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Abstract: In nature, the mechanical properties of geological bodies are very complex, and their 
various mechanical parameters are vague, incomplete, imprecise, and indeterminate. However, we 
cannot express them by the crisp values in classical probability and statistics. In geotechnical 
engineering, we need to try our best to approximate exact values in indeterminate environments 
because determining the joint roughness coefficient (JRC) effectively is a key parameter in the shear 
strength between rock joint surfaces. In this original study, we first propose neutrosophic interval 
probability (NIP) and define the confidence degree based on the cosine measure between NIP and 
the ideal NIP. Then, we propose a new neutrosophic interval statistical number (NISN) by 
combining the neutrosophic number with the confidence degree to express indeterminate statistical 
information. Finally, we apply NISNs to express JRC under indeterminate (imprecise, incomplete, 
and uncertain, etc.) environments. By an actual case, the results demonstrate that NISNs are 
suitable and effective for JRC expressions and have the objective advantage. 

Keywords: neutrosophic interval probability; neutrosophic interval statistical number; confidence 
degree; joint roughness coefficient; neutrosophic number 

 

1. Introduction 

In real word, a lot of available data may be imprecise, incomplete, and uncertain for numerous 
reasons, such as the incompleteness of our observations, measurements, and estimations, or due to 
the existing disturbances and uncertainties in the statistical processes. As an extension of classical 
statistics, Smarandache [1–3] first presented neutrosophic statistics, which deals with set values 
instead of crisp values. In classical statistics, all data are determinate; while in neutrosophic statistics, 
the data may be ambiguous, vague, imprecise, incomplete, and even indeterminate. This is the 
distinction between neutrosophic statistics and classical statistics. In many cases, when 
indeterminacy is zero, neutrosophic statistics coincide with classical statistics. 

In neutrosophic statistics, Smarandache [1–3] first proposed concepts of neutrosophic 
probability, which are described as the truth-probability, indeterminacy-probability, and 
falsity-probability. It is important how to get indeterminacy in the whole set of n trials. He defined 
an indeterminacy threshold V, which is the number of trials whose outcome is indeterminate for V ∈ 
{0, 1, 2, …, n}. 

The cases with a threshold < V will belong to the indeterminate part, while cases with a 
threshold ≥ V will belong to the determinate part. Thus, let PT be the chance that a particular trial 
results in a success, PI be the chance that a particular trial results in an indeterminacy (i.e., neither a 
success nor a failure), and PF be the chance that a particular trial results in a failure. 
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However, this partially indeterminate and partially determinate set of n trials depends on the 
problem that one needs to solve and on the expert’s point of view. 

In classical statistics, all data are determined; while neutrosophic statistics refers to a set of data 
wherein a part of data is determinate/indeterminate/false in some degree.  

In neutrosophic statistics, Smarandache [1–3] also proposed the concept of a neutrosophic 
number (NN) z = s + uI, which consists of its determinate part s and its indeterminate part uI for s, u 
∈ R (all real numbers) and I ∈ [inf I, sup I] (indeterminacy). It is obvious that it can describe 
determinate and/or indeterminate information. For example, assume a NN is z = 5 + 2I for I ∈ [0, 
0.6]. Thus, its determinate part is 5, its indeterminate part is 2I, and then the NN is z = [5, 6.2] for I ∈ 
[0, 0.6] to express the possible range of z. In actual applications, one can also adjust the range of 
indeterminacy I to satisfy some specified requirements. Obviously, NN is very suitable for the 
expression of determinate and/or indeterminate information in indeterminate environments. Hence, 
NNs have been applied to decision making [4–6] and fault diagnosis [7,8] in recent years. 

Although neutrosophic statistics was defined by Smarandache in 1996 [1–3], it has not been 
developed since then. Unfortunately, the existing theory of neutrosophic probability and statistics 
introduced in [1–3] encounters a great deal of difficulties in engineering applications. In fact, the 
neutrosophic probability and statistics in [1–3] is very difficult to be used for engineering 
applications in the current form. Therefore, it is necessary to propose new neutrosophic probability 
and a statistical method to be easily used for engineering applications. Motivated by the 
Smarandache’s neutrosophic probability and NN, in the original study, this paper firstly proposes a 
new concept of neutrosophic probability in neutrosophic interval distributions, which is called 
neutrosophic interval probability (NIP), and then originally introduces the NN with the confidence 
degree of NIP, which is called a neutrosophic interval statistical number (NISN). Finally, in an actual 
case, NISNs are used for the expressions of joint roughness coefficient (JRC) values with 
indeterminate information because determining the JRC value effectively is a key parameter in the 
shear strength between rock joint surfaces in geotechnical engineering [9]. The main advantage of 
the new neutrosophic interval statistical method is that it is more suitable for engineering 
applications and expressions to solve the difficult problems of existing neutrosophic/classical 
statistical problems under indeterminate environments. 

To realize the study, this article is organized as follows. Section 2 gives the definition of NIP 
based on neutrosophic possibility in an interesting range. Section 3 presents NISN based on 
combining NN with the confidence degree of NIP. In Section 4, by an actual case, NISNs are used for 
expressing the JRC values with indeterminate information as an engineering application in 
geotechnical mechanics. In Section 5, conclusions and future research directions are presented. 

2. Neutrosophic Interval Probability 

In this section, we give the definition of NIP based on neutrosophic probability in an  
interesting range. 

Definition 1. Let a = [xL, xU] be an interesting range of all the sample individuals. A NIP can be defined as P = 
<[xL, xU], (PT, PI, PF)>, where PT is a truth-probability belonging to the determinate range, PI is an 
indeterminacy-probability belonging to the indeterminate range, and PF is a falsity-probability belonging to the 
almost impossible/failure range. Then, the sum of the three probabilities satisfies PT + PI + PF = 1. 

Let us consider n samples with the same sizes as the same trials corresponding to some trial 
characteristic. By statistical analysis for the n trial data, we can obtain the maximum value xU (upper 
bound) and the minimum value xL (lower bound) in all trial data and the average value xm and 
standard deviation σ. Based on these statistical results, we propose the following calculation 
methods of NIP. 

First, the interesting range of all the sample individuals is represented by the interval value a = 
[xL, xU] according to the maximum and minimum values (i.e., the upper and lower bounds) of the 
trial data. Then, in the interesting range of all the sample individuals we can calculate the 
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truth-probability PT = nT/n, the indeterminacy-probability PI = nI/n, and the falsity-probability PF = 
nF/n from a statistical viewpoint, where nT implies the frequency in the robust/credible interval [xm − 
σ, xm + σ], nI implies the frequency in the indeterminate/uncertain intervals [xm − 3σ, xm − σ) and (xm + 
σ, xm + 3σ], and nF indicates the frequency in the remaining/incredible intervals [xL, xm − 3σ) and (xm + 
3σ, xU]. 

Let us consider the following example to show the calculation of NIP. 

Example 1. Assume that 100 samples (n = 100) with the same sizes are taken to measure some mechanical 
characteristic of the sample individuals. For the obtained measuring data, the distributions of the statistical data 
are shown in Table 1. 

Table 1. Distribution of 100 sample data. 

n xm σ [xL, xU] nT in [1.5, 2.5] nI in [0.5, 1.5) and (2.5, 3.5] nF in [0, 0.5) and (3.5, 5] 
100 2 0.5 [0,5] 70 25 5 

From Table 1, we can determinate the NIP by the following procedures: 
First, the interesting range of all the sample individuals is a = [0, 5]. 
Then, we can calculate the truth-probability, the indeterminacy-probability, and the 

falsity-probability, respectively, as follows: 
PT = nT/n = 70/100 = 0.7, PI = nI/n = 25/100 = 0.25, and PF = nF/n =5/100 = 0.05. 
Thus, the NIP is P = <[xL, xU], (PT, PI, PF)> = <[0,5], (0.7, 0.25, 0.05)>. 
From the example, we can see that the existing classical/neutrosophic probability cannot 

represent such a probability problem. Hence, the NIP contains much more information and 
demonstrates its advantage in such an expressed case. 

3. Neutrosophic Interval Statistical Number 

By combining a NN with the confidence degree of NIP, we present NISN for effectively 
expressing some statistical characteristic of trial data with indeterminate information.  

Let a NIP be P = <[xL, xU], (PT, PI, PF)> and the ideal NIP be P* = <[xL, xU], (1, 0, 0)>. Then, the 
cosine measure value between P and P* [4] is defined as the confidence degree 

*
*

* 2 2 2
( , ) T

T I F

PP P
e cos P P

P P P P P

⋅= = =
⋅ + +

 for e ∈ [0, 1] (1)

Thus, NISN is presented as 

2 2 2
(1 ) 1 T

e m m

T I F

P
N x e I x I

P P P

  = + − = + − 
+ +  

 for I ∈ [inf I, sup I] (2)

where xm is the average value/determinate part of Ne and I is indeterminacy. Here, I may take the 
robust/credit interval [−σ, σ] based on a standard deviation σ. 

Obviously, if e = 1 for P = <[xL, xU], (1, 0, 0)>, then Ne = xm, which is degenerated to the classical 
average value (crisp value) xm with the maximum confidence degree; if e = 0 for P = <[xL, xU], (0, 0, 1)>, 
then Ne = xm + I, which is degenerated to a NN without confidence degree. However, when 0 < e < 1, 
the confidence degree of e can affect the indeterminate part (1 − e)I of the NISN Ne. 

For Example 1, by using Equation (2) the NISN is calculated as 
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If I = [−σ, σ] = [−0.5, 0.5], then Ne = [1.97, 2.03]. 
Obviously, the NISN can indicate the interval range of actual measuring data effectively and 

reasonably under indeterminate environments, while the classical statistical method is only a crisp 
value xm, which is a specialty of the proposed neutrosophic interval statistical method. 

4. Joint Roughness Coefficient Values Expressed by Using Neutrosophic Interval Statistical 
Number in Geotechnical Mechanics 

Statistical analysis of geotechnical engineering is an important mathematical tool for modeling 
and quantifying uncertainties of geotechnical mechanics parameters. It is one of the initial and 
essential procedures because a lot of subsequent evaluations of risk and reliability depend on these 
parameters. In nature, the mechanical properties of geological bodies are very complex, and its 
various mechanical parameters are vague, incomplete, imprecise, and indeterminate [9]. However, it 
is difficult to describe the indeterminacy of geotechnical parameters by the classical statistical 
method. Clearly, NISNs can effectively describe the incompleteness, uncertainty, and indeterminacy 
of geotechnical parameters by combining a NN with the confidence degree of NIP. In this section, 
we apply NISNs to express the indeterminate value of JRC because determining the JRC value 
effectively is a key parameter in the shear strength between rock joint surfaces. 

To show the effectiveness and rationality of the proposed neutrosophic interval statistical 
method, we chose natural rock joint surface samples, with collected data from Changshan County, 
Zhejiang province, China. Here, as an actual case, we select a set of data measured by taking 10 
groups of samples with the lengths of 10, 20, … 100 cm. According to the proposed neutrosophic 
interval statistical method, we use NISNs to express the JRC values. 

Firstly, we give the total number of n samples, the mean value xm and the standard deviation σ 
of each length L, and then the results of their statistical analysis are shown in Table 2. 

Table 2. Results of the statistical analysis for actual measuring data. 

Sample Length L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm
n 187 85 51 39 34 34 34 34 34 34 
xm 10.6035 9.9647 9.5320 8.8760 8.6121 8.6463 8.3931 8.1107 7.9051 7.7175 
σ 2.2090 1.6606 1.5695 1.5994 1.4899 1.5942 1.3637 1.2203 1.0893 1.0050 

Then, the frequency distributions in the different JRC intervals for each length L are shown in 
Figure 1. It is clear that most of the data are in the range of the truth probability, a small number of 
data is distributed on both sides of the truth range as the part of the indeterminacy, and the 
frequency of both sides is almost equal. Also there are a few data belonging to the false probability. 
Generally, all the distributions are almost in normal distribution, deflecting to left. 
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Figure 1. Frequency distributions in the different joint roughness coefficient (JRC) intervals for each 
length L. 

By taking the sample length L = 100 cm as an example, the calculation process is indicated by 
the following steps. 

First, NIP is calculated as 
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Assume that I = [−σ, σ] = [−1.0050, 1.0050] is specified as the robust/credit interval, then Ne = 
[7.6929, 7.7421]. 

For other lengths of the data, we also obtain these results by above similar calculation steps, 
which are shown in Table 3. 

Table 3. The neutrosophic interval probability (NIP) and neutrosophic interval statistical number 
(NISN) of each length L. 

L P Ne 
10 cm <(6.62,16.41),0.6898,0.3102,0> 10.6035 + 0.0879I [10.4093,10.7978] 
20 cm <(6.59,14.26),0.6706,0.3294,0> 9.9647 + 0.1024I [9.7946,10.1348] 
30 cm <(6.81,14.24),0.7255,0.2745,0> 9.5320 + 0.0647I [9.4305,9.6336] 
40 cm <(6.59,14.06),0.7180,0.2051,0.0769> 8.8760 + 0.0435I [8.8064,8.9456] 
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50 cm <(6.15,13.36),0.6765,0.2941,0.0294> 8.6121 + 0.0837I [8.4874,8.7367] 
60 cm <(6.48,13.49),0.7353,0.2353,0.0294> 8.6463 + 0.0483I [8.5694,8.7233] 
70 cm <(6.24,13.08),0.7647,0.2059,0.0294> 8.3931 + 0.0350I [8.3453,8.4409] 
80 cm <(6.22,12.41),0.7647,0.2059,0.0294> 8.1107 + 0.0350I [8.0679,8.1534] 
90 cm <(6.54,12.11),0.7647,0.2059,0.0294> 7.9051 + 0.0350I [7.8669,7.9433] 

100 cm <(6.42,11.50),0.7941,0.1765,0.0294> 7.7175 + 0.0245I [7.6929,7.7421] 

In Figure 2, there are JRC values in each length L expressed by using NISNs. Obviously, the 
interval values indicate symmetry regarding the average values, which imply their imprecise, 
uncertain information. Hence, we cannot give this indeterminate information just by the crisp 
statistical value such as an average value. That is to say, the classical statistical method ignores and 
loses some information which may be important and significant. However, we can use NISN to 
express it effectively and reasonably. In Figure 2, we can also see that the NISNs can contain the 
average values (red points) and the black arrows show the indeterminate ranges indicted by 
numerical values. In general, when the sample length is increased, the indeterminate range is 
decreased. Clearly, NISNs can provide an effective and reasonable new way for the expression of 
JRC values under indeterminate environments. 

In this original study, the superiority of the proposed neutrosophic interval statistical method 
over the existing neutrosophic statistical methods is in its ability to overcome the aforementioned 
drawback of Smarandache’s neutrosophic statistical method and to be more suitable for engineering 
applications under indeterminate environments. However, the classical statistical method cannot 
describe and deal with the indeterminate problems with the truth-probability, 
indeterminacy-probability, and falsity-probability, and then it only is a special case of the proposed 
neutrosophic interval statistical method in the determinate case, which may lose some useful 
information in engineering problems with indeterminate information; while the proposed 
neutrosophic interval statistical method can contain much more information and be easily applied in 
engineering areas under indeterminate environments. Therefore, it is more general and more 
feasible than the classical statistical method and the existing neutrosophic statistical method [1–3]. 

 

Figure 2. JRC ranges expressed by NISNs corresponding to each length L. 

5. Conclusions 

This study first proposed the concepts of NIP and NISN, and then applied them to the JRC 
expressions by an actual case. However, NIP is an extension of the classical probability. In classical 
probability, the data are known and formed by crisp numbers (truth-probability), while in NIP, the 
data are composed of the truth-probability, indeterminacy-probability, and falsity-probability in 
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different frequency distribution ranges. Since NISN consists of the determinate part and the 
indeterminate part with the confidence degree of NIP, NISN is very suitable for the expression of 
measuring data with indeterminate information such as JRC. Then in the classical statistical method, 
geotechnical mechanics parameters, such as JRC, are represented only by average values and/or 
standard deviations, but they cannot express indeterminate values and lose some useful 
information. It is obvious that NISN can effectively and reasonably express indeterminate 
information in engineering areas under indeterminate environments. In the future, we shall apply 
NISNs to the expression and analysis of engineering experimental/measuring data, economic data, 
fault diagnosis data, and medical diagnosis data. 
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