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Abstract: In recent years, typhoon disasters have occurred frequently and the economic losses caused
by them have received increasing attention. This study focuses on the evaluation of typhoon disasters
based on the interval neutrosophic set theory. An interval neutrosophic set (INS) is a subclass of a
neutrosophic set (NS). However, the existing exponential operations and their aggregation methods
are primarily for the intuitionistic fuzzy set and the single-valued neutrosophic set (SVNS). So, this
paper defines new exponential operational laws of interval neutrosophic numbers (INNs) in which
the bases are positive real numbers and the exponents are interval neutrosophic numbers. Several
properties based on the exponential operational law are discussed. Then, the interval neutrosophic
weighted exponential aggregation (INWEA) operator is proposed. Finally, a multiple attribute
decision making (MADM) approach based on the INWEA operator is introduced and applied to
the evaluation of typhoon disasters in Fujian Province, China. Results show that the proposed new
approach is feasible and effective in practical applications.

Keywords: neutrosophic sets (NSs); interval neutrosophic numbers (INNs); exponential operational
laws of interval neutrosophic numbers; interval neutrosophic weighted exponential aggregation
(INWEA) operator; multiple attribute decision making (MADM); typhoon disaster evaluation

1. Introduction

Natural hazards attract worldwide attention. Typhoons are one of the main natural hazards in
the world. When a typhoon makes landfall, the impacted coastal areas experience torrential rain,
strong winds, storm surges, and other weather-related disasters [1]. Typhoons can cause extremely
serious harm, frequently generating heavy economic losses and personnel casualty [2]. In the last
50 years, economic damage from typhoon disasters around the coastal regions of China has increased
dramatically. The Yearbook of Tropical Cyclones in China shows that from 2000 to 2014, on average,
typhoon disasters caused economic losses of 45.784 billion yuan (RMB), 244 deaths, and affected
37.77 million people per year [3]. Effective evaluation of typhoon disasters can improve the typhoon
disaster management efficacy, preventing or reducing disaster loss. Furthermore, precise evaluation of
typhoon disasters is critical to the timely allocation and delivery of aid and materials to the disaster
area. Therefore, in-depth studies of typhoon disaster evaluation are of great value.

The evaluation of typhoon disasters is a popular research topic in disaster management.
Researchers have made contributions to this topic from several different perspectives [1]. Wang et al. [4]
proposed a typhoon disaster evaluation model based on an econometric and input-output joint model
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to evaluate the direct and indirect economic loss caused by typhoon disasters for related industrial
departments. Zhang et al. [5] proposed a typhoon disaster evaluation model for the rubber plantations
of Hainan Island which is based on extension theory. Lou et al. [6] adopted a back-propagation neural
network method to evaluate typhoon disasters, and a real case in Zhejiang Province of China was
studied in detail. Lu et al. [7] used the multi-dimensional linear dependence model to evaluate typhoon
disaster losses in China. Yu et al. [1] and Lin [8] asserted that establishing a decision support system is
crucial to improving data analysis capabilities for decision makers.

Since the influencing factors of the typhoon disasters are completely hard to describe accurately,
the typhoon disasters may include economic loss and environmental damage. Taking economic
loss for example, it includes many aspects such as the building’s collapse, the number and extent
of damage to housing, and the affected local economic conditions [1]. Therefore, it is impossible to
describe the economic loss precisely because the estimation is based on incomplete and indeterminate
data. Therefore, fuzzy set (FS) and intuitionistic fuzzy set (IFS) have been used for typhoon disaster
assessment in recent years. Li et al. [9] proposed evaluating typhoon disasters with a method that
applied an extension of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method with intuitionistic fuzzy theory. Ma [10] proposed a fuzzy synthetic evaluation model for
typhoon disasters. Chen et al. [11] provided an evaluation model based on a discrete Hopfield neural
network. Yu et al. [1] studied typhoon disaster evaluation in Zhejiang Province, China, using new
generalized intuitionistic fuzzy aggregation operators. He [12] proposed a typhoon disaster assessment
method based on Dombi hesitant fuzzy information aggregation operators. However, this review
reveals that the application of the neutrosophic sets theory in typhoon disaster assessment has yet to
be examined. We believe that neutrosophic sets (NSs) offer a powerful technique to enhance typhoon
disaster assessment.

Neutrosophic sets can express and handle incomplete, indeterminant, and inconsistent
information. NSs were originally defined by Smarandache [13,14], who added an independent
indeterminacy-membership on the basis of IFS. Neutrosophic sets are a generalization of set theories
including the classic set, the fuzzy set [15] and the intuitionistic fuzzy set [16]. Neutrosophic
sets are characterized by a truth-membership function (T), an indeterminacy-function (I), and a
falsity-membership function (F). This theory is very important in many application areas because
indeterminacy is quantified explicitly and the three primary functions are all independent. Since
Smarandache’s initial proposal of NSs in 1998, the concept has attracted broad attention and achieved
several successful implementations. For example, Wang et al. [17] proposed single-valued neutrosophic
sets (SVNSs), a type of NS. Ye [18] introduced simplified neutrosophic sets (SNSs) and defined the
operational laws of SNSs, as well as some aggregation operators. Wang et al. [19] and Peng et al. [20]
defined multi-valued neutrosophic sets and the multi-valued neutrosophic number, as well as
proposing the application of the TODIM (a Portuguese acronym of interactive and multi-criteria
decision making) method in a multi-valued neutrosophic number environment. Wang et al. [21]
proposed interval neutrosophic sets (INSs) along with their set-theoretic operators and Zhang et al. [22]
proposed an improved weighted correlation coefficient measure for INSs for use in multi-criteria
decision making. Ye [23] offered neutrosophic hesitant fuzzy sets with single-valued neutrosophic
sets. Tian et al. [24] defined simplified neutrosophic linguistic sets, which combine the concepts of
simplified neutrosophic sets and linguistic term sets, and have enabled great progress in describing
linguistic information. Biswas [25] and Ye [26] defined the trapezoidal fuzzy neutrosophic number,
and applied it to multi-criteria decision making. Deli [27] defined the interval valued neutrosophic soft
set (ivn-soft set), which is a combination of an interval valued neutrosophic set and a soft set, and then
applied the concept as a decision making method. Broumi et al. [28–30] combined the neutrosophic
sets and graph theory to introduce various types of neutrosophic graphs.

When Smarandache proposed the concept of NSs [13], he also introduced some basic NS
operations rules. Ye [16] defined some basic operations of simplified neutrosophic sets. Wang et al. [21]
defined some basic operations of interval neutrosophic sets, including “containment”, “complement”,
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“intersection”, “union”, “difference”, “addition”, “Scalar multiplication” and “Scalar division”.
Based on these operations, Liu et al. [31] proposed a simplified neutrosophic correlated averaging
(SNCA) operator and a simplified neutrosophic correlated geometric (SNCG) operator for multiple
attribute group decision making. Ye [32] and Zhang et al. [33] introduced interval neutrosophic
number ordered weighted aggregation operators, the interval neutrosophic number weighted
averaging (INNWA) operator, and the interval neutrosophic number weighted geometric (INNWG)
operator for multi-criteria decision making. Liu et al. [34] proposed a single-valued neutrosophic
normalized weighted Bonferroni mean (SVNNWBM) operator and analyzed its properties. Ye [35]
proposed interval neutrosophic uncertain linguistic variables, and further proposed the interval
neutrosophic uncertain linguistic weighted arithmetic averaging (INULWAA) and the interval
neutrosophic uncertain linguistic weighted arithmetic averaging (INULWGA) operator. Peng et al. [36]
introduced multi-valued neutrosophic sets (MVNSs) and proposed the multi-valued neutrosophic
power weighted average (MVNPWA) operator and the multi-valued neutrosophic power weighted
geometric (MVNPWG) operator. A trapezoidal neutrosophic number weighted arithmetic averaging
(TNNWAA) operator and a trapezoidal neutrosophic number weighted geometric averaging
(TNNWGA) operator have also been proposed and applied to multiple attribute decision making
(MADM) with trapezoidal neutrosophic numbers [26]. Tan et al. [37] proposed the trapezoidal
fuzzy neutrosophic number ordered weighted arithmetic averaging (TFNNOWAA) operator and
the trapezoidal fuzzy neutrosophic number hybrid weighted arithmetic averaging (TFNNHWAA)
operator for multiple attribute group decision making. Sahin [38] proposed generalized prioritized
weighted aggregation operators, including the normal neutrosophic generalized prioritized weighted
averaging (NNGPWA) operator and the normal neutrosophic generalized prioritized weighted
geometric (NNGPWG) operator for normal neutrosophic multiple attribute decision making.

As the study of the NS theory has expanded in both depth and scope, effective aggregation and
handling of neutrosophic number information have become increasingly imperative. In response,
many techniques for aggregating neutrosophic number information have been developed [18,26,31–38].
However, an important operational law is lacking, we are unable to handle information aggregation in
which the bases are positive real numbers and the exponents are neutrosophic numbers. For example,
when decision makers determine the attribute importance under a complex decision environment,
the attribute weights are characterized by incompleteness, uncertainty, and inconsistency, while the
attribute values are real numbers. In the existing literature about exponential operational laws and
exponential aggregation operator, Gou et al. [39] introduced a new exponential operational law about
intuitionistic fuzzy numbers (IFNs), in which the bases are positive real numbers and the exponents
are IFNs. Gou et al. [40] defined exponential operational laws of interval intuitionistic fuzzy numbers
(IIFNs), in which the bases are positive real numbers and the exponents are IFNs. Lu et al. [41] defined
new exponential operations of single-valued neutrosophic numbers (NNs), in which the bases are
positive real numbers, and the exponents are single-valued NNs. In addition, they also proposed the
single-valued neutrosophic weighted exponential aggregation (SVNWEA) operator and the SVNWEA
operator-based decision making method. Sahin [42] proposed two new operational laws in which the
bases are positive real numbers and interval numbers, respectively; the exponents in both operational
laws are simplified neutrosophic numbers (SNNs), and they introduce the simplified neutrosophic
weighted exponential aggregation (SNWEA) operator and the dual simplified neutrosophic weighted
exponential aggregation (DSNWEA) operator for multi-criteria decision making. Unfortunately, to
date, the exponential operational laws and exponential aggregation operators of interval neutrosophic
numbers are absent. This is what we need to do. In order to perfect the existing neutrosophic
aggregation methods, we suggest the development of exponential operational laws of interval
neutrosophic numbers (INNs) and a corresponding interval neutrosophic aggregation method, inspired
by the exponential operational law of IIFNs and its aggregation method [40]. In this paper, we first
define new exponential operation laws of interval neutrosophic numbers (INNs), in which the bases
are positive real numbers and the exponents are interval neutrosophic numbers. Several properties



Symmetry 2018, 10, 196 4 of 22

based on the exponential operational laws are discussed. Then, an interval neutrosophic weighted
exponential aggregation (INWEA) operator is proposed. Additionally, a MADM method based on the
INWEA operator is also proposed. In the MADM problem, the attribute values in the decision matrix
are expressed as positive real numbers and the attribute weights are expressed as INNs. Although
traditional aggregation operators of INNs cannot address the above decision problem, the proposed
exponential aggregation operators of INNs can effectively resolve this issue.

The remainder of this paper is organized as follows: Section 2 briefly introduces some basic
definitions dealing with NSs, INSs and so on. Section 3 proposes the exponential operational laws
of INSs and INNs, and discusses their desirable properties in detail. Moreover, this paper defines
an interval neutrosophic exponential aggregation operator, called an interval neutrosophic weighted
exponential aggregation (INWEA) operator, and investigates its properties in Section 4. After that,
a MADM method based on the INWEA operator is given in Section 5. Section 6 uses a typhoon
disaster evaluation example to illustrate the applicability of the exponential operational laws and the
information aggregation method proposed in Sections 3 and 4. Finally, in Section 7, the conclusions
are drawn.

2. Preliminaries

In this section, we review some basic concepts related to neutrosophic sets, single-valued
neutrosophic sets, and interval neutrosophic sets. We will also introduce the operational rules.

Definition 1 [13]. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set (NS) A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). The function TA(x), IA(x) and FA(x) are
real standard or nonstandard subsets of ]0−, 1+[ , i.e., TA(x) : X → ]0−, 1+[ , IA(x) : X → ]0−, 1+[ ,
and FA(x) : X → ]0−, 1+[ . Therefore, the sum of TA(x), IA(x) and FA(x) satisfies the condition
0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

Definition 2 [21]. Let X be a space of point (objects) with generic elements in X denoted by x.
An interval neutrosophic set (INS) Ã in X is characterized by a truth-membership functionT̃Ã(x),
an indeterminacy-membership function ĨÃ(x), and a falsity-membership function F̃Ã(x). There are T̃Ã(x),
ĨÃ(x), F̃Ã(x) ⊆ [0, 1] for each point x in X. Thus, an INS Ã can be denoted by

Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X }
= {< x, [infTÃ(x), supTÃ(x)], [infIÃ(x), supIÃ(x)], [infFÃ(x), supFÃ(x)] > |x ∈ X }. (1)

Then, the sum of T̃Ã(x), ĨÃ(x), and F̃Ã(x) satisfies the condition of 0 ≤ supTÃ(x) + supIÃ(x) +
supFÃ(x) ≤ 3.

For convenience, we can use a =< [TL, TU ], [IL, IU ], [FL, FU ] > to represent an interval
neutrosophic number (INN) in an INS.

Definition 3 [33]. Let a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] > and a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] > be
two INNs and λ > 0. Then, the operational rules are defined as follows:

1. a1 ⊕ a2 =
〈[

TL
1 + TL

2 − TL
1 · TL

2 , TU
1 + TU

2 − TU
1 · TU

2
]
,
[
IL
1 · IL

2 , IU
1 · IU

2
]
,
[
FL

1 · FL
2 , FU

1 · FU
2
] 〉

;
2. a1⊗ a2 =

〈[
TL

1 ·TL
2 ,TU

1 ·TU
2
]
,
[
IL
1 + IL

2 − IL
1 · IL

2 , IU
1 + IU

2 − IU
1 · IU

2
]
,
[
FL

1 +FL
2 −FL

1 ·FL
2 ,FU

1 +FU
2 −FU

1 ·FU
2
]〉

;

3. λa1 =
〈[

1− (1− TL
1 )

λ, 1− (1− TU
1 )

λ
]
,
[
(IL

1 )
λ, (IU

1 )
λ
]
,
[
(FL

1 )
λ, (FU

1 )
λ
]〉

;

4. aλ
1 =

〈[
(TL

1 )
λ, (TU

1 )
λ
]
,
[
1− (1− IL

1 )
λ, 1− (1− IU

1 )
λ
]
,
[
1− (1− FL

1 )
λ, 1− (1− FU

1 )
λ
]〉

.
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Furthermore, for any three INNs a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] >, a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] >,
a3 =< [TL

3 , TU
3 ], [IL

3 , IU
3 ], [FL

3 , FU
3 ] > and any real numbers λ, λ1 > 0, λ2 > 0, then, there are the

following properties:

1. a1 ⊕ a2 = a2 ⊕ a1;
2. a1 ⊗ a2 = a2 ⊗ a1;
3. λ(a1 ⊕ a2) = λa2 ⊕ λa1;

4. (a1 ⊗ a2)
λ = aλ

1 ⊕ aλ
2 ;

5. λ1a1 + λ2a1 = (λ1 + λ2)a1;

6. aλ1 ⊗ aλ2 = a(λ1+λ2);
7. (a1 ⊕ a2)⊕ a3 = a1 ⊕ (a2 ⊕ a3);
8. (a1 ⊗ a2)⊗ a3 = a1 ⊗ (a2 ⊗ a3).

Definition 4 [43]. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN, a score function S of an
interval neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree, and
falsity-membership degree is defined by

S(a) =
2 + TL + TU − 2IL − 2IU − FL − FU

4
(2)

where S(a) ∈ [−1, 1].

Definition 5. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN. Then an accuracy function A of
an interval neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree,
and falsity-membership degree is defined by

A(a) =
1
2

(
TL + TU − IU

(
1− TU

)
− IL

(
1− TL

)
− FU

(
1− IL

)
− FL

(
1− IU

))
, (3)

where A(a) ∈ [−1, 1].

Definition 6. Let a1 =< [TL
1 , TU

1 ], [IL
1 , IU

1 ], [FL
1 , FU

1 ] >, and a2 =< [TL
2 , TU

2 ], [IL
2 , IU

2 ], [FL
2 , FU

2 ] > be two
INNs, then the ranking method is defined by

1. If S(a1) > S(a2), then a1 > a2;
2. If S(a1) = S(a2), and then A(a1) = A(a2), then a1 > a2.

Definition 7 [33]. Let aj(j = 1, 2, · · · , n) be a collection of INNs, and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of aj(j = 1, 2, · · · , n), with ωj ∈ [0, 1], and
n
∑

j=1
ωj = 1. Then the interval neutrosophic number

weighted averaging (INNWA) operator of dimension n is defined by

INNWA(a1, a2, · · · , an) = ω1a1 + ω2a2 + · · ·ωnan =
n
∑

j=1
ωjaj

=< [1−
n
∏
j=1

(1− TL
j )

ωj , 1−
n
∏
j=1

(1− TU
j )

ωj ], [
n
∏
j=1

(IL
j )

ωj ,
n
∏
j=1

(IU
j )

ωj ], [
n
∏
j=1

(FL
j )

ωj ,
n
∏
j=1

(FU
j )

ωj ] > .
(4)
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Definition 8 [33]. Let aj(j = 1, 2, · · · , n) be a collection of INNs, and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of aj(j = 1, 2, · · · , n), with ωj ∈ [0, 1], and
n
∑

j=1
ωj = 1. Then the interval neutrosophic number

weighted geometric (INNWG) operator of dimension n is defined by

INNWG(a1, a2, · · · , an) = a1
ω1 ⊗ a2

ω2 ⊗ · · · an
ωn =

n
∏
j=1

aj
ωj

=< [
n
∏
j=1

(TL
j )

ωj ,
n
∏
j=1

(TU
j )

ωj ], [1−
n
∏
j=1

(1− IL
j )

ωj , 1−
n
∏
j=1

(1− IU
j )

ωj ], [1−
n
∏
j=1

(1− FL
j )

ωj , 1−
n
∏
j=1

(1− FU
j )

ωj ] > .
(5)

3. The Exponential Operational Laws of INSs and INNs

As a supplement, we define the new exponential operational laws about INSs and INNs,
respectively, in which the bases are positive real numbers and the exponents are INSs or INNs.

Lu and Ye [41] introduced the exponential operations of SVNSs as follows:

Definition 9 [41]. Let A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ U } be a SVNS in a universe of discourse X.
Then an exponential operational law of the SVNS A is defined as

λA =


{〈

x, λ1−TA(x), 1− λIA(x), 1− λFA(x)
〉
|x ∈ X } , λ ∈ (0, 1),{〈

x, ( 1
λ )

1−TA(x)
, 1− ( 1

λ )
IA(x)

, 1− ( 1
λ )

FA(x)
〉
|x ∈ X } , λ ≥ 1.

(6)

Based on Definition 3, we obtain the exponential operational laws for INSs:

Definition 10. Let X be a fixed set, Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X } be an INS, then we can define
the exponential operational law of INSs as:

λÃ =


{〈

x,
[
λ1−infTÃ(x), λ1−supTÃ(x)

]
,
[
1− λinfIÃ(x), 1− λsupIÃ(x)

]
,
[
1− λinfFÃ(x), 1− λsupFÃ(x)

]〉
|x ∈ X } , λ ∈ (0, 1),{〈

x,
[(

1
λ

)1−infTÃ(x)
,
(

1
λ

)1−supTÃ(x)
]

,
[

1−
(

1
λ

)infIÃ(x)
, 1−

(
1
λ

)supIÃ(x)
]

,
[

1−
(

1
λ

)infFÃ(x)
, 1−

(
1
λ

)supFÃ(x)
]〉
|x ∈ X } , λ ≥ 1.

(7)

Theorem 1. The value of λÃ is an INS.

Proof.

(1) Let λ ∈ (0, 1), and Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) > |x ∈ X } be an INS, where T̃Ã(x) ⊆ [0, 1],
ĨÃ(x) ⊆ [0, 1] and F̃Ã(x) ⊆ [0, 1] with the condition: 0 ≤ supTÃ(x) + supIÃ(x) + supFÃ(x) ≤ 3.

So we can get
[
λ1−infTÃ(x), λ1−supTÃ(x)

]
⊆ [0, 1],

[
1− λinfIÃ(x), 1− λsupIÃ(x)

]
⊆ [0, 1] and[

1− λinfFÃ(x), 1− λsupFÃ(x)
]
⊆ [0, 1]. Then, we get 0 ≤ λ1−supTÃ(x) + 1 − λsupIÃ(x) + 1 −

λsupFÃ(x) ≤ 3. So λÃ is an INS.
(2) Let λ ∈ (0, 1), and 0 ≤ 1

λ ≤ 1, it is easy to proof that λÃ is an INS.

Combining (1) and (2), it follows that the value of λÃ is an INS. Similarly, we propose an
operational law for an INN. �

Definition 11. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN, then the exponential operational law of the
INN a is defined as follows:

λa =


〈[

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

, λ ∈ (0, 1),〈[(
1
λ

)1−TL

,
(

1
λ

)1−TU]
,
[

1−
(

1
λ

)IL

, 1−
(

1
λ

)IU]
,
[

1−
(

1
λ

)FL

, 1−
(

1
λ

)FU]〉
, λ ≥ 1.

(8)

It is obvious that λa is also an INN. Let us consider the following example.
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Example 1. Let a =< [0.4, 0.6], [0.1, 0.3], [0.2, 0.4] > be an INN, and λ1 = 0.3 and λ2 = 2 are two real
numbers. Then, according to Definition 11, we obtain

λa
1 = 0.3<[0.4,0.6],[0.1,0.3],[0.2,0.4]> =

〈 [
0.31−0.4, 0.31−0.6], [1− 0.30.1, 1− 0.30.3] ,

[
1− 0.30.2, 1− 0.30.4]〉

=
〈 [

0.30.6, 0.30.4], [1− 0.30.1, 1− 0.30.3] ,
[
1− 0.30.2, 1− 0.30.4]〉

= 〈 [0.4856, 0.6178], [0.1134, 0.3032] , [0.2140, 0.3822]〉.

λa
2 = 2<[0.4,0.6],[0.1,0.3],[0.2,0.4]> =

〈 [(
1
2

)1−0.4
,
(

1
2

)1−0.6
]

,
[

1−
(

1
2

)0.1
, 1−

(
1
2

)0.3
]

,
[

1−
(

1
2

)0.2
, 1−

(
1
2

)0.4
]〉

=
〈 [

0.50.6, 0.50.4], [1− 0.50.1, 1− 0.50.3], [1− 0.50.2, 1− 0.50.4]〉
= 〈 [0.6598, 0.7579], [0.0670, 0.1877], [0.1294, 0.2421]〉.

Here, when TL = TU , IL = IU and FL = FU , the exponential operational law for INNs is equal
to the exponential operational law of SVNNs [41]. When 0− ≤ TU + IU + FU ≤ 1, the exponential
operational law for INNs is equivalent to the exponential operational law of IIFNs [40]. When TL = TU ,
IL = IU , FL = FU and 0− ≤ TU + IU + FU ≤ 1, the exponential operational law for INSs is equivalent
to the exponential operational law of IFNs [39]. So the exponential operational laws of INNs defined
by us is a more generalized representation, and the exponential operational laws of SVNNs, IIFNs and
IFNs are special cases.

Next, we investigate some basic properties of the exponential operational laws of INNs. We notice
that when λ ∈ (0, 1), the operational process and the form of λa are similar to the case when λ ≥ 1.
So, below we only discuss the case when λ ∈ (0, 1).

Theorem 2. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2) be two INNs, λ ∈ (0, 1) , then

(1) λa1 ⊕ λa2 = λa2 ⊕ λa1 ;
(2) λa1 ⊗ λa2 = λa2 ⊗ λa1 .

Proof. By Definition 3 and Definition 11, we have

(1)

λa1 ⊕ λa2

=
〈 [

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕
〈 [

λ1−TL
2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU
2

]
,
[
1− λFL

2 , 1− λFU
2

]〉
=

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,
[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)] 〉
= λa2 ⊕ λa1 .

(2)

λa1 ⊗ λa2

=
〈[

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕
〈 [

λ1−TL
2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU
2

]
,
[
1− λFL

2 , 1− λFU
2

]〉

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

= λa2 ⊗ λa1 . �

Theorem 3. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, 3) be three INNs, λ ∈ (0, 1), then

(1) (λa1 ⊕ λa2)⊕ λa3 = λa1 ⊕ (λa2 ⊕ λa3);
(2) (λa1 ⊗ λa2)⊗ λa3 = λa1 ⊗ (λa2 ⊗ λa3).

Proof. By Definition 3 and Definition 11, we have
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(1)

(λa1 ⊕ λa2)⊕ λa3

=

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

⊕
〈 [

λ1−TL
3 , λ1−TU

3

]
,
[
1− λIL

3 , 1− λIU
3

]
,
[
1− λFL

3 , 1− λFU
3

]〉

=

〈
 (

λ1−TL
1 + λ1−TL

2 − λ1−TL
1 · λ1−TL

2

)
+ λ1−TL

3 −
(

λ1−TL
1 + λ1−TL

2 − λ1−TL
1 · λ1−TL

2

)
· λ1−TL

3 ,(
λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

)
+ λ1−TU

3 −
(

λ1−TU
1 + λ1−TU

2 − λ1−TU
1 · λ1−TU

2

)
· λ1−TU

3

,[(
1− λIL

1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=

〈 [
λ1−TL

1 + λ1−TL
2 + λ1−TL

3 − λ1−TL
1 · λ1−TL

2 − λ1−TL
1 · λ1−TL

3 − λ1−TL
2 · λ1−TL

3 + λ1−TL
1 · λ1−TL

2 · λ1−TL
3 ,

λ1−TU
1 + λ1−TU

2 + λ1−TU
3 − λ1−TU

1 · λ1−TU
2 − λ1−TU

1 · λ1−TU
3 − λ1−TU

2 · λ1−TU
3 + λ1−TU

1 · λ1−TU
2 · λ1−TU

3

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=

〈
 λ1−TL

1 +
(

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3

)
− λ1−TL

1 ·
(

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3

)
,

λ1−TU
1 +

(
λ1−TU

2 + λ1−TU
3 − λ1−TU

2 · λ1−TU
3

)
− λ1−TU

1 ·
(

λ1−TU
2 + λ1−TU

3 − λ1−TU
2 · λ1−TU

3

) ,[(
1− λIL

1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

)]
,[(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

)]
〉

=
〈 [

λ1−TL
1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU
1

]
,
[
1− λFL

1 , 1− λFU
1

]〉
⊕〈 [

λ1−TL
2 + λ1−TL

3 − λ1−TL
2 · λ1−TL

3 , λ1−TU
2 + λ1−TU

3 − λ1−TU
2 · λ1−TU

3

]
,[(

1− λIL
2

)
·
(

1− λIL
3

)
,
(

1− λIU
2

)
·
(

1− λIU
3

)]
,
[(

1− λFL
2

)
·
(

1− λFL
3

)
,
(

1− λFU
2

)
·
(

1− λFU
3

)] 〉
= λa1 ⊕ (λa2 ⊕ λa3).

(2)

(λa1 ⊗ λa2)⊗ λa3

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉

⊗
〈 [

λ1−TL
3 , λ1−TU

3

]
,
[
1− λIL

3 , 1− λIU
3

]
,
[
1− λFL

3 , 1− λFU
3

]〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
, (

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
+
(

1− λIL
3

)
−
((

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

))
·
(

1− λIL
3

)
,(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)
+
(

1− λIU
3

)
−
((

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

))
·
(

1− λIU
3

) , (
1− λFL

1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
+
(

1− λFL
3

)
−
((

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

))
·
(

1− λFL
3

)
,(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
+
(

1− λFU
3

)
−
((

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

))
·
(

1− λFU
3

) 
〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
, (

1− λIL
1

)
+
(

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

)
+
(

1− λIL
1

)
·
(

1− λIL
2

)
·
(

1− λIL
3

)
,(

1− λIU
1

)
+
(

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)
+
(

1− λIU
1

)
·
(

1− λIU
2

)
·
(

1− λIU
3

) , (
1− λFL

1

)
+
(

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
3

)
+
(

1− λFL
2

)
·
(

1− λFL
3

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
·
(

1− λFL
3

)
,(

1− λFU
1

)
+
(

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
3

)
+
(

1− λFU
2

)
·
(

1− λFU
3

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)
·
(

1− λFU
3

) 
〉

=

〈
[
λ1−TL

1 · λ1−TL
2 · λ1−TL

3 , λ1−TU
1 · λ1−TU

2 · λ1−TU
3

]
, (

1− λIL
1

)
+
(

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

)
−
(

1− λIL
1

)
·
((

1− λIL
2

)
+
(

1− λIL
3

)
−
(

1− λIL
2

)
·
(

1− λIL
3

))
,(

1− λIU
1

)
+
(

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)
−
(

1− λIU
1

)
·
((

1− λIU
2

)
+
(

1− λIU
3

)
−
(

1− λIU
2

)
·
(

1− λIU
3

)) , (
1− λFL

1

)
+
(

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
2

)
·
(

1− λFL
3

)
−
(

1− λFL
1

)
·
((

1− λFL
2

)
+
(

1− λFL
3

)
−
(

1− λFL
2

)
·
(

1− λFL
3

))
,(

1− λFU
1

)
+
(

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
2

)
·
(

1− λFU
3

)
−
(

1− λFU
1

)
·
((

1− λFU
2

)
+
(

1− λFU
3

)
−
(

1− λFU
2

)
·
(

1− λFU
3

)) 
〉

= λa1 ⊗ (λa2 ⊗ λa3). �

Theorem 4. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > and ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2) be
three INNs, λ ∈ (0, 1), k, k1, k2 > 0, then

(1) k(λa1 ⊕ λa2) = kλa1 ⊕ kλa2 ;

(2) (λa1 ⊗ λa2)k = (λa2)k ⊗ (λa1)k;
(3) k1λa ⊕ k2λa = (k1 + k2)λ

a;

(4) (λa)k1 ⊗ (λa)k2 = (λa)k1+k2 ;
(5) (λ1)

a ⊗ (λ2)
a = (λ1λ2)

a.

Proof. By Definition 3 and Definition 11, we have
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(1)

k(λa1 ⊕ λa2)

= k

〈 [
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2 , λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
·
(

1− λIU
2

)]
,
[(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
·
(

1− λFU
2

)] 〉

=

〈 [
1−

(
1−

(
λ1−TL

1 + λ1−TL
2 − λ1−TL

1 · λ1−TL
2

))k
, 1−

(
1−

(
λ1−TU

1 + λ1−TU
2 − λ1−TU

1 · λ1−TU
2

))k
]

,[((
1− λIL

1

)
·
(

1− λIL
2

))k
,
((

1− λIU
1

)
·
(

1− λIU
2

))k
]

,
[((

1− λFL
1

)
·
(

1− λFL
2

))k
,
((

1− λFU
1

)
·
(

1− λFU
2

))k
] 〉

=

〈[
1− (1− λ1−TL

1 )
k
, 1− (1− λ1−TU

1 )
k
]

,
[
(1− λIL

1 )
k
, (1− λIU

1 )
k
]

,
[
(1− λFL

1 )
k
, (1− λFU

1 )
k
]〉

⊕
〈[

1− (1− λ1−TL
2 )

k
, 1− (1− λ1−TU

2 )
k
]

,
[
(1− λIL

2 )
k
, (1− λIU

2 )
k
]

,
[
(1− λFL

2 )
k
, (1− λFU

2 )
k
]〉

= kλa1 ⊕ kλa2 .

(2)

(λa1 ⊗ λa2)k

=

〈 [
λ1−TL

1 · λ1−TL
2 , λ1−TU

1 · λ1−TU
2

]
,[(

1− λIL
1

)
+
(

1− λIL
2

)
−
(

1− λIL
1

)
·
(

1− λIL
2

)
,
(

1− λIU
1

)
+
(

1− λIU
2

)
−
(

1− λIU
1

)
·
(

1− λIU
2

)]
,[(

1− λFL
1

)
+
(

1− λFL
2

)
−
(

1− λFL
1

)
·
(

1− λFL
2

)
,
(

1− λFU
1

)
+
(

1− λFU
2

)
−
(

1− λFU
1

)
·
(

1− λFU
2

)]
〉k

=

〈
[
(λ1−TL

1 · λ1−TL
2 )

k
, (λ1−TU

1 · λ1−TU
2 )

k
]

,[
1− (1−

(
1− λIL

1

)
−
(

1− λIL
2

)
+
(

1− λIL
1

)
·
(

1− λIL
2

)
)

k
, 1− (1−

(
1− λIU

1

)
−
(

1− λIU
2

)
+
(

1− λIU
1

)
·
(

1− λIU
2

)
)

k
]

,[
1− (1−

(
1− λFL

1

)
−
(

1− λFL
2

)
+
(

1− λFL
1

)
·
(

1− λFL
2

)
)

k
, 1− (1−

(
1− λFU

1

)
−
(

1− λFU
2

)
+
(

1− λFU
1

)
·
(

1− λFU
2

)
)

k
]
〉

=

〈
[
(λ1−TL

2 )
k
· (λ1−TL

1 )
k
, (λ1−TU

2 )
k
· (λ1−TU

1 )
k
]

,
(

1− (1−
(

1− λIL
2

)
)

k
)
+

(
1− (1−

(
1− λIL

1

)
)

k
)
−
(

1− (1−
(

1− λIL
2

)
)

k
)
·
(

1− (1−
(

1− λIL
1

)
)

k
)

,(
1− (1−

(
1− λIU

2

)
)

k
)
+

(
1− (1−

(
1− λIU

1

)
)

k
)
−
(

1− (1−
(

1− λIU
2

)
)

k
)
·
(

1− (1−
(

1− λIU
1

)
)

k
)
,


(

1− (1−
(

1− λFL
2

)
)

k
)
+

(
1− (1−

(
1− λFL

1

)
)

k
)
−
(

1− (1−
(

1− λFL
2

)
)

k
)
·
(

1− (1−
(

1− λFL
1

)
)

k
)

,(
1− (1−

(
1− λFU

2

)
)

k
)
+

(
1− (1−

(
1− λFU

1

)
)

k
)
−
(

1− (1−
(

1− λFU
2

)
)

k
)
·
(

1− (1−
(

1− λFU
1

)
)

k
)


〉

= (λa2)k ⊗ (λa1)k.

(3)

k1λa ⊕ k2λa

= k1

〈 [
λ1−TL

, λ1−TU
]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

⊕k2

〈 [
λ1−TL

, λ1−TU
]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉

=

〈[
1− (1− λ1−TL

)
k1 , 1− (1− λ1−TU

)
k1
]

,
[
(1− λIL

)
k1 , (1− λIU

)
k1
]

,
[
(1− λFL

)
k1 , (1− λFU

)
k1
]〉

⊕
〈[

1− (1− λ1−TL
)

k2 , 1− (1− λ1−TU
)

k2
]

,
[
(1− λIL

)
k2 , (1− λIU

)
k2
]

,
[
(1− λFL

)
k2 , (1− λFU

)
k2
]〉

=

〈
 1− (1− λ1−TL

)
k1
+ 1− (1− λ1−TL

)
k2 −

(
1− (1− λ1−TL

)
k1
)
·
(

1− (1− λ1−TL
)

k2
)

,

1− (1− λ1−TU
)

k1
+ 1− (1− λ1−TU

)
k2 −

(
1− (1− λ1−TU

)
k1
)
·
(

1− (1− λ1−TU
)

k2
)
,

[
(1− λIL

)
k1 · (1− λIL

)
k2 , (1− λIU

)
k1 · (1− λIU

)
k2
]

,
[
(1− λFL

)
k1 · (1− λFL

)
k2 , (1− λFU

)
k1 · (1− λFU

)
k2
]
〉

=

〈  1− (1− λ1−TL
)

k2
(1− λ1−TL

)
k1 ,

1− (1− λ1−TU
)

k2
(1− λ1−TU

)
k1

,[
(1− λIL

)
k1 · (1− λIL

)
k2 , (1− λIU

)
k1 · (1− λIU

)
k2
]

,
[
(1− λFL

)
k1 · (1− λFL

)
k2 , (1− λFU

)
k1 · (1− λFU

)
k2
]
〉

= (k1 + k2)λ
a.
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(4)

(λa)k1 ⊗ (λa)k2

=
〈 [

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]
,
[
1− λFL

, 1− λFU
]〉k1

⊗
〈 [

λ1−TL
, λ1−TU

]
,
[
1− λIL

, 1− λIU
]

,
[
1− λFL

, 1− λFU
]〉k2

=

〈[
(λ1−TL

)
k1 , (λ1−TU

)
k1
]

,
[

1− (1−
(

1− λIL
)
)

k1
, 1− (1−

(
1− λIU

)
)

k1
]

,
[

1− (1−
(

1− λFL
)
)

k1
, 1− (1−

(
1− λFU

)
)

k1
]〉

⊗
〈[

(λ1−TL
)

k2 , (λ1−TU
)

k2
]

,
[

1− (1−
(

1− λIL
)
)

k2
, 1− (1−

(
1− λIU

)
)

k2
]

,
[

1− (1−
(

1− λFL
)
)

k2
, 1− (1−

(
1− λFU

)
)

k2
]〉

=

〈
[
(λ1−TL

)
k1 · (λ1−TL

)
k2 , (λ1−TU

)
k1 · (λ1−TU

)
k2
]

, 1− (1−
(

1− λIL
)
)

k1
+ 1− (1−

(
1− λIL

)
)

k2 −
(

1− (1−
(

1− λIL
)
)

k1
)
·
(

1− (1−
(

1− λIL
)
)

k2
)

,

1− (1−
(

1− λIU
)
)

k1
+ 1− (1−

(
1− λIU

)
)

k2 −
(

1− (1−
(

1− λIU
)
)

k1
)
·
(

1− (1−
(

1− λIU
)
)

k2
)
,

 1− (1−
(

1− λFL
)
)

k1
+ 1− (1−

(
1− λFL

)
)

k2 −
(

1− (1−
(

1− λFL
)
)

k1
)
·
(

1− (1−
(

1− λFL
)
)

k2
)

,

1− (1−
(

1− λFU
)
)

k1
+ 1− (1−

(
1− λFU

)
)

k2 −
(

1− (1−
(

1− λFU
)
)

k1
)
·
(

1− (1−
(

1− λFU
)
)

k2
)


〉

=

〈
[
(λ1−TL

)
k1 · (λ1−TL

)
k2 , (λ1−TU

)
k1 · (λ1−TU

)
k2
]

,[
1− (λIL

)
k2
(λIL

)
k1 , 1− (λIU

)
k2
(λIU

)
k1
]

,[
1− (λFL

)
k2
(λFL

)
k1 , 1− (λFU

)
k2
(λFU

)
k1
]

〉

= (λa)k1+k2 .

(5)

(λ1)
a ⊗ (λ2)

a

=
〈 [

λ1−TL

1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU

1

]
,
[
1− λFL

1 , 1− λFU

1

]〉
⊗
〈 [

λ1−TL

2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU

2

]
,
[
1− λFL

2 , 1− λFU

2

]〉

=

〈 [
λ1−TL

1 · λ1−TL

2 , λ1−TU

1 · λ1−TU

2

]
,[

1− λIL

1 + 1− λIL

2 −
(

1− λIL

1

)
·
(

1− λIL

2

)
, 1− λIU

1 + 1− λIU

2 −
(

1− λIU

1

)
·
(

1− λIU

2

)]
,[

1− λFL

1 + 1− λFL

2 −
(

1− λFL

1

)
·
(

1− λFL

2

)
, 1− λFU

1 + 1− λFU

2 −
(

1− λFU

1

)
·
(

1− λFU

2

)]
〉

=

〈 [
λ1−TL

1 · λ1−TL

2 , λ1−TU

1 · λ1−TU

2

]
,[

1− λIL

1 λIL

2 , 1− λIU

1 λIU

2

]
,[

1− λFL

1 λFL

2 , 1− λFU

1 λFU

2

]
〉

=
〈 [

(λ1λ2)
1−TL

, (λ1λ2)
1−TU]

,
[
1− (λ1λ2)

IL
, 1− (λ1λ2)

IU]
,
[
1− (λ1λ2)

FL
, 1− (λ1λ2)

FU]〉
= (λ1λ2)

a. �

Theorem 5. Let a =< [TL, TU ], [IL, IU ], [FL, FU ] > be an INN. If λ1 ≥ λ2, then one can obtain
(λ1)

a ≥ (λ2)
a for λ1, λ2 ∈ (0, 1), and (λ1)

a ≤ (λ2)
a for λ1, λ2 ≥ 1.

Proof. When λ1 ≥ λ2 and λ1, λ2 ∈ (0, 1), based on Definition 11, we can obtain

(λ1)
a =

〈[
λ1−TL

1 , λ1−TU

1

]
,
[
1− λIL

1 , 1− λIU

1

]
,
[
1− λFL

1 , 1− λFU

1

]〉
,

(λ2)
a =

〈[
λ1−TL

2 , λ1−TU

2

]
,
[
1− λIL

2 , 1− λIU

2

]
,
[
1− λFL

2 , 1− λFU

2

]〉
,

Since λ1 ≥ λ2, then λ1−TL

1 ≥ λ1−TL

2 , λ1−TU

1 ≥ λ1−TU

2 , and 1− λIL

1 ≤ 1− λIL

2 , 1− λIU

1 ≤ 1− λIU

2 ,
and 1− λFL

1 ≥ 1− λFL

2 , 1− λFU

1 ≥ 1− λFU

2 .

S((λ1)
a) =

2+λ1−TL
1 +λ1−TU

1 −2
(

1−λIL
1

)
−2
(

1−λIU
1

)
−
(

1−λFL
1

)
−
(

1−λFU
1

)
4

=
λ1−TL

1 +λ1−TU
1 +2λIL

1 +2λIU
1 +λFL

1 +λFU
1 −4

4 ,

S((λ2)
a) =

2+λ1−TL
2 +λ1−TU

2 −2
(

1−λIL
2

)
−2
(

1−λIU
2

)
−
(

1−λFL
2

)
−
(

1−λFU
2

)
4

=
λ1−TL

2 +λ1−TU
2 +2λIL

2 +2λIU
2 +λFL

2 +λFU
2 −4

4 ,
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S((λ1)
a)− S((λ2)

a)

=
λ1−TL

1 +λ1−TU
1 +2λIL

1 +2λIU
1 +λFL

1 +λFU
1 −4

4 − λ1−TL
2 +λ1−TU

2 +2λIL
2 +2λIU

2 +λFL
2 +λFU

2 −4
4

=

(
λ1−TL

1 −λ1−TL
2

)
+
(

λ1−TU
1 −λ1−TU

2

)
+
(

2λIL
1 −2λIL

2

)
+
(

2λIU
1 −2λIU

2

)
+
(

λFL
1 −λFL

2

)
+
(

λFU
1 −λFU

2

)
4

≥ 0.

Then S((λ1)
a) ≥ S((λ2)

a), (λ1)
a ≥ (λ2)

a.
Then, when λ1, λ2 ≥ 1 and λ1 ≥ λ2, we can know 0 ≤ 1

λ1
≤ 1

λ2
≤ 1. As discussed above, we can

obtain (λ1)
a ≤ (λ2)

a. This completes the proof. �

In what follows, let us take a look at some special values about λa:

(1) If λ = 1, then λa = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉;
(2) If a = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉, then λa = 〈[1, 1], [0, 0], [0, 0]〉 = 〈1, 0, 0〉;
(3) If a = 〈[0, 0][1, 1], [1, 1],〉 = 〈0, 1, 1〉, then

λa = 〈[λ, λ], [1− λ, 1− λ], [1− λ, 1− λ]〉

4. Interval Neutrosophic Weighted Exponential Aggregation (INWEA) Operator

Aggregation operators have been commonly used to aggregate the evaluation information in
decision making. Here, we utilize the INNs rather than real numbers as weight of criterion, which is
more comprehensive and reasonable. In this section, we propose an interval neutrosophic weighted
exponential aggregation (INWEA) operator. Furthermore, some characteristics of the proposed
aggregation operator, such as boundedness and monotonicity are discussed in detail.

Definition 12. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection of INNs, and λi ∈
(0, 1) (i = 1, 2, · · · , n) be the collection of real numbers, and let INWEA: Θn → Θ . If

INWEA(a1, a2, · · · , an) = λ1
a1 ⊗ λ2

a2 ⊗ · · · ⊗ λn
an . (9)

Then the function INWEA is called an interval neutrosophic weighted exponential aggregation (INWEA)
operator, where ai (i = 1, 2, · · · , n) are the exponential weighting vectors of attribute values λi(i = 1, 2, · · · , n).

Theorem 6. Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection of INNs, the aggregated
value by using the INWEA operator is also an INN, where

INWEA(a1, a2, · · · , an)

=


〈[

n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1−
n
∏
i=1

λ
IL
i

i , 1−
n
∏
i=1

λ
IU
i

i

]
,
[

1−
n
∏
i=1

λ
FL

i
i , 1−

n
∏
i=1

λ
FU

i
i

]〉
, λi ∈ (0, 1)〈[

n
∏
i=1

(
1
λi

)1−TL
i ,

n
∏
i=1

(
1
λi

)1−TU
i
]

,
[

1−
n
∏
i=1

(
1
λi

)IL
i , 1−

n
∏
i=1

(
1
λi

)IU
i
]

,
[

1−
n
∏
i=1

(
1
λi

)FL
i , 1−

n
∏
i=1

(
1
λi

)FU
i
]〉

, λi ≥ 1

(10)

and ai (i = 1, 2, · · · , n) are the exponential weights of λi (i = 1, 2, · · · , n).

Proof. By using mathematical induction, we can prove the Equation (10).
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(1) When n = 2, we have

INWEA(a1, a2) = λ1
a1 ⊗ λ2

a2

=

〈 [
λ

1−TL
1

1 , λ
1−TU

1
1

]
,
[

1− λ
IL
1

1 , 1− λ
IU
1

1

]
,
[

1− λ
FL

1
1 , 1− λ

FU
1

1

]〉
⊗
〈[

λ
1−TL

2
2 , λ

1−TU
2

2

]
,
[

1− λ
IL
2

2 , 1− λ
IU
2

2

]
,
[

1− λ
FL

2
2 , 1− λ

FU
2

2

]〉

=

〈
[

λ
1−TL

1
1 · λ1−TL

2
2 , λ

1−TU
1

1 · λ1−TU
2

2

]
,[

1− λ
IL
1

1 + 1− λ
IL
2

2 −
(

1− λ
IL
1

1

)
·
(

1− λ
IL
2

2

)
, 1− λ

IU
1

1 + 1− λ
IU
2

2 −
(

1− λ
IU
1

1

)
·
(

1− λ
IU
2

2

)]
,[

1− λ
FL

1
1 + 1− λ

FL
2

2 −
(

1− λ
FL

1
1

)
·
(

1− λ
FL

2
2

)
, 1− λ

FU
1

1 + 1− λ
FU

2
2 −

(
1− λ

FU
1

1

)
·
(

1− λ
FU

2
2

)]
〉

=

〈 [
2

∏
i=1

λ
1−TL

i
i ,

2
∏
i=1

λ
1−TU

i
i

]
,
[

1−
2

∏
i=1

λ
IL
i

i , 1−
2

∏
i=1

λ
IU
i

i

]
,
[

1−
2

∏
i=1

λ
FL

i
i , 1−

2
∏
i=1

λ
FU

i
i

]〉
.

(11)

(2) When n = k, according to Equation (10) there is the following formula:

INWEA(a1, a2, · · · , ak)

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1−
k

∏
i=1

λ
IL
i

i , 1−
k

∏
i=1

λ
IU
i

i

]
,
[

1−
k

∏
i=1

λ
FL

i
i , 1−

k
∏
i=1

λ
FU

i
i

]〉
.

(12)

When n = k + 1, we have the following results based on the operational rules of Definition 3 and
combining (2) and (3).

INWEA(a1, a2, · · · , ak, ak+1)

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1−
k

∏
i=1

λ
IL
i

i , 1−
k

∏
i=1

λ
IU
i

i

]
,
[

1−
k

∏
i=1

λ
FL

i
i , 1−

k
∏
i=1

λ
FU

i
i

]〉
⊗ ak+1

=

〈 [
k

∏
i=1

λ
1−TL

i
i ,

k
∏
i=1

λ
1−TU

i
i

]
,
[

1−
k

∏
i=1

λ
IL
i

i , 1−
k

∏
i=1

λ
IU
i

i

]
,
[

1−
k

∏
i=1

λ
FL

i
i , 1−

k
∏
i=1

λ
FU

i
i

]〉
⊗
〈 [

λ
1−TL

k+1
k+1 , λ

1−TU
k+1

k+1

]
,
[

1− λ
IL
k+1

k+1 , 1− λ
IU
k+1

k+1

]
,
[

1− λ
FL

k+1
k+1 , 1− λ

FU
k+1

k+1

]〉
=

〈 [
n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1−
n
∏
i=1

λ
IL
i

i , 1−
n
∏
i=1

λ
IU
i

i

]
,
[

1−
n
∏
i=1

λ
FL

i
i , 1−

n
∏
i=1

λ
FU

i
i

]〉
. �

Therefore, for the above results we determine that Equation (10) holds for any n. Thus, the proof
is completed. When λi ≥ 1, and 0 < 1

λi
≤ 1, we can also obtain

INWEA(α1, α2, · · · , αn)

=

〈 [
n
∏
i=1

(
1
λi

)1−TL
i ,

n
∏
i=1

(
1
λi

)1−TU
i
]

,
[

1−
n
∏
i=1

(
1
λi

)IL
i , 1−

n
∏
i=1

(
1
λi

)IU
i
]

,
[

1−
n
∏
i=1

(
1
λi

)FL
i , 1−

n
∏
i=1

(
1
λi

)FU
i
]〉

.

and the aggregated value is an INN.
Here, we discuss the relationship between the INWEA operator and other exponential

aggregation operators. When TL = TU , IL = IU and FL = FU , the INWEA operator of INNs is
equivalent to the SVNWEA operator of SVNNs [41].

INWEA(a1, a2, · · · , an) =

〈 [
n

∏
i=1

λ
1−Ti
i

]
,

[
1−

n

∏
i=1

λ
Ii
i

]
,

[
1−

n

∏
i=1

λ
Fi
i

]〉
= SVNWEA(a1, a2, · · · , an)

When 0− ≤ TU + IU + FU ≤ 1, the INWEA operator of INNs is equivalent to the I IFWEA
operator of IIFNs [40]. When TL = TU , IL = IU , FL = FU and 0− ≤ TU + IU + FU ≤ 1, the INWEA
operator of INNs is equivalent to the IFWEA operator of IFNs [39]. So the INWEA operator of INNs
defined by us is a more generalized representation, and the other exponential aggregation operators of
SVNNs, IIFNs and IFNs are special cases.
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Theorem 7. The INWEA operator has the following properties:

(1) Boundedness: Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n) be a collection
of INNs, and let amin =< [min

i
TL

i , min
i

TU
i ], [max

i
IL
i , max

i
IU
i ], [max

i
FL

i , max
i

FU
i ] >,

amax =< [max
i

TL
i , max

i
TU

i ], [min
i

IL
i , min

i
IU
i ], [min

i
FL

i , min
i

FU
i ] > for i = 1, 2, · · · , n,

a− = INWEA(amin, amin, · · · , amin)

=

〈 [
n
∏
i=1

λ
1−min

i
TL

i

i ,
n
∏
i=1

λ
1−min

i
TU

i

i

]
,

[
1−

n
∏
i=1

λ
max

i
IL
i

i , 1−
n
∏
i=1

λ
max

i
IU
i

i

]
,

[
1−

n
∏
i=1

λ
max

i
FL

i

i , 1−
n
∏
i=1

λ
max

i
FU

i

i

]〉
,

a+ = INWEA(amax, amax, · · · , amax)

=

〈 [
n
∏
i=1

λ
1−max

i
TL

i

i ,
n
∏
i=1

λ
1−max

i
TU

i

i

]
,

[
1−

n
∏
i=1

λ
min

i
IL
i

i , 1−
n
∏
i=1

λ
min

i
IU
i

i

]
,

[
1−

n
∏
i=1

λ
min

i
FL

i

i , 1−
n
∏
i=1

λ
min

i
FU

i

i

]〉
,

Then a− ≤ INWEA(a1, a2, · · · , an) ≤ a+.

Proof. For any i, we have min
i

TL
i ≤ TL

i ≤ max
i

TL
i , min

i
TU

i ≤ TU
i ≤ max

i
TU

i , min
i

IL
i ≤ IL

i ≤ max
i

IL
i ,

min
i

IU
i ≤ IU

i ≤ max
i

IU
i , min

i
FL

i ≤ FL
i ≤ max

i
FL

i , min
i

FU
i ≤ FU

i ≤ max
i

FU
i .

n
∏
i=1

λ
1−TL

i
i ≥

n
∏
i=1

λ
1−min

i
TL

i

i ,
n
∏
i=1

λ
1−TU

i
i ≥

n
∏
i=1

λ
1−min

i
TU

i

i ,

1−
n
∏
i=1

λ
IL
i

i ≤ 1−
n
∏
i=1

λ
max

i
IL
i

i , 1−
n
∏
i=1

λ
IU
i

i ≤ 1−
n
∏
i=1

λ
max

i
IU
i

i ,

1−
n
∏
i=1

λ
FL

i
i ≤ 1−

n
∏
i=1

λ
max

i
FL

i

i , 1−
n
∏
i=1

λ
FU

i
i ≤ 1−

n
∏
i=1

λ
max

i
FU

i

i ,

n
∏
i=1

λ
1−TL

i
i ≤

n
∏
i=1

λ
1−mxa

i
TL

i

i ,
n
∏
i=1

λ
1−TU

i
i ≤

n
∏
i=1

λ
1−mxa

i
TU

i

i ,

1−
n
∏
i=1

λ
IL
i

i ≥ 1−
n
∏
i=1

λ
min

i
IL
i

i , 1−
n
∏
i=1

λ
IU
i

i ≥ 1−
n
∏
i=1

λ
min

i
IU
i

i ,

1−
n
∏
i=1

λ
FL

i
i ≥ 1−

n
∏
i=1

λ
min

i
FL

i

i , 1−
n
∏
i=1

λ
FU

i
i ≥ 1−

n
∏
i=1

λ
min

i
FU

i

i ,

Let INWEA(a1, a2, · · · , an) = a, a− =< [TL−, TU−], [IL−, IU−], [FL−, FU−] >,
and a+ =< [TL+, TU+], [IL+, IU+], [FL+, FU+] >, then based on the score function, where

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1−

n
∏

i=1
λ

IL
i

i

)
−2

(
1−

n
∏

i=1
λ

IU
i

i

)
−
(

1−
n
∏

i=1
λ

FL
i

i

)
−
(

1−
n
∏

i=1
λ

FU
i

i

)
4

≥
2+

n
∏

i=1
λ

1−min
i

TL
i

i +
n
∏

i=1
λ

1−min
i

TU
i

i −2

1−
n
∏

i=1
λ

max
i

IL
i

i

−2

1−
n
∏

i=1
λ

max
i

IU
i

i

−
1−

n
∏

i=1
λ

max
i

FL
i

i

−
1−

n
∏

i=1
λ

max
i

FU
i

i


4

= S(α−),

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1−

n
∏

i=1
λ

IL
i

i

)
−2

(
1−

n
∏

i=1
λ

IU
i

i

)
−
(

1−
n
∏

i=1
λ

FL
i

i

)
−
(

1−
n
∏

i=1
λ

FU
i

i

)
4

≥
2+

n
∏

i=1
λ

1−max
i

TL
i

i +
n
∏

i=1
λ

1−max
i

TU
i

i −2

1−
n
∏

i=1
λ

min
i

IL
i

i

−2

1−
n
∏

i=1
λ

min
i

IU
i

i

−
1−

n
∏

i=1
λ

min
i

FL
i

i

−
1−

n
∏

i=1
λ

min
i

FU
i

i


4

= S(α+). �
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In what follows, we discuss three cases:

(I) If S(a−) < S(a) < S(a+), then a− < INWEA(a1, a2, · · · , an) < a+ holds obviously.
(II) If S(a) = S(a−), then there is

TL + TU − 2IL− 2IU − FL− FU = TL−+ TU−− 2IL−− 2IU−− FL−− FU−. Thus, we can obtain
TL = TL−, TU = TU−, IL = IL−, IU = IU−, FL = FL−, FU = FU−. Hence, there is

A(a) = 1
2
(
TL + TU − IU(1− TU)− IL(1− TL)− FU(1− IL)− FL(1− IU))

= 1
2
(
TL− + TU− − IU−(1− TU−)− IL−(1− TL−)− FU−(1− IL−)− FL−(1− IU−))

= A(a−).

So we have INWEA(a1, a2, · · · , an) = a−.
(III) If S(a) = S(a+), then there is

TL + TU − 2IL− 2IU − FL− FU = TL+ + TU+− 2IL+− 2IU+− FL+− FU+. Thus, we can obtain
TL = TL+, TU = TU+, IL = IL+, IU = IU+, FL = FL+, FU = FU+. Hence, there is

A(a) = 1
2
(
TL + TU − IU(1− TU)− IL(1− TL)− FU(1− IL)− FL(1− IU))

= 1
2
(
TL+ + TU+ − IU+

(
1− TU+

)
− IL+(1− TL+)− FU+

(
1− IL+)− FL+(1− IU+

))
= A(a+).

Hence, we have INWEA(a1, a2, · · · , an) = a+.
Based on the above three cases, there is a− ≤ INWEA(a1, a2, · · · , an) ≤ a+.

(2) Monotonity: Let ai =< [TL
i , TU

i ], [IL
i , IU

i ], [FL
i , FU

i ] > (i = 1, 2, · · · , n)
and a∗i =< [TL∗

i , TU∗
i ], [IL∗

i , IU∗
i ], [FL∗

i , FU∗
i ] > be two collections of INNs. If ai ≤ a∗i ,

then INWEA(a1, a2, · · · , an) ≤ INWEA
(
a∗1 , a∗2 , · · · , a∗n

)
.

Proof. Let a = INWEA(a1, a2, · · · , an) =

〈 [
n
∏
i=1

λ
1−TL

i
i ,

n
∏
i=1

λ
1−TU

i
i

]
,
[

1−
n
∏
i=1

λ
IL
i

i , 1−
n
∏
i=1

λ
IU
i

i

]
,
[

1−
n
∏
i=1

λ
FL

i
i , 1−

n
∏
i=1

λ
FU

i
i

]〉
,

a∗ = INWEA
(
a∗1 , a∗2 , · · · , a∗n

)
=

〈[
n
∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU∗

i
i

]
,
[

1−
n
∏
i=1

λ
IL∗
i

i , 1−
n
∏
i=1

λ
IU∗
i

i

]
,
[

1−
n
∏
i=1

λ
FL∗

i
i , 1−

n
∏
i=1

λ
FU∗

i
i

]〉
,

If ai ≤ a∗i , then TL
i ≤ TL∗

i , TU
i ≤ TU∗

i , IL
i ≥ IL∗

i , IU
i ≥ IU∗

i , FL
i ≥ FL∗

i , FU
i ≥ FU∗

i for any i.

So we have
n
∏
i=1

λ
1−TL

i
i ≤

n
∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU

i
i ≤

n
∏
i=1

λ
1−TU∗

i
i , 1−

n
∏
i=1

λ
IL
i

i ≥ 1−
n
∏
i=1

λ
IL∗
i

i , 1−
n
∏
i=1

λ
IU
i

i ≥

1−
n
∏
i=1

λ
IU∗
i

i , 1−
n
∏
i=1

λ
FL

i
i ≥ 1−

n
∏
i=1

λ
FL∗

i
i , 1−

n
∏
i=1

λ
IU
i

i ≥ 1−
n
∏
i=1

λ
IU∗
i

i .

Thus,

S(a)

=
2+

n
∏

i=1
λ

1−TL
i

i +
n
∏

i=1
λ

1−TU
i

i −2

(
1−

n
∏

i=1
λ

IL
i

i

)
−2

(
1−

n
∏

i=1
λ

IU
i

i

)
−
(

1−
n
∏

i=1
λ

FL
i

i

)
−
(

1−
n
∏

i=1
λ

FU
i

i

)
4

≤
2+

n
∏

i=1
λ

1−TL∗
i

i +
n
∏

i=1
λ

1−TU∗
i

i −2

(
1−

n
∏

i=1
λ

IL∗
i

i

)
−2

(
1−

n
∏

i=1
λ

IU∗
i

i

)
−
(

1−
n
∏

i=1
λ

FL∗
i

i

)
−
(

1−
n
∏

i=1
λ

FU∗
i

i

)
4

= S(α∗).

Hence, there are the following two cases:

(1) If S(a) < S(a∗), then we can get INWEA(a1, a2, · · · , an) < INWEA
(
a∗1 , a∗2 , · · · , a∗n

)
;

(2) If S(a) = S(a∗), then

n
∏
i=1

λ
1−TL

i
i +

n
∏
i=1

λ
1−TU

i
i − 2

(
1−

n
∏
i=1

λ
IL
i

i

)
− 2
(

1−
n
∏
i=1

λ
IU
i

i

)
−
(

1−
n
∏
i=1

λ
FL

i
i

)
−
(

1−
n
∏
i=1

λ
FU

i
i

)
=

n
∏
i=1

λ
1−TL∗

i
i +

n
∏
i=1

λ
1−TU∗

i
i − 2

(
1−

n
∏
i=1

λ
IL∗
i

i

)
− 2
(

1−
n
∏
i=1

λ
IU∗
i

i

)
−
(

1−
n
∏
i=1

λ
FL∗

i
i

)
−
(

1−
n
∏
i=1

λ
FU∗

i
i

)
.
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Therefore, by the condition TL
i ≤ TL∗

i , TU
i ≤ TU∗

i , IL
i ≥ IL∗

i , IU
i ≥ IU∗

i , FL
i ≥ FL∗

i , FU
i ≥ FU∗

i for
any i, we can get

n
∏
i=1

λ
1−TL

i
i =

n
∏
i=1

λ
1−TL∗

i
i ,

n
∏
i=1

λ
1−TU

i
i =

n
∏
i=1

λ
1−TU∗

i
i , 1 −

n
∏
i=1

λ
IL
i

i = 1 −
n
∏
i=1

λ
IL∗
i

i , 1 −
n
∏
i=1

λ
IU
i

i = 1 −
n
∏
i=1

λ
IU∗
i

i , 1−
n
∏
i=1

λ
FL

i
i = 1−

n
∏
i=1

λ
FL∗

i
i , 1−

n
∏
i=1

λ
IU
i

i = 1−
n
∏
i=1

λ
IU∗
i

i .

Thus,

A(a)

= 1
2

(
n
∏
i=1

λ
1−TL

i
i +

n
∏
i=1

λ
1−TU

i
i −

(
1−

n
∏
i=1

λ
IU
i

i

)(
1−

n
∏
i=1

λ
1−TU

i
i

)
−
(

1−
n
∏
i=1

λ
IL
i

i

)(
1−

n
∏
i=1

λ
1−TL

i
i

)
−
(

1−
n
∏
i=1

λ
FU

i
i

)(
1−

(
1−

n
∏
i=1

λ
IL
i

i

))
−
(

1−
n
∏
i=1

λ
FL

i
i

)(
1−

(
1−

n
∏
i=1

λ
IU
i

i

)))
= 1

2

(
n
∏
i=1

λ
1−TL∗

i
i +

n
∏
i=1

λ
1−TU∗

i
i −

(
1−

n
∏
i=1

λ
IU∗
i

i

)(
1−

n
∏
i=1

λ
1−TU∗

i
i

)
−
(

1−
n
∏
i=1

λ
IL∗
i

i

)(
1−

n
∏
i=1

λ
1−TL∗

i
i

)
−
(

1−
n
∏
i=1

λ
FU∗

i
i

)(
1−

(
1−

n
∏
i=1

λ
IL∗
i

i

))
−
(

1−
n
∏
i=1

λ
FL∗

i
i

)(
1−

(
1−

n
∏
i=1

λ
IU∗
i

i

)))
= A(a∗).

Therefore, INWEA(a1, a2, · · · , an) = INWEA
(
a∗1 , a∗2 , · · · , a∗n

)
.

Based on (1) and (2), there is INWEA(a1, a2, · · · , an) ≤ INWEA
(
a∗1 , a∗2 , · · · , a∗n

)
. �

5. Multiple Attribute Decision Making Method Based on the INWEA Operator

To better understand the new operational law and the new operational aggregation operator,
we will address some MADM problems, where the attribute weights will be expressed as INNs,
and the attribute values for alternatives are represented as positive real numbers. So, we establish a
MADM method.

In MADM problems, let X = {x1, x2, · · · xm} be a discrete set of m alternatives,
and C = {c1, c2, · · · cn} be the set of n attributes. The evaluation values of attribute
cj(j = 1, 2, · · · , n) for alternative xi(i = 1, 2, · · · , m) is expressed by a positive real number
λij ∈ (0, 1), (i = 1, 2, · · · , m, j = 1, 2, · · · , n). So, the decision matrix R = (λij)m×n can be given.
The INN aj =< [TL

j , TU
j ], [IL

j , IU
j ], [FL

j , FU
j ] > is represented as the attribute weight of the

cj(j = 1, 2, · · · , n), here [TL
j , TU

j ] ⊆ [0, 1] indicates the degree of certainty of the attribute cj supported

by the experts, [IL
j , IU

j ] ⊆ [0, 1] indicates the degree of uncertainty of the attribute cj supported by the

experts, and [FL
j , FU

j ] ⊆ [0, 1] indicates the negative degree of the attribute cj supported by the experts.
Then, we can rank the alternatives and obtain the best alternatives based on the given information; the
specific steps are as follows:

Step 1 Utilize the INWEA operator di = INWEA(a1, a2, · · · , am) (i = 1, 2, · · · , m; j = 1, 2, · · · n) to
aggregate the characteristic λij of the alternative xi.

Step 2 Utilize the score function to calculate the scores S(di) (i = 1, 2, · · · , m) of the alternatives
xi (i = 1, 2, · · · , m).

Step 3 Utilize the scores S(di) (i = 1, 2, · · · , m) to rank and select the alternatives xi (i = 1, 2, · · · , n),
if the two scores S(di) and S

(
dj
)

are equal, then we need to calculate the accuracy degrees
A(di) and A

(
dj
)

of the overall criteria values di and dj, then we rank the alternatives xi and xj
by using A(di) and A

(
dj
)
.

Step 4 End.

6. Typhoon Disaster Evaluation Based on Neutrosophic Information

6.1. Illustrative Example

In China, typhoons are among the most serious types of natural disasters. They primarily impact
the eastern coastal regions of China, where the population is extremely dense, the economy is highly
developed, and social wealth is notably concentrated. Fujian Province is one of the most severely
impacted typhoon disaster areas in both local and global contexts, routinely enduring substantial
economic losses caused by typhoon disasters. For example, in 2017, a total of 208,900 people in
59 counties of Fujian Province were affected by the successive landings of twin typhoons No. 9 “Nassa”
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and No. 10 “Haicang.” There were 434 collapsed houses and 273,300 people were urgently displaced;
26.73 thousand hectares of crops were affected, 101.9 thousand hectares affected, and 2.19 thousand
hectares were lost. The typhoon also led to the cancellation of 507 Fujian flights and 139 trains.
According to incomplete statistics, the total direct economic loss was 966 million yuan (RNB).
We examine the problem of typhoon disaster evaluation in Fujian Province.

We will use several indices to evaluate the typhoon disaster effectively. The assessment indicators
C = {c1, c2, c3, c4} include economic loss c1, social impact c2, environmental damage c3, and other
impact c4 proposed by Yu [1]. Several experts are responsible for this assessment, and the evaluation
information is expressed by positive real numbers and INNs. The assessment decision matrix based
on this is constructed R = (λij)m×n(see Table 1), and the λij is positive real numbers. The λij in the
matrix indicates the degree of damage to the city in the typhoon. The data between 0 and 1 is used
to indicate the degree of disaster received. 0 means that the city is basically unaffected by disasters,
0.2 means that the extent of the disaster is relatively small, 0.4 means that the extent of the disaster is
middle, 0.6 means that the degree of disaster is slightly larger, 0.8 means the extent of the disaster is
relatively large. 1 means that the extent of the disaster is extremely large. The rest of the data located
in the middle of the two data indicates that the extent of the disaster is between the two. The interval
neutrosophic weights ω1, ω2, ω3, ω4 for the four attributes voted by experts. Take ω1 as an example
to explain its meaning, [0.6, 0.8] indicates the degree of certainty of the attribute c1 supported by the
experts is between 0.6 and 0.8, [0.2, 0.4] indicates the uncertainty of the expert’s support for attribute c1

is between 0.2 and 0.4, and [0.1, 0.2] indicates the negative degree of expert’s support for attribute c1 is
between 0.1 and 0.2.

ω1 =< [0.6, 0.8], [0.2, 0.4], [0.1, 0.2] >, ω2 =< [0.5, 0.9], [0.2, 0.5], [0.1, 0.3] >
ω3 =< [0.4, 0.7], [0.3, 0.6], [0.3, 0.5] >, ω4 =< [0.2, 0.4], [0.4, 0.8], [0.6, 0.7] > .

Table 1. Decision matrix.

Cities
Attributes c1 c2 c3 c4

Nanping (NP) 0.2 0.2 0.2 0.2
Ningde (ND) 0.9 0.8 0.7 0.4
Sanming (SM) 0.2 0.2 0.2 0.2
Fuzhou (FZ) 0.8 0.5 0.5 0.3
Putian (PT) 0.7 0.7 0.6 0.3

Longyan (LY) 0.4 0.3 0.3 0.2
Quanzhou (QZ) 0.3 0.4 0.2 0.3

Xiamen (XM) 0.3 0.3 0.3 0.2
Zhangzhou (ZZ) 0.6 0.5 0.8 0.3

According to Section 5, Typhoon disaster evaluation using the MADM model contains the
following steps:

Step 1 Using the INWEA operator defined by equation (10) to aggregate all evaluation information
to obtain a comprehensive assessment value di for each city as follows:

When i = 2, we can get

dND
2 = INWEA(α1, α2, · · · , αn)

=

〈 [
4

∏
i=1

λ
1−TL

i
i ,

4
∏
i=1

λ
1−TU

i
i

]
,
[

1−
4

∏
i=1

λ
IL
i

i , 1−
4

∏
i=1

λ
IU
i

i

]
,
[

1−
4

∏
i=1

λ
FL

i
i , 1−

4
∏
i=1

λ
FU

i
i

]〉
=<

[
0.9(1−0.6) × 0.8(1−0.5) × 0.7(1−0.4) × 0.4(1−0.2), 0.9(1−0.8) × 0.8(1−0.9) × 0.7(1−0.7) × 0.4(1−0.4)

]
,[

1− 0.90.2 × 0.80.2 × 0.70.3 × 0.40.4, 1− 0.90.4 × 0.80.5 × 0.70.6 × 0.40.8],[
1− 0.90.1 × 0.80.1 × 0.70.3 × 0.40.6, 1− 0.90.2 × 0.80.3 × 0.70.5 × 0.40.7],

=< [0.333, 0.497], [0.417, 0.667], [0.498, 0.597] >
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In a similar way, we can get

dNP
1 =< [0.025, 0.145], [0.830, 0.975], [0.830, 0.935] >,

dND
2 =< [0.333, 0.497], [0.417, 0.667], [0.498, 0.597] >,

dSM
3 =< [0.025, 0.145], [0.830, 0.975], [0.830, 0.935] >,

dFZ
4 =< [0.163, 0.352], [0.582, 0.837], [0.640, 0.764] >,

dPT
5 =< [0.204, 0.374], [0.540, 0.796], [0.612, 0.721] >,

dLY
6 =< [0.051, 0.196], [0.760, 0.949], [0.785, 0.897] >,

dQZ
7 =< [0.057, 0.215], [0.751, 0.943], [0.758, 0.885] >,

dXM
8 =< [0.045, 0.185], [0.774, 0.955], [0.791, 0.903] >,

dZZ
9 =< [0.192, 0.383], [0.546, 0.808], [0.597, 0.718] >.

Step 2 Using Definition 4 to calculate the score function value of the comprehensive assessment value
di for each city as follows:

S
(
dNP

1
)
= −0.801, S

(
dND

2
)
= −0.109, S

(
dSM

3
)
= −0.801, S

(
dFZ

4
)
= −0.432,

S
(
dPT

5
)
= −0.357, S

(
dLY

6
)
= −0.714, S

(
dQZ

7

)
= −0.690, S

(
dXM

8
)
= −0.730,

S
(
dZZ

9
)
= −0.360.

Step 3 According to Definition 6, the ranking order of the nine cities is dND
2 � dPT

5 � dZZ
9 � dFZ

4 �
dQZ

7 � dLY
6 � dXM

8 � dSM
3 ~dNP

1 . The ranking results of the cities are shown in Figure 1.
Step 4 End.

6.2. Comparative Analysis Based on Different Sorting Methods

To illustrate the stability of the ranking results, the degree of possibility-based ranking method
proposed in [33,44] is used in this paper. We obtain the matrix of degrees of possibility of the
comprehensive assessment values of nine cities as follows:

P =

NP
ND
SM
FZ
PT
LY
QZ
XM
ZZ

NP ND SM FZ PT LY QZ XM ZZ

0.500 0.000 0.500 0.000 0.000 0.344 0.302 0.371 0.000
1.000 0.500 1.000 0.944 0.854 1.000 1.000 1.000 0.843
0.500 0.000 0.500 0.000 0.000 0.344 0.302 0.371 0.000
1.000 0.056 1.000 0.500 0.402 0.913 0.862 0.943 0.406
1.000 0.146 1.000 0.598 0.500 1.000 0.980 1.000 0.501
0.656 0.000 0.656 0.087 0.000 0.500 0.456 0.527 0.000
0.698 0.000 0.698 0.138 0.020 0.544 0.500 0.570 0.038
0.629 0.000 0.629 0.057 0.000 0.473 0.430 0.500 0.000
1.000 0.157 1.000 0.594 0.499 1.000 0.962 0.100 0.500


Here, ND � PT � ZZ � FZ � QZ � LY � XM � SM~NP. The ranking order of the nine cities

is also dND
2 � dPT

5 � dZZ
9 � dFZ

4 � dQZ
7 � dLY

6 � dXM
8 � dSM

3 ~dNP
1 . The ranking results of the cities are

shown in Figure 2. As can be seen from the above results, the two sorting results are the same.

6.3. Comparative Analysis of Different Aggregation Operators

In order to illustrate the rationality and predominance of the proposed method, we compare this
method with other methods [33]. The comparative analysis is shown in Table 2 and Figure 3.
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Figure 1. Ranking results based on the score function.

Figure 2. Ranking results based on the degree of possibility.

Table 2. Comparative analysis of different aggregation operators.

Different Aggregation Method Ranking Result

INWEA operator of our method dND
2 � dPT

5 � dZZ
9 � dFZ

4 � dQZ
7 � dLY

6 � dXM
8 � dSM

3 ~dNP
1

INNWA operator of [33] dND
2 � dPT

5 � dFZ
4 � dZZ

9 � dLY
6 � dQZ

7 � dXM
8 � dSM

3 ~dNP
1

Figure 3. Comparative analysis of different aggregation operators. (a) Ranking results of two operators
based on the score function; (b) Ranking results of two operators based on the possibility degree.
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First in Step 1, using the INNWA operator proposed by [33] instead of the INWEA operator
to aggregate all evaluation information to obtain a comprehensive assessment value di for each city,
then using Definition 4 to calculate the score function value of di as follows:

S
(
dNP

1
)
= 0.092, S

(
dND

2
)
= 0.853, S

(
dSM

3
)
= 0.092, S

(
dFZ

4
)
= 0.750, S

(
dPT

5
)
= 0.782, S

(
dLY

6
)
= 0.418,

S
(

dQZ
7

)
= 0.389, S

(
dXM

8
)
= 0.340, S

(
dZZ

9
)
= 0.742.

Here, we compare and analyze several aggregation methods to illustrate the advantages of the
proposed method.

(1) Can be seen from Table 2 and Figure 3, the two ranking results based on the INWEA operator
and the INNWA operator are different. The main reason is that the positions and meanings of the
attribute values and the attribute weights are different. For the INWEA operator, its bases are positive
real numbers and the exponents are interval neutrosophic numbers. It can deal with the decision
making problem, in which attribute values are positive real numbers, and the attribute weights are
interval neutrosophic numbers. However, the INNWA operator is just the opposite. It needs to
exchange the roles of the attribute values and the attribute weights because its bases are interval
neutrosophic numbers and its exponents are positive real numbers. Therefore, it cannot be used to
solve the typhoon disaster assessment problem in this paper, and the second ranking results in Table 2
and Figure 3 are unreasonable.

(2) Compared with the existing SVNWAA operator introduced in an SVNN environment [41], our
method is a more generalized representation, and the SVNWAA operator is a special case. When the
upper limit and lower limit of the INNs are the same, the INWEA operator is equivalent to the
SVNWEA operator.

(3) Compared with the existing I IFWEA operator of IIFNs [40] and the IFWEA operator of
IFNs [39], our method uses interval neutrosophic weights, which include truth degree, falsity degree,
and indeterminacy degree, and can deal with the indeterminate, incomplete, and inconsistent problems.
However, the I IFWEA operator and IFWEA operator use intuitionistic fuzzy weights, which only
contain truth degree and falsity degree, and cannot handle the assessment problem in this paper.
Since IFN and IIFN are only special cases of interval NN, our exponential aggregation operator is the
extension of the existing exponential operators [39–41].

7. Conclusions

In this paper, a typhoon disaster evaluation approach based on exponential aggregation operators
of interval neutrosophic numbers under the neutrosophic fuzzy environment, is proposed. First, this
paper provides the exponential operational laws of INSs and INNs, which are a useful supplement to
the existing neutrosophic fuzzy aggregation techniques. Then, we investigated a series of properties
of these operational laws. Next, we introduced the interval neutrosophic weighted exponential
aggregation (INWEA) operator and discussed some favorable properties of the aggregation method.
Finally, we applied the proposed decision making method successfully to the evaluation of typhoon
disaster assessment. The research in this paper will be helpful to deepen the study of typhoon disaster
evaluation and improve decision making for disaster reduction and disaster prevention. In addition,
it provides methodological guidance for the handling of typhoon disasters and can improve the
government’s ability to effectively improve disaster reduction. In future research, we will expand the
proposed method and apply it to other natural disaster assessment problems. We will continue to
study related theories of exponential aggregation operators in a neutrosophic fuzzy environment and
their application in typhoon disaster assessment. The authors will also study the related theory
of single-valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets,
neutrosophic hesitant fuzzy sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic
sets, and their applications in typhoon disaster evaluation problems.
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