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Fuzzy sets and fuzzy logics are used to model events with imprecise, incomplete, and uncertain information. Researchers have
developed numerous methods and techniques to cope with fuzziness or uncertainty. )is research intends to introduce the novel
concepts of complex neutrosophic relations (CNRs) and its types based on the idea of complex neutrosophic sets (CNSs). In
addition, these concepts are supported by suitable examples. A CNR discusses the quality of a relationship using the degree of
membership, the degree of abstinence, and the degree of nonmembership. Each of these degrees is a complex number from the
unit circle in a complex plane. )e real part of complex-valued degrees represents the amplitude term, while the imaginary part
represents the phase term. )is property empowers CNRs to model multidimensional variables. Moreover, some interesting
properties and useful results have also been proved. Furthermore, the practicality of the proposed concepts is verified by an
application, which discusses the use of the proposed concepts in statistical decision-making. Additionally, a comparative analysis
between the novel concepts of CNRs and the existing methods is carried out.

1. Introduction

In mathematics, the word modeling refers to the process of
representing real-world events in a mathematical form.
)ere are many ways to express the practical happenings in
the mathematical form which depend on the nature of the
problem. In real life, there are many occasions when one
faces uncertainty, vagueness, and ambiguity. Fuzzy sets and
logics introduced by Zadeh [1] are proved to be great tools at
dealing with problems that involve doubts, vagueness, and
imprecise information. Fuzzy sets (FSs) are characterized by
a mapping called the degree of membership (m) that attains
real values from 0 to 1, like probability. Atanassov [2] de-
veloped the idea of intuitionistic fuzzy sets (IFSs) that also

model fuzziness. )e advancement in IFSs as compared to
FSs is that IFSs discuss the degree of membership (m) as
well the degree of nonmembership (n) of the events. Both
degrees attain values from the unit interval provided that
their sum is contained within the unit interval. Due to this
constraint on the sum, a decision maker is bounded and
limited in assigning the values to degrees of membership and
nonmembership. For instance, a decision maker cannot
assignm � 0.8 andn � 0.5 because their sum exceeds 1.)is
limitation affects the precision of the results. Henceforth,
Yager [3] provided the notion of Pythagorean fuzzy sets
(PFSs). A PFS is a generalization of IFS and FS that eases the
constraints in IFS. Like IFSs, the PFSs also discuss the degree
of membership (m) and the degree of nonmembership (n)
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that are fuzzy numbers, provided that the sum m2 + n2

belongs to the unit interval. Although PFS provides a
broader range of fuzzy numbers to be assigned as degrees as
compared to an IFS, there are instances when someone
needs to set both the degrees higher enough so that the sum
disobeys the restrictions of PFSs. For example ifm � 0.9 and
n � 0.7, then 0.92 + 0.72 � 0.81 + 0.49≰1. Keeping this in
mind, Yager [4] generalized IFSs and PFSs to devise the
notion of q-rung orthopair fuzzy sets (qROFSs). A qROFS is
one of the most powerful tools to tackle fuzziness when
discussing the degree of membership and the degree of
nonmembership. According to qROFSs, both the degreesm
and n are fuzzy numbers and 0≤mq + nq ≤ 1, where q is a
positive integer. For q � 1 and q � 2, the qROFS transforms
to an IFS and PFS, respectively. Garg [5] presented appli-
cations of PFSs in multiattribute decision-making process.
Yang and Hussain [6, 7] introduced fuzzy entropy, distance,
and similarity measures of PFSs with applications to mul-
ticriteria decision-making. Zhou et al. [8] also introduced
divergence measure of PFSs and applied them in medical
diagnosis. Yang et al. [9] gave the idea of belief and plau-
sibility measures on IFSs with construction of belief-plau-
sibility TOPSIS. Using the characteristic objects method,
Faizi et al. [10] proposed IFSs in multicriteria group deci-
sion-making problems. Peng and Liu [11] devised infor-
mation measures for qROFSs. Wei et al. [12] initiated the
concept of qROF Heronian mean operators in multiple
attribute decision-making, and Liu et al. [13] developed
some cosine similarity measures and distance measures
between q-rung orthopair fuzzy sets.

Later, Smarandache [14] introduced neutrosophic sets
(NSs) that are the generalization of FSs. In an NS, there are
three independent fuzzy-valued mappings, i.e., the degree of
membership (m), the degree of abstinence (a), and the
degree of nonmembership (n). According to the NSs, the
condition on the sum of the degrees is that 0≤m + a + n≤ 3.
)is theory permits the decision makers to freely assign any
fuzzy value to an object as its degrees of membership, ab-
stinence, and nonmembership. Wang et al. [15] devised
single-valued NSs (SVNSs), Smarandache [16–20] scrupu-
lously researched the NSs and provided several general-
izations of NSs, Salama and Alblowi [21] worked on NS and
neutrosophic topological spaces, Das et al. [22] applied the
NS in decision-making, Khalil et al. [23] gave the combi-
nation of the SVNSs and their application in decision-
making, and Sahin and Liu [24] presented the correlation
coefficient of SVN hesitant FSs and applied them in deci-
sion-making. Hashim et al. [25] defined and applied the
concept of neutrosophic bipolar fuzzy set in the preparation
of medicines.

An idea of involving the complex numbers in the FS
theory lead to the development of a new idea; complex FS
(CFS) which was concocted by Ramot et al. [26]. A CFS is
characterized by a complex-valued mapping, called the
degree of membership (mC). )e degree of membership
(mC) acquires values from the unit circle in a complex
plane. For an object n, the degree of membership is defined
as mC(x) � τC(x)eρC(x)2πi, where τC and ρC are fuzzy
numbers and are known as the amplitude term and the phase

term, respectively. )e preeminence of CFSs over FSs is that
CFSs are capable of modeling multidimensional problems.
)e phase term usually refers to time. Alkouri et al. [27]
presented the concept of complex IFSs (CIFSs) that char-
acterizes an object with a pair of complex-valued mappings,
i.e., degrees of membership mC and nonmembership nC.
Both the degrees belong to the unit circle in a complex plane
and so does their sum. Equivalently, the amplitude and
phase terms of both the degrees, the sum of amplitude terms,
and the sum of phase terms are all fuzzy numbers. Moreover,
Ullah et al. [28] introduced the concept of complex PFS
(CPFS) that discusses the degree of membership and non-
membership. )ese degrees are complex numbers from a
unit circle in complex plane provided that the sum of their
squares is also a complex number in a unit circle. Fur-
thermore, the CIFSs and CPFSs were generalized to complex
qROFSs (CqROFSs) by Liu et al. [29] by updating the
constraints on the sum of the degrees of membership and
nonmembership. According to CqROFSs, the degree of
membership (mC), the degree of nonmembership (nC), and
the sum (mC)q + (nC)q lie in a unit circle in a complex
plane. Bi et al. [30] defined CF arithmetic aggregation op-
erators, and Tamir et al. [31] presented an overview of theory
and applications of CFSs and CF logic. Also, Tamir and
Kandel [32] presented the axiomatic theory of CF logic and
classes. Ma et al. [33] proposed the method of applying CFSs
in multiple periodic factor prediction problems. Ngan et al.
[34] generalized the CIFSs by space of quaternion numbers,
Garg and Rani [35] offered the coefficient measure of CIFSs
and their applications in decision-making, and Rani and
Garg [36] introduced the CIF power aggregation operators
and applied them in decision-making. Ali and Mahmood
[37] gave the idea of Maclaurin symmetric mean operators
for CqROFSs and presented their applications. Liu et al. [38]
extended the prioritized weighted aggregation operators for
decision-making under CqROFSs.

In addition, complex NSs (CNSs) were proposed by Ali
and Smarandache [39]. A CNS is characterized by three
complex-valued mapping, i.e., degree of membership (mC),
degree of abstinence (aC), and degree of nonmembership
(nC), such that each of these degrees is a fuzzy number, and
their sum is restricted as 0≤ |mC| + |aC| + |nC|≤ 3. Note that
every complex-valued degree consists of two terms. Each of
these terms is a fuzzy number representing two different
entities. )e advantage of CNSs over other CFSs and its
generalizations is that CNSs discuss three independent
degrees instead of two. Furthermore, it provides much more
freedom to a decision maker because he/she can choose
independently any value for each degree from [0, 1]. Broumi
et al. [40] discussed the bipolar CNSs with applications.
Furthermore, Gulistan et al. [41] introduced the CN sub-
semigroups and ideals. Ali and Mahmood [42], Al-Quran
and Hassan [43], Manna et al. [44], and Dat et al. [45]
applied the CNSs for decision-making, and Singh [46] used
CNSs to analyze the air quality.

Klir and Folger [47] presented the concept of crisp re-
lations (CRs) that are based on the crisp set theory. CRs
describe the existence of a relationship between some events.
Mendel [48] gave the concept of fuzzy relations (FRs), which
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are the extension of CRs. Like its predecessor, FRs also
describe the existence of the relationship among the objects,
but in addition, FRs also indicate the strength of the rela-
tionship by the degree of membership. If the value of degree
of membership is nearer to 0, then it means the relationship
is weak, and the value closer to 1 indicates the stronger
relationship. For instance, a relationship with the degree of
membership 0.5 is weaker than the relationship with the
degree 0.6. Moreover, the notion of intuitionistic FRs (IFRs)
was introduced by Burillo and Bustince [49]. IFRs describe
the quality of relationship by degree of membership and
degree of nonmembership, provided that their sum does not
exceed 1. Ramot et al. [26] devised the notion of complex FR
(CFR) which discusses the complex-valued degree of
membership. Ejegwa [50] improved the composition rela-
tion for PFSs and applied the concept in medical diagnosis.
Ramot et al. [51] worked on CF logic. Hu et al. [52]
discovered the distances of CFSs and continuity of CF
operations. Deschrijver and Kerre [53] worked on the
composition of IFRs, Bustince and Burillo [54] studied the
structures of the IFRs, Li et al. [55] proposed some pref-
erence relations based on qROFSs, and Zhang et al. [56]
offered the concepts of additive consistency-based priority-
generating method of qROF preference relation.

)is paper aims to introduce the notion of complex NRs
(CNRs) and its types such as inverse CNR, CN reflexive,
irreflexive, symmetric, asymmetric, antisymmetric, transi-
tive, composite, equivalence, order relations, and CN
equivalence class. Besides these, some interesting properties
and useful results have also been proved. Since CNRs carry
three degrees, i.e., the degrees of membership, abstinence,
and nonmembership, they define the quality of a relation-
ship much efficiently. )e complex degrees consist of two
parts that are the amplitude and phase terms as discussed
earlier, so CNRs are capable of describing the problems with
time periods, phase changes or multidimensions. An ap-
plication is also presented to illuminate the practicality of the
proposed concepts. )e application discusses the worth of
the proposed work for a statistician who is supposed to
make the decision for the economic policy. In the process of
policy making, the data are collected, organized, and an-
alyzed through statistical techniques such as percentages,
averages, frequencies, and probabilities and then presented
in the form of tables and graphs, and finally the inter-
pretation of the information takes place. On large scales,
the information is probably ambiguous, uncertain, or
unclear that certainly affects the final decision. In order to

cope with such issues, this study proposes a new method in
the application.

)is paper is organized such that Section 2 defines some
fundamental concepts. Section 3 proposes the main objec-
tives and results of the study. Application of CNSs and CNRs
in investigating the economic relationships through statis-
tical decision-making is presented in Section 4. Section 5 is
named comparative analysis which compares the proposed
work with the existing methods. Finally, the paper ends with
a conclusion.

2. Preliminaries

)is section defines some fundamental concepts such as FSs,
CFSs, Cartesian product of CFSs, CFRs, IFSs, CIFSs, PFSs,
CPFSs, qROFSs, CqROFSs, NSs, and CNSs.

Definition 1 (see [1]). A fuzzy set (FS) A
...

of a referential setU
...

is characterized by a real-valued function m: U
...

⟶ [0, 1]

known as the degree of membership of x ∈ A
...

.

Definition 2 (see [26]). A complex FS (CFS) A
...

of a refer-
ential set U

...

is characterized by a complex-valued function
m

A
...

C
: U

...

⟶ z|z ∈ C, |z|≤ 1{ } known as the degree of

membership of x ∈ A
...

, where z(x) � τ
A
...

C
(x)e

ρ
A
...

C
(x)2πi and

0≤ τ
A
...

C
(x), ρ

A
...

C
(x)≤ 1. τC(x) and ρC(x) are known as the

amplitude and phase terms, respectively.

Definition 3 (see [26]). )e Cartesian product of two CFSs

A
...

� xί,mA
...

C
(xί)|xί ∈ U

...

􏼚 􏼛 and B
...

� xj,mB
...

C
(xj)|xj ∈ U

...

􏼚 􏼛,

ί, j ∈ N, is given by

A
...

× B
...

� xί, xj􏼐 􏼑,m
(A

...

×B
...

)C
xί, xj􏼐 􏼑|xί ∈ A

...

, xj ∈ B
...

􏼚 􏼛. (1)

)e function m
(A

...

×B
...

)C
: U

...

⟶ z
(A

...

×B
...

)m
|z

(A
...

×B
...

)m
∈ C,􏼚

|z
(A

...

×B
...

)m
|≤ 1􏼛 symbolizes the degree of membership of the

Cartesian product A
...

× B
...

that is defined as

m
(A

...

×B
...

)C
xί, xj􏼐 􏼑 � min m

A
...

C
xί( 􏼁,m

B
...

C
xj􏼐 􏼑􏼚 􏼛. (2)

Or equivalently

z
(A

...

×B
...

)m
xί, xj􏼐 􏼑 � τ

(A
...

×B
...

)m
xί, xj􏼐 􏼑e

ρ
(A

...
×B

...
)m

xί ,xj( 􏼁2πi
� min τ

A
...

m
xί( 􏼁, τ

B
...

m
xj􏼐 􏼑􏼚 􏼛e

min ρ
A
...
m

xί( ),ρ
B
...
m

xj( 􏼁􏽮 􏽯2πi

· τ
(A

...

×B
...

)m
xί, xj􏼐 􏼑, ρ

(A
...

×B
...

)m
xί, xj􏼐 􏼑 ∈ [0, 1].

(3)
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Definition 4 (see [26]). A complex fuzzy relation (CFR)
denoted byR

...

is any nonempty subset of A
...

× B
...

, where A
...

and
B
...

are CFSs.

Example 1. For given CFS, A
...

� (x, 0.6e
(0.3)2πi

),􏽮 (y,

0.3e
(0.7)2πi

), (z, 0.9e
(0.9)2πi

)}

)e Cartesian product of A
...

to itself is

A
...

× A
...

�

(x, x), 0.6e
(0.3)2πi

􏼐 􏼑, (x, y), 0.3e
(0.3)2πi

􏼐 􏼑, (x,z), 0.6e
(0.3)2πi

􏼐 􏼑

(y, x), 0.3e
(0.3)2πi

􏼐 􏼑, (y, y), 0.3e
(0.7)2πi

􏼐 􏼑, (y,z), 0.3e
(0.7)2πi

􏼐 􏼑

(z, x), 0.6e
(0.3)2πi

􏼐 􏼑, (x, y), 0.3e
(0.7)2πi

􏼐 􏼑, (z,z), 0.9e
(0.9)2πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (4)

and the CFR is

R
...

� (x, y), 0.3e
(0.3)2πi

􏼐 􏼑, (x,z), 0.6e
(0.3)2πi

􏼐 􏼑,􏽮

· (y,z), 0.3e
(0.7)2πi

􏼐 􏼑, (z, x), 0.6e
(0.3)2πi

􏼐 􏼑􏽯.
(5)

Definition 5 (see [2]). An intuitionistic FS (IFS) A
...

of a
referential set U

...

is characterized by a pair of real-valued
functions m,n: U

...

⟶ [0, 1] known as the degrees of
membership and nonmembership, respectively, of x ∈ A

...

as
long as 0≤m(x) + n(x)≤ 1.

Definition 6 (see [27]). A complex IFS (CIFS) A
...

of a refer-
ential set U

...

is characterized by a pair of complex-valued
functions m

A
...

C
: U

...

⟶ zm|zm ∈ C, |zm|≤ 1􏼈 􏼉 and n
A
...

C
: U

...

⟶ zn|zn ∈ C, |zn|≤ 1􏼈 􏼉 known as the degrees of mem-
bership and nonmembership, respectively, of x ∈ A

...

where
z

A
...

m
(x) � τ

A
...

m
(x)e

ρ
A
...
m

(x)2πi and z
A
...

n
(x) � τ

A
...

n
(x)e

ρ
A
...
n

(x)2πi. A
CIFS has the condition that 0≤ |m

A
...

C
(x)| + |n

A
...

C
(x)|≤ 1 or

equivalently, 0≤ τ
A
...

m
(x) + τ

A
...

n
(x)≤ 1, 0≤ ρ

A
...

m
(x) + ρ

A
...

n
(x)

≤ 1., τ
A
...

n
(x) are known as the amplitude terms, and ρ

A
...

m
(x),

ρ
A
...

n
(x) are known as the phase terms.

Definition 7 (see [4]). A q-rung orthopair FS (qROFS) A
...

of a
referential set U

...

is characterized by a pair of real-valued
functions m,n: U

...

⟶ [0, 1] known as the degrees of
membership and nonmembership, respectively, of x ∈ A

...

as
long as 0≤ (m(x))n + (n(x))n ≤ 1, where n is any natural
number.

Note 1. For n � 1 and n � 2, the qROFS converts to an IFS
and a Pythagorean fuzzy set (PFS), respectively.

Definition 8 (see [29]). A complex qROFS (CqROFS) A
...

of a
referential setU

...

is characterized by a pair of complex-valued
functions m

A
...

C
: U

...

⟶ zm|zm ∈ C, |zm|≤ 1􏼈 􏼉 and n
A
...

C
: U

...

⟶ zn|zn ∈ C, |zn|≤ 1􏼈 􏼉 known as the degrees of mem-
bership and nonmembership, respectively, of x ∈ A

...

where

z
A
...

m
(x) � τ

A
...

m
(x)e

ρ
A
...
m

(x)2πi and z
A
...

n
(x) � τ

A
...

n
(x)e

ρ
A
...
n

(x)2πi. A
CqROFS has the condition that 0≤ |m

A
...

C
(x)|n + |n

A
...

C
(x)|n

≤ 1 or, equivalently, 0≤ (τ
A
...

m
(x))n + (τ

A
...

n
(x))n ≤ 1, 0≤ (ρ

A
...

m

(x))n + (ρ
A
...

n
(x))n ≤ 1, where n is any natural number.

τ
A
...

m
(x), τ

A
...

n
(x) are known as the amplitude terms, and

ρ
A
...

m
(x), ρ

A
...

n
(x) are known as the phase terms.

Note 2. For n � 1 and n � 2, the CqROFS converts to n CIFS
and a complex PFS (CPFS), respectively.

Definition 9 (see [14]). A neutrosophic set (NS) A
...

of a
referential set U

...

is characterized by three real-valued
functions m, a,n: U

...

⟶ [0, 1] known as the degrees of
membership, abstinence, and nonmembership, respectively,
of x ∈ A

...

as long as 0≤m(x) + a(x) + n(x)≤ 3.

Definition 10 (see [39]). A complex NS (CNS) A
...

of a refer-
ential setU

...

is characterized by three complex-valued functions

m
A
...

C
: U

...

⟶ z
A
...

m
|z

A
...

m
∈C, |z

A
...

m
|≤1􏼚 􏼛, a

A
...

C
: U

...

⟶ z
A
...

a
|z

A
...

a
􏼚

∈C, |z
A
...

a
|≤1

⎫⎬

⎭, and n
A
...

C
: U

...

⟶ z
A
...

n
|z

A
...

n
∈C, |z

A
...

n
|≤1􏼚 􏼛

known as the degrees of membership, abstinence, and non-
membership, respectively, of x ∈A

...

where z
A
...

m
(x) � τ

A
...

m
(x)

e
ρ

A
...
m

(x)2πi, z
A
...

a
(x) � τ

A
...

a
(x)e

ρ
A
...
a
(x)2πi, and z

A
...

n
(x) � τ

A
...

n
(x)

e
ρ

A
...
n

(x)2πi. A CNFS has the condition that 0≤ |m
A
...

C
(x)|+

|a
A
...

C
(x)| + |n

A
...

C
(x)|≤3 or, equivalently, 0≤τ

A
...

m
(x) + τ

A
...

a

(x) + τ
A
...

n
(x)≤3, 0≤ρ

A
...

m
(x) +ρ

A
...

a
(x) +ρ

A
...

n
(x)≤3. τ

A
...

m
(x),

τ
A
...

a
(x), τ

A
...

n
(x) are known as the amplitude terms, and ρ

A
...

m
(x),

ρ
A
...

a
(x), ρ

A
...

n
(x) are known as the phase terms.

3. Main Results

)is section aims to define some new concepts in CNSs, like
Cartesian product of CNSs and the CNRs. Moreover, types
of CNRs are also introduced with examples. Furthermore,
some interesting results and properties of these CNRs are
obtained.
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Definition 11. )e Cartesian product of two CNSs

A
...

� xί,mA
...

C
(xί), aA

...

C
(xί),nA

...

C
(xί)|xί ∈ U

...

􏼚 􏼛 and
B
...

� xj,mB
...

C
(xj),􏼚 a

B
...

C
(xj),nB

...

C
(xj)|xj ∈ U

...

}, ί, j ∈ N, is

given by

A
...

× B
...

� xί, xj􏼐 􏼑,m
(A

...

×B
...

)C
xί, xj􏼐 􏼑, a

(A
...

×B
...

)C
xί, xj􏼐 􏼑,n

(A
...

×B
...

)C
xί, xj􏼐 􏼑|xί ∈ A

...

, xj ∈ B
...

􏼚 􏼛. (6)

)e functions m
(A

...

×B
...

)C
: U

...

⟶ z
(A

...

×B
...

)m
|z

(A
...

×B
...

)m
∈ C,􏼚

|z
(A

...

×B
...

)m
|≤ 1}, a

(A
...

×B
...

)C
: U

...

⟶ z
(A

...

×B
...

)a
|z

(A
...

×B
...

)a
∈ C,􏼚

|z
(A

...

×B
...

)a
|≤ 1}, and n

(A
...

×B
...

)C
: U

...

⟶ z
(A

...

×B
...

)n
|z

(A
...

×B
...

)n
∈ C,􏼚

|z
(A

...

×B
...

)n
|≤ 1} symbolize the degrees of membership, absti-

nence, andnonmembership of the Cartesian product A
...

× B
...

.
)ese functions are defined as

m
(A

...

×B
...

)C
xί, xj􏼐 􏼑 � min m

A
...

C
xί( 􏼁,m

B
...

C
xj􏼐 􏼑􏼚 􏼛,

a
(A

...

×B
...

)C
xί, xj􏼐 􏼑 � min a

A
...

C
xί( 􏼁, a

B
...

C
xj􏼐 􏼑􏼚 􏼛,

n
(A

...

×B
...

)C
xί, xj􏼐 􏼑 � max n

A
...

C
xί( 􏼁,n

B
...

C
xj􏼐 􏼑􏼚 􏼛.

(7)

)ere is a condition that

0≤ m
(A

...

×B
...

)C
xί, xj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + a
(A

...

×B
...

)C
xί, xj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + n
(A

...

×B
...

)C
xί, xj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ 3.

(8)

Or equivalently

z
(A

...

×B
...

)m
xί, xj􏼐 􏼑 � τ

(A
...

×B
...

)m
xί, xj􏼐 􏼑e

ρ
(A

...
×B

...
)m

xί ,xj( 􏼁2πi
� min τ

A
...

m
xί( 􏼁, τ

B
...

m
xj􏼐 􏼑􏼚 􏼛e

min ρ
A
...
m

xί( ),ρ
B
...
m

xj( 􏼁􏽮 􏽯2πi
,

z
(A

...

×B
...

)a
xί, xj􏼐 􏼑 � τ

(A
...

×B
...

)a
xί, xj􏼐 􏼑e

ρ
(A

...
×B

...
)a

xί ,xj( 􏼁2πi
� min τ

A
...

a
xί( 􏼁, τ

B
...

a
xj􏼐 􏼑􏼚 􏼛e

min ρ
A
...
a

xί( ),ρ
B
...
a

xj( 􏼁􏽮 􏽯2πi
,

z
(A

...

×B
...

)n
xί, xj􏼐 􏼑 � τ

(A
...

×B
...

)n
xί, xj􏼐 􏼑e

ρ
(A

...
×B

...
)n

xί ,xj( 􏼁2πi
� max τ

A
...

n
xί( 􏼁, τ

B
...

n
xj􏼐 􏼑􏼚 􏼛e

max ρ
A
...
n

xί( ),ρ
B
...
n

xj( 􏼁􏽮 􏽯2πi
.

(9)

)e conditions are 0≤ τ
A
...

×B
...

m
(xί, xj) + τ

(A
...

×B
...

)a
(xί, xj) +

τ
(A

...

×B
...

)n
(xί, xj)≤ 3 and 0≤ ρ

A
...

×B
...

m
(xί, xj) + ρ

(A
...

×B
...

)a
(xί, xj) +

ρ
(A

...

×B
...

)n
(xί, xj)≤ 3, where

τ
(A

...

×B
...

)m
xί, xj􏼐 􏼑, τ

(A
...

×B
...

)a
xί, xj􏼐 􏼑,

· τ
(A

...

×B
...

)n
xί, xj􏼐 􏼑, ρ

(A
...

×B
...

)m
xί, xj􏼐 􏼑,

· ρ
(A

...

×B
...

)a
xί, xj􏼐 􏼑, ρ

(A
...

×B
...

)n
xί, xj􏼐 􏼑 ∈ [0, 1].

(10)

Definition 12. A complex neutrosophic relation (CNR)
denoted byR

...

is any nonempty subset of A
...

× B
...

, where A
...

and
B
...

are CNSs.

Example 2. For a given CNS,

A
...

�
x, 0.8e

(0.6)2πi
, 1e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑, y, 0e

(0.8)2πi
, 0.9e

(0.4)2πi
, 0.5e

(1)2πi
􏼐 􏼑,

z, 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (11)
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)e Cartesian product of A
...

to itself is

A
...

× A
...

�

(x, x), 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (x, y), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑

(x,z), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (y, x), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑

(y, y), 0e
(0.8)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (y,z), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

(z, x), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (x, y), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

(z,z), 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (12)

And the CNR R
...

is

R
...

�
(x,z), 0.3e

(0.5)2πi
, 0.5e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑, (y, y), 0e

(0.8)2πi
, 0.9e

(0.4)2πi
, 0.5e

(1)2πi
􏼐 􏼑,

(z, y), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (13)

Definition 13. )e inverse CNR R
... − 1

of a CNFR

R
...

� xί, xj􏼐 􏼑,m
R
...

C

xί, xj􏼐 􏼑, a
R
...

C

xί, xj􏼐 􏼑,n
R
...

C

xί, xj􏼐 􏼑| xί, xj􏼐 􏼑 ∈ R
...

􏼚 􏼛, (14)

is defined as

R
... − 1

� xί, xj􏼐 􏼑,m
R
...

C

xί, xj􏼐 􏼑, a
R
...

C

xί, xj􏼐 􏼑,n
R
...

C

xί, xj􏼐 􏼑| xί, xj􏼐 􏼑 ∈ R
...

􏼚 􏼛. (15)

Example 3. For a CNR R
...

from (12),

R
...

� (y, x), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑, (y,z), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑􏽮 􏽯. (16)

)e inverse CNR R
... − 1

is given by

R
... − 1

� (y, x), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑, (y,z), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑􏽮 􏽯. (17)

Definition 14. A CNR R
...

1 is said to be a CN reflexive
relation if

∀ x,m
A
...

C
(x), a

A
...

C
(x),n

A
...

C
(x)􏼒 􏼓 ∈ A

...

⇒ (x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)􏼒 􏼓 ∈ R

...

1. (18)
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While on the other hand a CN irreflexive relation R
...

2
implies

(x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)􏼒 􏼓 ∉ R

...

2,

· ∀ x,m
A
...

C
(x), a

A
...

C
(x),n

A
...

C
(x)􏼒 􏼓 ∈ A

...

.

(19)

Example 4. Using (12), the CN reflexive relationR
...

1 and the
CN irreflexive relation R

...

2 are

R
...

1 �
(x, x), 0.8e

(0.6)2πi
, 1e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑, (y, y), 0e

(0.8)2πi
, 0.9e

(0.4)2πi
, 0.5e

(1)2πi
􏼐 􏼑,

(z,z), 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

R
...

2 � (x, y), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑, (z, x), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑􏽮 􏽯.

(20)

Definition 15. ACNRR
...

is said to be CN symmetric relation
if

∀ (x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

.

(21)

A CNR R
...

1 is said to be CN asymmetric relation if

∀ (x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

1

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∉ R
...

1.

(22)

If

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

2,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

2,

⇒ (x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 � (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓.

(23)

then R
...

2 is a CN antisymmetric relation. Example 5. Using (12), the CN symmetric relation R
...

, the
CN asymmetric relation R

...

1, and the CN antisymmetric
relation R

...

2 are

R
...

�
(x, y), 0e

(0.6)2πi
, 0.9e

(0.1)2πi
, 1e

(1)2πi
􏼐 􏼑, (x,z), 0.3e

(0.5)2πi
, 0.5e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑,

(y,z), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑, (z, x), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

R
...

1 �
(x, y), 0e

(0.6)2πi
, 0.9e

(0.1)2πi
, 1e

(1)2πi
􏼐 􏼑, (x,z), 0.3e

(0.5)2πi
, 0.5e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑,

(y,z), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

R
...

2 � (x, x), 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (y, y), 0e
(0.8)2πi

, 0.9e
(0.4)2πi

, 0.5e
(1)2πi

􏼐 􏼑􏽮 􏽯.

(24)

Theorem 1. A CNR R
...

is a symmetric relation iff R
...

� R
... − 1

.

Proof. Suppose that R
...

� R
... − 1

, then

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
... − 1

.

(25)

Complexity 7



But R
...

� R
... − 1

.

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

. (26)

Hence, R
...

is a CN symmetric relation.
Conversely, suppose that R

...

is a CN symmetric relation,
then for

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

.

(27)

But

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
... − 1

⇒R
...

� R
... − 1

.

(28)

□
Theorem 2. For CN symmetric relations R

...

1 and R
...

2, the
intersection R

...

1 ∩R
...

2 is also a CN symmetric relation.

Proof. Suppose that R
...

1 and R
...

2 are two CN symmetric
relations on a CNS A

...

. )en according to the definition of
CNR, R

...

1⊆A
...

× A
...

and R
...

2⊆A
...

× A
...

⇒R
...

1 ∩R
...

2⊆A
...

× A
...

⇒
R
...

1 ∩R
...

2 is CNR on A
...

.
Now, suppose that

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

1 ∩R
...

2

⇒ (x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

1

· (x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

2.

(29)

Since R
...

1 and R
...

2 are CN symmetric relations,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

1,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

2,

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

1 ∩R
...

2.

(30)
□

Definition 16. A CNR R
...

is said to be CN transitive relation
if

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

(y,z),m
R
...

C

(y,z), a
R
...

C

(y,z),n
R
...

C

(y,z)􏼒 􏼓 ∈ R
...

,

⇒ (x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

.

(31)

Example 6. A CN transitive relation R
...

on (12) is

R
...

�
(x, y), 0e

(0.6)2πi
, 0.9e

(0.1)2πi
, 1e

(1)2πi
􏼐 􏼑, (x,z), 0.3e

(0.5)2πi
, 0.5e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑,

(z, y), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (32)

Definition 17. A CN composite relation R
...

1 ∘R
...

2 combines
the CNRs R

...

1 and R
...

2 such that for ((x, y),m
R
...

C

(x, y),

a
R
...

C

(x, y),n
R
...

C

(x, y)) ∈ R
...

1 and ((y,z),m
R
...

C

(y,z), a
R
...

C

(y,z),n
R
...

C

(y,z)) ∈ R
...

2,
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(x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

1 ∘R
...

2.

(33)

Example 7. For CNRs R
...

1 and R
...

2,

R
...

1 � (x, y), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑, (x,z), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑􏽮 􏽯,

R
...

2 �
(y, x), 0e

(0.6)2πi
, 0.9e

(0.1)2πi
, 1e

(1)2πi
􏼐 􏼑, (y,z), 0e

(0.5)2πi
, 0.5e

(0.4)2πi
, 0.7e

(1)2πi
􏼐 􏼑,

(z, y), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(34)

)e CN composite relation is

R
...

1 ∘R
...

2 �
(x, x), 0.8e

(0.6)2πi
, 1e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑, (x,z), 0.3e

(0.5)2πi
, 0.5e

(0.1)2πi
, 1e

(0.5)2πi
􏼐 􏼑,

(x, y), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (35)

Theorem 3. A CNR R
...

is a transitive relation iff R
...

∘R
...

⊆R
...

.

Proof. Suppose that R
...

is a CN transitive relation, then for
((x, y),m

R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)) ∈ R
...

and ((y,z),

m
R
...

C

(y,z), a
R
...

C

(y,z),n
R
...

C

(y,z)) ∈ R
...

,

⇒ (x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

. (36)

But ((x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)) ∈ R
...

∘R
...

.
Hence R

...

∘R
...

⊆R
...

.
Conversely, suppose that R

...

∘R
...

⊆R
...

, then for ((x, y),

m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)) ∈ R
...

and ((y,z),m
R
...

C

(y,z), a
R
...

C

(y,z),n
R
...

C

(y,z)) ∈ R
...

,

⇒ (x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

∘R
...

.

(37)

But R
...

∘R
...

⊆R
...

⇒((x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,

z)) ∈ R
...

)us, R
...

is a CN transitive relation. □

Definition 18. If a CNR R
...

1 satisfies the conditions of CN
reflexive relation, CN symmetric relation, and CN transitive
relation, then R

...

1 is called a CN equivalence relation.
While a CNR R

...

2 satisfying the conditions of CN
reflexive relation, CN antisymmetric relation and CN
transitive relation are called a CN-order relation.

Example 8. A CN equivalence relation R
...

on (12) is

R
...

�

(x, x), 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (x,z), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,

(y, y), 0e
(0.8)2πi

, 0.9e
(0.4)2πi

, 0.5e
(1)2πi

􏼐 􏼑, (z, x), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,

(z,z), 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (38)

And a CN-order relation R
...

on (12) is

R
...

�

(x, x), 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (x, y), 0e
(0.6)2πi

, 0.9e
(0.1)2πi

, 1e
(1)2πi

􏼐 􏼑,

(x,z), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (y, y), 0e
(0.8)2πi

, 0.9e
(0.4)2πi

, 0.5e
(1)2πi

􏼐 􏼑,

(z, y), 0e
(0.5)2πi

, 0.5e
(0.4)2πi

, 0.7e
(1)2πi

􏼐 􏼑, (z,z), 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (39)

Complexity 9



Theorem 4. A CN equivalence relation implies that
R
...

� R
...

∘R
...

Proof. Since a CN equivalence relation is R
...

also a CN
transitive relation, by )eorem 3,

R
...

∘R
...

⊆R
...

. (40)

Now suppose that

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

. (41)

As R
...

is an equivalence relation and possesses the
properties of CN symmetric relation and CN transitive
relation,

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

, (42)

(41) and (42) imply that

(x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)􏼒 􏼓 ∈ R

...

. (43)

But according to CN composite relation,

(x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)􏼒 􏼓 ∈ R

...

∘R
...

⇒R
...

⊆R
...

∘R
...

,

(44)

(40) and (41) imply that R
...

� R
...

∘R
...

. □

Theorem 5. 9e inverse CNRR
... − 1

of a CN-order relationR
...

is also a CN-order relation.

Proof. )e inverse CNR R
... − 1

of a CN order relation R
...

is
also a CN order relation if the three properties for a CN-
order relation hold:

(1) ∀x ∈ A
...

, ((x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)) ∈

R
...

≠ because R
...

is also a CN reflexive relation:

⇒ (x, x),m
A
...

C
(x, x), a

A
...

C
(x, x),n

A
...

C
(x, x)􏼒 􏼓 ∈ R

... − 1
.

(45)

Hence, R
... − 1

is a CN reflexive relation.
(2) Suppose

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

,

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
... − 1

,

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
... − 1

.

(46)

But R
...

is also a CN antisymmetric relation. So

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 � (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓. (47)

Hence, R
... − 1

is a CN antisymmetric relation.
(3) Suppose

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

(y,z),m
R
...

C

(y,z), a
R
...

C

(y,z),n
R
...

C

(y,z)􏼒 􏼓 ∈ R
...

,

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
... − 1

,

(z, y),m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)􏼒 􏼓 ∈ R
... − 1

.

(48)

Or

(z, y),m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)􏼒 􏼓 ∈ R
... − 1

,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
... − 1

.

(49)

But R
...

is also a CN transitive relation. So

(x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

,

⇒ (z, x),m
R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
... − 1

.

(50)

Hence, R
... − 1

is a CN transitive relation.
)us by (45), (47), and (50), R

... − 1
is also a CN-order

relation. □
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Definition 19. For a CN equivalence relation R
...

and
(x,m

A
...

C
(x), a

A
...

C
(x),n

A
...

C
(x)) ∈ A

...

, the equivalence class of x

modulo R
...

is denoted and defined as

R
... x

� z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓| (z, x),m

R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
...

􏼚 􏼛. (51)

Example 9. For a CN equivalence relation,

R
...

�

(x, x), 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑, (x,z), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,

(y, y), 0e
(0.8)2πi

, 0.9e
(0.4)2πi

, 0.5e
(1)2πi

􏼐 􏼑, (z, x), 0.3e
(0.5)2πi

, 0.5e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,

(z,z), 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (52)

)e CN equivalence classes are

R
... x

� x, 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,􏽮

· z, 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑􏽯,

R
... y

� y, 0e
(0.8)2πi

, 0.9e
(0.4)2πi

, 0.5e
(1)2πi

􏼐 􏼑􏽮 􏽯,

R
... z

� x, 0.8e
(0.6)2πi

, 1e
(0.1)2πi

, 1e
(0.5)2πi

􏼐 􏼑,􏽮

· z, 0.3e
(0.5)2πi

, 0.5e
(0.6)2πi

, 0.7e
(0.2)2πi

􏼐 􏼑􏽯.

(53)

Theorem 6. For a CN equivalence relation R
...

,
((x, y),m

R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)) ∈ R
...

iffR
... x

�

R
... y

.

Proof. Suppose R
... x

� R
... y

, then for z ∈ U
...

,

z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓 ∈ R

... x

⇒ (z, x),m
R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
...

⇒ (x,z),m
R
...

C

(x,z), a
R
...

C

(x,z),n
R
...

C

(x,z)􏼒 􏼓 ∈ R
...

,

(54)

because R
...

is a CN symmetric relation.
Similarly, (z,m

A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)) ∈ R

... y

⇒ ((z, y),

m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)) ∈ R
...

⇒((x, y),

m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)) ∈ R
...

because R
...

is a CN
transitive relation.

Conversely, suppose

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓 ∈ R

... x

,

⇒ (z, x),m
R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
...

.

(55)

)en

(z, x),m
R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
...

,

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

⇒ (z, y),m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)􏼒 􏼓 ∈ R
...

,

(56)

because R
...

is a CN transitive relation

⇒ z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓 ∈ R

... y

. (57)
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Hence,

R
... x

⊆R
... y

, (58)

Similarly, suppose

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

,

z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓 ∈ R

... y

,

⇒ (z, y),m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)􏼒 􏼓 ∈ R
...

.

(59)

Since,

(x, y),m
R
...

C

(x, y), a
R
...

C

(x, y),n
R
...

C

(x, y)􏼒 􏼓 ∈ R
...

⇒ (y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

,

(60)

because R
...

is a CN symmetric relation.
Now

(z, y),m
R
...

C

(z, y), a
R
...

C

(z, y),n
R
...

C

(z, y)􏼒 􏼓 ∈ R
...

,

(y, x),m
R
...

C

(y, x), a
R
...

C

(y, x),n
R
...

C

(y, x)􏼒 􏼓 ∈ R
...

,

⇒ (z, x),m
R
...

C

(z, x), a
R
...

C

(z, x),n
R
...

C

(z, x)􏼒 􏼓 ∈ R
...

,

(61)

because R
...

is a CN transitive relation

⇒ z,m
A
...

C
(z), a

A
...

C
(z),n

A
...

C
(z)􏼒 􏼓 ∈ R

... x

. (62)

Hence,

R
... y

⊆R
... x

, (63)

(58) and (63) imply that R
... x

� R
... x

. □

4. Applications

)is section presents application of the proposed notions. It
shows the worth of CNRs in decision-making for a statis-
tician. )e application uses the concept of CNRs in eco-
nomic statistics and talks about the economic relationships.

Figure 1 depicts the economic factors whose relation-
ships are discussed on the basis of statistical analysis in the
following application.

4.1. Investigating the Economic Relationships Using Economic
Statistics. Economics conveys the way businesses, govern-
ments, societies, and individuals allocate their wealth and
resources. It also provides knowledge for making everyday
decisions. )e international financial affairs are concerned
with the economics. )e policies made by the financial
ministers are thoroughly worked out before being applied
because they canmake or break the progress and economy of
a nation. )ese economic policies are not just a shot in the
dark but are properly calculated outcomes. )ese calcula-
tions are carried out by statisticians, who collect and or-
ganize the data, present data in the form of tables, diagrams,
and graphs and then finally analyze and interpret the data.
)is process involves various statistical techniques at each
stage, and Figure 2 summarizes each step.

An expert statistician carries out statistical analysis and
makes some important decisions which are then imple-
mented as the financial policies. )e data at state levels are
humongous and thus the probability of ambiguity, uncer-
tainty, and imprecision is greater. So, CNSs and CNRs are
worthwhile tools to cope with such kind of data and in-
formation. It will further improve the accuracy of the
conclusions and thus help in making better decisions.

Let us consider a situation involving three economic
factors, namely, investment (I), gross domestic product
(GDP), and unemployment (U). A decision-making stat-
istician assigns each of the factors a degree of membership, a
degree of abstinence, and a degree of nonmembership after
going through the statistical process. In current supposition,
the results of the experiment are assumed to be applicable for
twelve months or a year at most.

Let

A
...

�
I, 0.8e

(0.75)12πi
, 0.2e

(0.5)12πi
, 0.2e

(0.25)12πi
􏼐 􏼑, GDP, 1e

(1)12πi
, 0.4e

(0.5)12πi
, 0.3e

(0.16)12πi
􏼐 􏼑,

U, 0.4e
(1)12πi

, 0.5e
(0.25)12πi

, 0.1e
(0.08)12πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (64)

Now, in order to find out the impacts of one factor on the
other, a Cartesian product A

...

× A
...

needs to be found. Hence,
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A
...

× A
...

�

(I, I), 0.8e
(0.75)12πi

, 0.2e
(0.5)12πi

, 0.2e
(0.25)12πi

􏼐 􏼑 (I,GDP), 0.8e
(0.75)12πi

, 0.2e
(0.5)12πi

, 0.3e
(0.25)12πi

􏼐 􏼑

(I, U), 0.4e
(0.75)12πi

, 0.2e
(0.25)12πi

, 0.2(0.25)12πi
􏼐 􏼑 (GDP, I), 0.8e

(0.75)12πi
, 0.2e

(0.5)12πi
, 0.3e

(0.25)12πi
􏼐 􏼑

(GDP,GDP), 1e
(1)12πi

, 0.4e
(0.5)12πi

, 0.3e
(0.16)12πi

􏼐 􏼑 (GDP, U), 0.4e
(1)12πi

, 0.4e
(0.25)12πi

, 0.3e
(0.16)12πi

􏼐 􏼑

(U, I), 0.4e
(0.75)12πi

, 0.2e
(0.25)12πi

􏼐 􏼑
(U,GDP), 0.4e

(1)12πi
, 0.4e

(0.25)12πi
, 0.3e

(0.16)12πi
􏼐 􏼑

(U, U), 0.4e
(1)12πi

, 0.5e
(0.25)12πi

, 0.1e
(0.08)12πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (65)
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Figure 1: Factors revolving around the economic growth.
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(i) cocnclusion on the basis of degrees of relation among different economic variables

Collection

Organization

Presentation

Analysis

Interpretation

Figure 2: Statistical process for economic policy making.
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Note that an ordered pair tells the impact of the first
factor on the second one. Moreover, the degree of mem-
bership indicates the rate of influence. )e degree of ab-
stinence is taken to mean as the inability to decide that
whether there is an influence of one factor on the other
or not. And the degree of nonmembership indicates the
rate of no influence. )e amplitude term of each degree
shows the strength of the impacts, and the phase terms
refer to the time span in months. For example, the event
((I, U), 0.4e(0.75)12πi, 0.2e(0.25)12πi, 0.2e(0.25)12πi) expresses the
impacts of investment I on unemployment U. )e numbers
are translated in words as

(i) )e degree of membership indicates the rate of
influence of I on U. In 0.4e(0.75)12πi, 0.4 is the
amplitude terms, and (0.75)12 is the phase term.
)e translation is that influence of I on U is of
degree 0.4 over the time span of 9 months, that is,
very strong influence for a long duration.

(ii) )e degree of abstinence 0.2e(0.25)12πi interprets the
inability to determine the existence of any influence
is 0.2 over the time span of 3 months.

(iii) )e degree of nonmembership 0.2e(0.25)12πi indi-
cates that the degree of no influence is 0.2 over the
period of 3 months.

Ignoring the CN reflexive relations and CN symmetric
relations in (65), Table 1 shows the summary of all the
impacts of one factor on the other.

Now an illustration of types of CNRs for a decision
maker is proposed. It can reduce the efforts of a statistician
in decision-making. Consider some other two CNSs such
that set B

...

contains the currency value (CV) and interest rate
(IR) and set C

...

contains the dearness (D) and quality of life
(QL):

B
...

� CV, 0.6e
(0.66)12πi

, 0.4e
(0.25)12πi

, 0.6e
(0.08)12πi

􏼐 􏼑, IR, 0.5e
(1)12πi

, 0.1e
(0.33)12πi

, 0.3e
(0.16)12πi

􏼐 􏼑􏽮 􏽯,

C
...

� D, 0.4e
(0.75)12πi

, 0.8e
(0.25)12πi

, 0.5e
(0.08)12πi

􏼐 􏼑, QL, 0.5e
(0.66)12πi

, 0.1e
(0.5)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑􏽮 􏽯.
(66)

Finding the Cartesian products A
...

× B
...

and B
...

× C
...

,

A
...

× B
...

�

(I,CV), 0.6e
(0.66)12πi

, 0.2e
(0.25)12πi

, 0.6e
(0.25)12πi

􏼐 􏼑, (I, IR), 0.5e
(0.75)12πi

, 0.1e
(0.33)12πi

, 0.3e
(0.25)12πi

􏼐 􏼑,

(GDP,CV), 0.6e
(0.66)12πi

, 0.4e
(0.25)12πi

, 0.6e
(0.16)12πi

􏼐 􏼑, (GDP, IR), 0.5e
(1)12πi

, 0.1e
(0.33)12πi

, 0.3e
(0.16)12πi

􏼐 􏼑,

(U,CV), 0.4e
(0.66)12πi

, 0.4e
(0.25)12πi

, 0.6e
(0.08)12πi

􏼐 􏼑, (U, IR), 0.4e
(1)12πi

, 0.1e
(0.25)12πi

, 0.3e
(0.16)12πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

B
...

× C
...

�
(CV, D), 0.4e

(0.66)12πi
, 0.4e

(0.25)12πi
, 0.6e

(0.08)12πi
􏼐 􏼑, (CV,QL), 0.5e

(0.66)12πi
, 0.1e

(0.25)12πi
, 0.6e

(0.25)12πi
􏼐 􏼑,

(IR, D), 0.4e
(0.75)12πi

, 0.1e
(0.25)12πi

, 0.5e
(0.16)12πi

􏼐 􏼑, (IR,QL), 0.5e
(0.66)12πi

, 0.1e
(0.33)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(67)

Details of each of the relationships is given in Table 2.
Table 2 encapsulates the above relationships of A

...

× B
...

and
B
...

× C
...

, and the impacts of each factor on the other are
described precisely with the time period.

)e impacts of elements in set A
...

on the elements of set C
...

are easily found using the idea of CN composite relation. Let
R
...

� (A
...

× B
...

) ∘ (B
...

× C
...

); then

R
...

�

(I, D), 0.4e
(0.75)12πi

, 0.2e
(0.25)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑, (I,QL), 0.5e
(0.66)12πi

, 0.1e
(0.5)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑,

(GDP, D), 0.4e
(0.75)12πi

, 0.4e
(0.25)12πi

, 0.5e
(0.16)12πi

􏼐 􏼑, (GDP,QL), 0.5e
(0.66)12πi

, 0.1e
(0.5)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑,

(U, D), 0.4e
(0.75)12πi

, 0.5e
(0.25)12πi

, 0.5e
(0.08)12πi

􏼐 􏼑, (U,QL), 0.4e
(0.66)12πi

, 0.1e
(0.25)12πi

, 0.5e
(0.25)12πi

􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (68)

)e above composite relation R
...

is completely discussed
through Table 3.

Figure 3 portrays the impacts of all six factors on the
investment I or viceversa. )e vertical y-axis represents
the reading of phase terms when translated to months. )e

horizontal x-axis is labeled with numbers 1 to 6, and each
number represents a different factor that are mentioned just
beneath the horizontal axis in the graph. Moreover, at each
factor, there are three circles that represent the three degrees;
green circles represent degree of membership, blue circles
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represent the degree of abstinence, and red circles represent
the degree of nonmembership. Furthermore, the size of the
circles indicates the value of the amplitude term, i.e., bigger
circles means a higher values and smaller circles show a
lower value of the amplitude term. )e numbers inside the
circles depict the time spans in months. Figures 4 and 5
illustrate the impacts of GDP and unemployment U on the
rest of the factors, respectively.

5. Comparative Analysis

)is section compares the proposed methods with the
existing ones such as FSs, CFSs, CIFSs, and their
generalizations.

Since FSs, IFSs, and NSs cannot handle problems with
periodicity, they are out of the picture in this race. It is
convenient to carry out the comparison with CFSs, CIFSs,
CPFSs, and CqROFSs because they are capable of dealing
with multidimensional variables. In the above application,
the relationships among the economic factors are studied.
)e decision makers are the expert economic statisticians,
who collect, organize, and analyze the data before making
any absolute decisions. )e application discusses the use-
fulness of CNSs and CNRs in uncertain situations when
dealing with large data. After carrying out the statistical
analysis, the decision maker assigns three values to the
parameters or factors. )e degree of membership indicates
the level of influence with respect to some time lag, the
degree of abstinence interprets the inability to know if there
is any influence or not for certain time, and the degree of
nonmembership represents the level of no influence over
some time interval. )e CFSs are swept out of the com-
petition as they only talk about the membership degree.
While CIFSs discuss both the degrees of membership and
nonmembership, the values are interdependent as their sum
must be within the unit interval. )is limitation restricts the
decision maker, so he/she cannot efficiently make a better
decision. As he/she is bound to choose numbers from certain
limited sets. Like CIFSs, the CqROFSs are also characterized
by the degrees of membership and nonmembership. )e
plus point of CqROFSs is that they do not have limitations in
order to choose the values for the degrees of membership
and nonmembership. But they still fail to solve the problem
discussed above since they cannot indicate the degree of
abstinence. As human opinion is not just restricted to yes or
no, a CNS is a handy tool that can effectively cope with such
issues. )e CNSs are completely on another level because
these sets allow the decision maker to freely assign any fuzzy
number to each of the three degrees. Every degree is in-
dependent of the others. In the above application, the CIFSs,
CPFSs, or CqROFSs could not have made better decisions as
they do not discuss the abstinence degree. Moreover, in
some cases, the sum of the degrees of membership and the
degree of nonmembership exceeded 1. For instance, in
(CV, 0.6e(0.66)12πi, 0.4e(0.25)12πi, 0.6e(0.08)12πi), the sum of
amplitude terms in membership and nonmembership de-
grees is 1.2 which breaks the laws of CIFSs. Similarly,
(GDP, 1e(1)12πi, 0.4e(0.5)12πi, 0.3e(0.16)12πi) and
(U, 0.4e(1)12πi, 0.5e(0.25)12πi, 0.1e(0.08)12πi) are considered in a

Table 1: Details of impacts of one factor on the other in A
···

× A
···

.

Relation Rate of
influence

Rate of
ambiguity

Rate of no
influence

(I,GDP) 0.8 in 9 months 0.2 in 6 months 0.3 in 3 months
(I, U) 0.4 in 9 months 0.2 in 3 months 0.2 in 3 months

(GDP, U)
0.4 in 12
months 0.4 in 3 months 0.3 in 2 months

Table 2: Details of impacts of each factor in A
···

× B
···

and B
···

× C
···

.

Relation Rate of
influence

Rate of
ambiguity

Rate of no
influence

(I,CV) 0.6 in 8months 0.2 in 3 months 0.6 in 3 months
(I, IR) 0.5 in 9months 0.1 in 4 months 0.3 in 3 months
(GDP,CV) 0.6 in 8months 0.4 in 3 months 0.6 in 2 months

(GDP, IR)
0.5 in 12
months 0.1 in 4 months 0.3 in 2 months

(U,CV) 0.4 in 8months 0.4 in 8 months 0.6 in a month

(U, IR)
0.4 in 12
months 0.1 in 4 months 0.3 in 2 months

(CV, D) 0.4 in 8months 0.4 in 3 months 0.6 in a month
(CV,QL) 0.5 in 8months 0.1 in 3 months 0.6 in 3 months
(IR, D) 0.4 in 9months 0.1 in 3 months 0.5 in 2 months
(IR,QL) 0.5 in 8months 0.1 in 4 months 0.5 in 3 months

Table 3: Details of impacts of factors associated with R
···

.

Relation Rate of
influence

Rate of
ambiguity

Rate of no
influence

(I, D) 0.4 in 9months 0.2 in 3 months 0.5 in 3 months
(I,QL) 0.5 in 8months 0.1 in 6 months 0.5 in 3 months
(GDP, D) 0.4 in 9months 0.4 in 3 months 0.5 in 2 months
(GDP,QL) 0.5 in 8months 0.1 in 6 months 0.5 in 3 months
(U, D) 0.4 in 9months 0.5 in 3 months 0.5 in a month
(U,QL) 0.4 in 8months 0.1 in 3 months 0.5 in 3 months
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Figure 3: Impacts of investment (I) on all other factors. )e size of
the circle indicates the degreesmC, aC, or nC. )e numbers 1, 2, 3,
4, 5, and 6 on the x-axis represent GDP, U, CV, IR, D, and QL,
respectively.
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CIFS because the sum of phase terms of both the degrees of
membership and nonmembership exceed 1, i.e., 1 + 0.16≰1
and 1 + 0.8≰1. Henceforth, NFSs and NFRs are superior
tools to be applied in the above discussed scenario.

6. Conclusion

)e main objective of this study was the introduction of the
notion of CNRs which is a new concept. )e CNSs and
CNRs are characterized by three complex-valued mappings
whose values range in the unit circle in a complex plane. )e
three mapping are the degrees of membership, abstinence,
and nonmembership. Moreover, each degree consists of two
different terms that are described by the real and imaginary
parts of the complex numbers. )e real part is called the
amplitude term which represents the degree or level of
membership, abstinence, or nonmembership, while the
imaginary part is called the phase term that represents the
time lag, periodicity, or phase changes in the degrees of
membership, abstinence, or nonmembership. Furthermore,
the types of CNRs are also introduced with suitable

examples. In addition, the properties of CNRs are derived
along with some useful results. An economic policy comes
through many statistical procedures, and ultimately a de-
cision is made on the basis of statistical analysis and out-
comes. Henceforth, an application has been presented which
emphasizes the utility of the proposed method in decision-
making processes. Finally, a comparative analysis has been
carried out among the existing methods and the proposed
method.
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