑁(a, b#neut(c)). Then 𝑑𝑇(a, b) 

+ k ≤ 𝑑𝑇(a, b#neut(c)) + k. Thus, 

𝑑𝑇(a, b) ≤ 𝑑𝑇(a, b#neut(c)) (3) 

Also, 

𝑑𝑇(a, b#neut(c)) ≤ 𝑑𝑇(a, c) + 𝑑𝑇(c, b) (4) 

since for ((A, #), 𝑑𝑇) is a NTMS. 

From (3) and (4), 

𝑝𝑁(a, b) ≤ 𝑝𝑁(a, b#neut(c)) = 𝑑𝑇(a, b#neut(c)) + k ≤ 𝑑𝑇(a, c) + 𝑑𝑇(c, b) + k = 𝑝𝑁(a, c) + 𝑝𝑁(c, b) − k. 

where, 𝑝𝑁(c, c) = k. Thus; 

𝑝𝑁(a, b#neut(c)) ≤ 𝑝𝑁(a, c) + 𝑝𝑁(c, b) − 𝑝𝑁(c, c). Hence, ((A, #), 𝑝𝑁) is a NTPMS. □ 

Corollary 3. From Theorem 2, we can define NTPMS with each NTMS. 

Definition 5. Let ((A, #), 𝑝𝑁) be a NTPMS, {𝑥𝑛} be a sequence in NTPMS and a ∊ A. If for ⩝ε > 0 and ⩝n ≥ M, 

there exist a M ∊ ℕ such that 𝑝𝑁(a, {𝑥𝑛}) < ε + 𝑝𝑁(a, a), then {𝑥𝑛} converges to a ∊ A. It is shown by 

lim
𝑛→∞

𝑥𝑛 = a or 𝑥𝑛 → a.  

Definition 6. Let ((A, #), 𝑝𝑁) be a NTPMS, {𝑥𝑛} be a sequence in NTPMS and a ∊ A. If for ⩝ε > 0 and ⩝n, m 

≥M, there exist a M ∊ ℕ such that 𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) < ε + 𝑝𝑁(a, a); then {𝑥𝑛} is a Cauchy sequence in ((A, #), 𝑝𝑁). 

Theorem 3. Let ((A, #), 𝑝𝑁) be a NTPMS, {𝑥𝑛} be a convergent sequence in NTPMS and 𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) ≤ 

𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) *neut(a)) for any a ∊ A. Then {𝑥𝑛} is a Cauchy sequence in NTPMS. 

Proof. 

It is clear that 

𝑝𝑁(a, {𝑥𝑛}) < ε/2 + 𝑝𝑁(a, a) (5) 

for each n ≥ M or 

𝑝𝑁(a, {𝑥𝑚}) < ε/2 + 𝑝𝑁(a, a) (6) 

for each m ≥ M 

Because {𝑥𝑛} is a convergent. Then, we suppose that 𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) ≤ 𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) *neut(a)) for 

any a ∊ A. It is clear that for n, m ≥ M; 

𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) ≤ 𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) *neut(a)) ≤ 𝑝𝑁(a, {𝑥𝑛}) + 𝑝𝑁(a, {𝑥𝑚}) − 𝑝𝑁(a, a) (7) 

Because ((A, #), 𝑝𝑁) is a NTPMS. From (5)–(7), 
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𝑝𝑁({𝑥𝑚}, {𝑥𝑛}) < ε/2 + 𝑝𝑁(a, a) + ε/2 + 𝑝𝑁(a, a) − 𝑝𝑁(a, a) = ε+ 𝑝𝑁(a, a). Thus; {𝑥𝑛} is a Cauchy sequence 

in ((A, #), 𝑝𝑁). □ 

Definition 7. Let ((A, #), 𝑝𝑁) be a NTPMS and {𝑥𝑛} be a Cauchy sequence in NTPMS. If every {𝑥𝑛} is 

convergent in ((A, #), 𝑝𝑁), then ((A, #), 𝑝𝑁) is called a complete NTPMS. 

Definition 8. Let ((A, #), 𝑝𝑁) be a NTPMS and m: A → A be a map. If the map m and the NTPM 𝑝𝑁 satisfy 

the conditions given below, then m is called a contraction for ((A, #), 𝑝𝑁). 

(i) There exists any element c ∊ A such that 𝑝𝑁(a, b) ≤ 𝑝𝑁 (a, b*neut(c)); ⩝a, b ∊ A. 

(ii) There exists k in [0, 1) such that 𝑝𝑁(m(a), m(b)) ≤ k. 𝑝𝑁(a, b); ⩝a, b ∊ A. 

Example 2. Let A = {∅, {x}, {x, y}} be a set and m(X) be cardinal of X ∊ A. Where, it is clear that X∩X = X. 

Thus, we give that neut(X) = X and anti(X) = X. So, (A, ∩) is a NTS. We give the function 𝑝𝑁: AxA → ℝ+ ∪ 

{0} such that 𝑝𝑁(X, Y)= max{22−𝑚(𝑋) − 1, 22−𝑚(𝑌) − 1}. From Definition 4, 

(i), (ii) and (iii) are apparent. 

(iv) 𝑝𝑁(X, {x, y})= 𝑝𝑁(X, Y ∩ {x, y}) since for X, Y∊A. Furthermore, it is clear that 

max{22−𝑚(𝑋) − 1, 22−𝑚(𝑌) − 1} ≤ max{22−𝑚(𝑋) − 1, 22−𝑚({𝑥,𝑦}) − 1} + max{22−𝑚(𝑍) − 1, 22−𝑚({𝑥,𝑦}) − 1} − 

max{22−𝑚({𝑥,𝑦}) − 1, 22−𝑚({𝑥,𝑦}) − 1}. Thus, 

𝑝𝑁(X, Y ∩ {x, y})≤ 𝑝𝑁(X, {x, y})+ 𝑝𝑁({x, y},B) − 𝑝𝑁({x, y},{x, y}). Furthermore, ((A, ∩), 𝑝𝑁) is a NTPMS. 

Let m: A → A be a map such that m(X) = {

{𝑥, 𝑦}, 𝑋 =  {𝑥, 𝑦}

{𝑥}, 𝑋 =  ∅
{𝑥, 𝑦}, 𝑋 = {𝑥}

 

For k = 0, 2 

𝑝𝑁(m(∅), m(∅)) = 𝑝𝑁({x}, {x}) = 1 ≤ 0, 2. 𝑝𝑁(∅, ∅) = 1, 5 

𝑝𝑁(m(∅), m({x})) = 𝑝𝑁({x}, {x, y}) = 1 ≤ 0, 2. 𝑝𝑁(∅, {x}) = 1, 5 

𝑝𝑁(m(∅), m({x, y})) = 𝑝𝑁({x}, {x, y}) = 1 ≤ 0, 2. 𝑝𝑁(∅, {x, y}) = 1, 5 

𝑝𝑁(m({x}), m({x})) = 𝑝𝑁({x, y}, {x, y}) = 0 ≤ 0, 2. 𝑝𝑁({x}, {x}) = 0, 5 

𝑝𝑁(m({x}), m({x, y})) = 𝑝𝑁({x, y}, {x, y}) = 0 ≤ 0, 2. 𝑝𝑁({x}, {x,y}) = 0, 5 

𝑝𝑁(m({x, y}), m({x, y})) = 𝑝𝑁({x, y}, {x, y}) = 0 ≤ 0, 2. 𝑝𝑁({x, y}, {x, y}) = 0, 5 

Thus, m is a contraction for ((A, ∩), 𝑝𝑁) 

Theorem 4. For each contraction m over a complete NTPMS ((A, #), 𝑝𝑁), there exists a unique x in A such 

that x = m(x). Also, 𝑝𝑁(x, x) = 0. 

Proof. 

Let m be a contraction for ((A, #), 𝑝𝑁) complete NTPMS and 𝑥𝑛 = m(𝑥𝑛−1) and 𝑥0 ∈ A be a 

unique element. Also, we can take 

𝑝𝑁(𝑥𝑛, 𝑥𝑘) ≤ 𝑝𝑁 (𝑥𝑛, 𝑥𝑘*neut(𝑥𝑛−1)) (8) 

since for m is a contraction over ((A, #), 𝑝𝑁) complete NTPMS. Then, 

𝑝𝑁(𝑥2, 𝑥1) = 𝑝𝑁(m(𝑥1), m(𝑥0)) ≤ c. 𝑝𝑁(𝑥1, 𝑥0) and 

𝑝𝑁 (𝑥3 , 𝑥2 ) = 𝑝𝑁 (m(𝑥2 ), m(𝑥1 )) ≤ c. 𝑝𝑁 (𝑥2 , 𝑥1 ) ≤ 𝑐2 . 𝑝𝑁 (𝑥1 , 𝑥0 ). From mathematical induction,      

n ≥ m; 

𝑝𝑁 (𝑥𝑚+1 , 𝑥𝑚 ) = 𝑝𝑁 (m(𝑥𝑚 ), m(𝑥𝑚−1 ))≤  c.  𝑝𝑁 (𝑥𝑚 , 𝑥𝑚−1 ) ≤  𝑐𝑚 . 𝑝𝑁 (𝑥1 , 𝑥0 ). Thus; from (8) and 

definition of NTPMS, 

𝑝𝑁(𝑥𝑛, 𝑥𝑚) ≤ 𝑝𝑁(𝑥𝑛, 𝑥𝑚*neut(𝑥𝑛−1)) ≤ 𝑝𝑁(𝑥𝑛, 𝑥𝑛−1) + 𝑝𝑁(𝑥𝑛−1, 𝑥𝑚) − 𝑝𝑁(𝑥𝑛−1, 𝑥𝑛−1) 

≤ 𝑐𝑛−1. 𝑝𝑁(𝑥1, 𝑥0) + 𝑝𝑁(𝑥𝑛−1, 𝑥𝑚) − 𝑝𝑁(𝑥𝑛−1, 𝑥𝑛−1) 

≤ 𝑐𝑛−1. 𝑝𝑁(𝑥1, 𝑥0) + 𝑝𝑁(𝑥𝑛−1, 𝑥𝑛−2) + … + 𝑝𝑁(𝑥𝑚, 

𝑥𝑚−1) ≤ (𝑐𝑛−1+ 𝑐𝑛−2+…+ 𝑐𝑚−1+𝑐𝑚). 𝑝𝑁(𝑥1, 𝑥0) − 

 



Symmetry 2018, 10, 240 6 of 7 

 

∑ 𝑝𝑁(𝑥𝑖 , 𝑥𝑖)
𝑛−1
𝑖=𝑚  

≤ ∑ 𝑐𝑖 . 𝑝𝑁(𝑥1, 𝑥0)𝑛−1
𝑖=𝑚  − ∑ 𝑝𝑁(𝑥𝑖 , 𝑥𝑖)𝑛−1

𝑖=𝑚  

≤ ∑ 𝑐𝑖 . 𝑝𝑁(𝑥1, 𝑥0)𝑛−1
𝑖=𝑚  + 𝑝𝑁(𝑥0, 𝑥0) 

= ∑ 𝑐𝑖 . 𝑝𝑁(𝑥1, 𝑥0)𝑛−1
𝑖=𝑚  + 𝑝𝑁(𝑥0, 𝑥0) (For n, m → ∞) 

= 
𝑐𝑚

1−𝑐
 𝑝𝑁(𝑥1, 𝑥0)+ 𝑝𝑁(𝑥0, 𝑥0) → 𝑝𝑁(𝑥0, 𝑥0). 

Thus {𝑥𝑛} is a cauchy sequence. Also {𝑥𝑛} is convergent such that 𝑥𝑛 → 𝑥. Because ((A, #), 𝑝𝑁) is 

complete NTPMS. Thus; m(𝑥𝑛) → m(x) since for 𝑥𝑛 = m(𝑥𝑛−1); m(𝑥𝑛) = 𝑥𝑛+1 → 𝑥. Thus; m(x) = x. 

Suppose that m(x) = x or m(y) = y for x, y ∈ 𝑥𝑛. Where; 

𝑝𝑁(x, y)= 𝑝𝑁(m(x), m(y)) ≤ c. 𝑝𝑁(x, y). 𝑝𝑁(x, y)> 0, c ≥ 1 and it is a contradiction. Thus; 𝑝𝑁(x, y) = 

𝑝𝑁(x, x) = 𝑝𝑁(y, y) = 0 and x = y. Therefore, 𝑝𝑁(x, x) = 0. □ 

4. Conclusions 

In this paper, we introduced NTPMS. We also show that both the classical metric and NTM are 

different from the NT partial metric. This NT notion has more features than the classical notion. We 

also introduced contraction for PMS and we give a fixed point theory for PMS in NT theory. So, we 

obtained a new structure for developing NT theory. Thus, researchers can arrive at nonlinear partial 

differential equations problem solutions in NT theory thanks to NTPMS and FPT for NTPMS. 
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