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Abstract: The idea of the Q-neutrosophic soft set emerges from the neutrosophic soft set by upgrading
the membership functions to a two-dimensional entity which indicate uncertainty, indeterminacy
and falsity. Hence, it is able to deal with two-dimensional inconsistent, imprecise, and indeterminate
information appearing in real life situations. In this study, the tools that measure the similarity,
distance and the degree of fuzziness of Q-neutrosophic soft sets are presented. The definitions of
distance, similarity and measures of entropy are introduced. Some formulas for Q-neutrosophic
soft entropy were presented. The known Hamming, Euclidean and their normalized distances are
generalized to make them well matched with the idea of Q-neutrosophic soft set. The distance
measure is subsequently used to define the measure of similarity. Lastly, we expound three
applications of the measures of Q-neutrosophic soft sets by applying entropy and the similarity
measure to a medical diagnosis and decision making problems.

Keywords: decision making; distance measure; entropy measure; Q-neutrosophic soft set;
similarity measure

1. Introduction

The idea of fuzzy set theory established by Zadeh [1] is an important aspect in the study of
uncertainty. The massive success of this theory has brought about the creation of many extensions
of fuzzy sets such as the intuitionistic fuzzy set [2], interval-valued fuzzy set [3], vague set [4], and
hesitant fuzzy set [5]. Smarandache [6,7] introduced a new model called neutrosophic set theory
which refers to neutral knowledge. The innovative concept of neutrosophic set was presented to
cater for indeterminate information which were conspicuously absent in the realm of fuzzy set and
intuitionistic fuzzy set. Neutrosophic set (NS) is identified by three independent membership functions
which describe the degree of truth (T), the degree of indeterminacy (I), and the degree of falsity (F),
whose values are real standard or non-standard subset of unit interval ]−0, 1+[ where −0 = 0− ε, 1+ =

1+ ε, ε is an infinitesimal number. The truth and falsity membership functions in a NS are analogous to
the membership and nonmembership functions in an intuitionistic fuzzy set, and expresses the degree
of belongingness and non-belongingness of the elements, whereas the indeterminacy membership
function expresses the degree of neutrality in the information. The tri-membership structure of
NSs enables it to handle uncertain, inconsistent and indeterminate data using truth, indeterminacy
and falsity memberships. Indeterminacy membership function enables NSs to handle the neutrality
aspects of the data, which cannot be handled by fuzzy sets and its extensions. The independency
of the membership functions makes NSs more applicable than intuitionistic fuzzy set or other
fuzzy-based models in which values of the membership and non-membership functions are dependent
on one another.
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The theory of soft set established by Molodtsov [8], is highly regarded as a general mathematical
tool used to cope with uncertainties based on the theory of adequate parameterization. Since then,
several researchers [9,10] have discussed more properties on soft set. Soft set has been extended to
several different hybrid models. The extension was started by Maji et al. [11] who conceptualized
fuzzy soft sets. Then, Maji [12] combined the ideas of neutrosophic set (NS) and soft set to present
neutrosophic soft set (NSS). The NSS has the capacity to illustrate and characterize the attributes
together comprehensively, while preserving all the features of NS.

However, all these models cannot handle two-dimensional incompatible, uncertain and
indeterminate information. This motivated researchers to extend these models to be able to such
situations such as Q-fuzzy soft set [13,14], Q-intuitionistic fuzzy soft set [15] and Q-neutrosophic soft
set (Q-NSS) [16]. Q-NSS is an extended version of neutrosophic soft set depicted by three independent
membership functions of two-dimensions to solve problems that appear in real life. It provided an
adequate parametrization tool to deal with the aspects of two-dimensional imprecise, indeterminate
and inconsistent data which appear in most real life problems, which serves the two-dimensionality
and indeterminacy simultaneously.

Entropy and similarity measures are two basic concepts in fuzzy set theory. Similarity measure
is an important tool for determining the degree of similarity between two objects. Majumdar and
Samanta [17] started the research on the information measures of soft sets by introducing two types of
distance-based similarity measures between soft sets and subsequently demonstrated the application
of these measures in a medical diagnosis problem. Liu et al. [18] established a general form of similarity
measure and entropy for fuzzy soft sets based on fuzzy equivalences. Jiang et al. [19] defined several
distance measures between intuitionistic fuzzy soft sets and introduced an axiomatic definition of
intuitionistic entropy for an intuitionistic fuzzy soft set. Broumi and Smarandache [20] studied some
similarity measures of neutrosophic sets. Ye [21] initiated similarity measures based on the distances of
interval neutrosophic sets. On the other hand, entropy was initially suggested to measure the level of
fuzziness [22] of fuzzy set, followed by its axiomatic definition [23], and the entropy of interval-valued
fuzzy set and intuitionistic fuzzy soft set [24]. Selvachandran et al. [25] discussed the intuitionistic
entropy of generalized intuitionistic fuzzy soft set. Majumdar and Samanta [26] proposed the entropy
of neutrosophic sets and then the entropy of NSS was defined [27]. Recently, many researchers are
paying more attention to different information measures and their applications on various hybrid
models of fuzzy soft set [28–41].

Following toward this path, we intend to study the information measures of Q-NSSs.
The Q-NSS [16] is capable of resolving issues in two-dimensional uncertain, indeterminate and
inconsistent environment. However, the literature has not indicate any studies on measures of
the distance and degree of fuzziness of two-dimensional uncertain, indeterminate and incompatible
information. Accordingly, we will rectify these deficiencies, by introducing the entropy, the distance
measure and the similarity measure of Q-NSSs, as a continuation of the work on Q-NSSs done in [16].
The application of entropy measure of Q-NSSs will be illustrated in a decision making process, and the
use of measure of similarity will be illustrated using two problems in medical diagnosis and decision
making settings to show the significance of these measures in two-dimensional indeterminate real
environment.

2. Preliminaries

We recapitulate the idea of soft set [8], neutrosophic set [6] and present an overview of the Q-NSS
model [16].

Definition 1 ([8]). A pair (F, E) is called a soft set over X, where F is a mapping F : E → P(X). In other
words, the soft set is a parameterized family of subsets of the set X.
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Smarandache [6] introduced neutrosophic set as an extension of fuzzy set [1], in the following
three definitions of neutrosophic set, subset and complement of neutrosophic set.

Definition 2 ([6]). A neutrosophic set Γ on the universe X is defined as

Γ = {〈x, (TΓ(x), IΓ(x), FΓ(x))〉 : x ∈ X},

where TΓ(x) is the truth membership function, IΓ(x) is the indeterminacy membership function and FΓ(x) is the
falsity membership function. The functions TΓ(x), IΓ(x) and FΓ(x) are real standard or non-standard subsets of
]−0, 1+[. That is TΓ(x), IΓ(x), FΓ(x) : X →]−0, 1+[ and −0 ≤ TΓ(x) + IΓ(x) + FΓ(x) ≤ 3+.

Definition 3 ([42]). Let Γ and Ψ be two neutrosophic sets, then we say that Γ is a subset of Ψ denoted by
Γ ⊆ Ψ if and only if TΓ(x) ≤ TΨ(x), IΓ(x) ≥ IΨ(x) and FΓ(x) ≥ FΨ(x) for all x ∈ X.

Definition 4 ([42]). The complement of a neutrosophic set Γ in the universe X is denoted by Γc, where

Γc = {〈x, (FΓ(x), IΓ(x), TΓ(x))〉 : x ∈ X}.

The neutrosophic empty set Γ0 in the universe X is Γ0 = {〈x, (0, 1, 1)〉 : x ∈ X}.

Abu Qamar and Hassan [16] presented the idea of Q-neutrosophic set (Q-NS) to address
two-dimensional inexact, indeterminate and incompatible data and extended this concept to multi
Q-neutrosophic set and Q-neutrosophic soft set (Q-NSS).

Definition 5 ([16]). Let X be a universal set and Q be a nonempty set. A Q-neutrosophic set ΓQ in X and Q is
an object of the form

ΓQ = {
〈
(x, q), TΓQ(x, q), IΓQ(x, q), FΓQ(x, q)

〉
: x ∈ X, q ∈ Q},

where TΓQ , IΓQ , FΓQ : X×Q→]−0, 1+[ are the true membership function, indeterminacy membership function
and false membership function, respectively with −0 ≤ TΓQ + IΓQ + FΓQ ≤ 3+.

Definition 6 ([16]). Let X be a universal set, Q be any nonempty set, l be any positive integer and I be a unit
interval [0, 1]. A multi Q-neutrosophic set Γ̃Q in X and Q is a set of ordered sequences

Γ̃Q = {〈(x, q), TΓ̃Qi
(x, q), IΓ̃Qi

(x, q), FΓ̃Qi
(x, q)〉 : x ∈ X, q ∈ Q for all i = 1, 2, . . . , l},

where TΓ̃Qi
, IΓ̃Qi

, FΓ̃Qi
: X × Q → Il for all i = 1, 2, . . . , l are respectively, truth membership function,

indeterminacy membership function and falsity membership function for each x ∈ X and q ∈ Q and satisfy
the condition

0 ≤ TΓ̃Qi
+ IΓ̃Qi

+ FΓ̃Qi
≤ 3 for all i = 1, 2, . . . , l

where l is called the dimension of Γ̃Q.

Definition 7 ([16]). Let X be a universal set, E be a set of parameters, and Q be a nonempty set. Let µlQNS(X)

denote the set of all multi Q-neutrosophic sets on X with dimension l = 1. Let A ⊆ E. A pair (ΓQ, A) is called
a Q-neutrosophic soft set (Q-NSS) over X, where ΓQ is a mapping given by

ΓQ : A→ µlQNS(X)
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such that ΓQ(e) = φ if e /∈ A. A Q-neutrosophic soft set (Q-NSS) can be represented by the set of ordered pairs

(ΓQ, A) = {(e, ΓQ(e)) : e ∈ A, ΓQ ∈ µlQNS(X)}.

The set of all Q-neutrosophic soft sets (Q-NSSs) in X and Q is denoted by QNSS(X).

Definition 8 ([16]). Let (ΓQ, A), (ΨQ, B) ∈ Q − NSS(X). Then (ΨQ, B) is a QNS subset of (ΓQ, A),
denoted by (ΨQ, B) ⊆ (ΓQ, A), if B ⊆ A and ΨQ(x) ⊆ ΓQ(x) for all x ∈ X.

Henceforth, let X = {x1, x2, . . . , xm} becomes a universe of discourse, Q = {q1, q2, . . . , ql} be
a nonempty set, A = {e1, e2, . . . , en} is a set of parameters while (ΓQ, A), (ΨQ, A), (ΥQ, A) ∈ Q-NSS(X)

be the set of all Q-NSS in the universe X as defined below:

(ΓQ, A) = {(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i) : ∀ej ∈ A, (x, q)i ∈ X×Q},

(ΨQ, A) = {(TΨQ(ej)
(x, q)i, IΨQ(ej)

(x, q)i, FΨQ(ej)
(x, q)i) : ∀ej ∈ A, (x, q)i ∈ X×Q},

(ΥQ, A) = {(TΥQ(ej)
(x, q)i, IΥQ(ej)

(x, q)i, FΥQ(ej)
(x, q)i) : ∀ej ∈ A, (x, q)i ∈ X×Q}.

3. Entropy of Q-Neutrosophic Soft Sets

We will propose in this section, the entropy of Q-NSS which measures the degree of fuzziness
of a Q-NSS. This idea can be concreted in the following conditions, required for a Q-neutrosophic
entropy:

(i) Will be null when the set is a Q-intuitionistic fuzzy soft set.
(ii) Will be maximum if the set is completely Q-neutrosophic soft set.

(iii) The Q-neutrosophic entropy of a Q-NSS and its complement is equal.
(iv) If the degree of membership, indeterminacy membership and non-membership of each element

decrease, the sum will do so as well, and therefore, this set becomes fuzzier, and therefore the
entropy should increase.

In view of the conditions stated above, we propose the following axiomatic definition for the
Q-neutrosophic entropy of a Q-NSS.

Definition 9. A function ε : Q-NSS(X)→ R+ ∪ {0} is an entropy on (ΓQ, A) ∈ Q-NSS(X) if the following
properties are satisfied:

(ε1) ε((ΓQ, A)) = 0 if and only if (ΓQ, A) is a Q-intuitionistic fuzzy soft set,
(ε2) ε((ΓQ, A)) = lmn if and only if TΓQ(ej)

(x, q)i = IΓQ(ej)
(x, q)i = FΓQ(ej)

(x, q)i = 0, i.e. (ΓQ, A) is
completely Q-neutrosophic soft set for all ej ∈ A, (x, q)i ∈ X×Q,

(ε3) ε((ΓQ, A)) = ε((ΓQ, A)c) for all (ΓQ, A) ∈ Q-NSS(X),
(ε4) If (ΓQ, A) � (ΨQ, A) then ε((ΓQ, A)) ≥ ε((ΨQ, A)), where (ΓQ, A) � (ΨQ, A) if and only if

TΓQ(e)(x, q) ≤ TΨQ(e)(x, q), IΓQ(e)(x, q) ≤ IΨQ(e)(x, q) and FΓQ(e)(x, q) ≤ FΨQ(e)(x, q) for all e ∈ A
and (x, q) ∈ X×Q.

Now we prove that the entropy of a Q-NSS has its maximum value if the Q-NSS is completely
Q-neutrosophic soft set.

Theorem 1. The entropy of (ΓQ, A), ε((ΓQ, A)) is maximum if and only if (ΓQ, A) is completely
Q-neutrosophic soft set.

Proof. Assume ε((ΓQ, A)) be a maximum. Suppose for some ej ∈ A and (x, q)i ∈ X × Q that
TΓQ(ej)

(x, q)i 6= 0 or IΓQ(ej)
(x, q)i 6= 0 or FΓQ(ej)

(x, q)i 6= 0. Now, suppose that there exists
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a Q-NSS (ΨQ, A) with TΨQ(ej)
(x, q)i =

1
2 TΓQ(ej)

(x, q)i, IΨQ(ej)
(x, q)i = IΓQ(ej)

(x, q)i and FΨQ(ej)
(x, q)i =

FΓQ(ej)
(x, q)i. Then, TΨQ(ej)

(x, q)i ≤ TΓQ(ej)
(x, q)i, IΨQ(ej)

(x, q)i ≤ IΓQ(ej)
(x, q)i, FΨQ(ej)

(x, q)i ≤
FΓQ(ej)

(x, q)i, which implies that (ΨQ, A) � (ΓQ, A). Hence, by property (ε4) of Definition 9,
ε((ΨQ, A)) ≥ ε((ΓQ, A)) which contradicts the first assumption that ε((ΓQ, A)) maximum, implying
that TΓQ(ej)

(x, q)i = IΓQ(ej)
(x, q)i = FΓQ(ej)

(x, q)i = 0 for all ej ∈ A and (x, q)i ∈ X×Q.
Conversely, Let (ΓQ, A) be a Q-NSS(X) with TΓQ(ej)

(x, q)i = IΓQ(ej)
(x, q)i = FΓQ(ej)

(x, q)i = 0
and let (ΨQ, A) be any Q-NSS(X). Since TΨQ(ej)

(x, q)i ≥ 0, IΨQ(ej)
(x, q)i ≥ 0 and FΨQ(ej)

(x, q)i ≥ 0
for all ej ∈ A, (x, q)i ∈ X × Q it is clear that (ΓQ, A) � (ΨQ, A). Hence, by property (ε4) of
Definition 9, we have ε((ΓQ, A)) ≥ ε((ΨQ, A)) which implies ε((ΓQ, A)) is a maximum.
Thus completing the proof.

Next, we give definition of an expression which allows us to create entropies of Q-NSS(X).

Definition 10. Let M = {(α, β, γ) ∈ [0, 1]× [0, 1]× [0, 1] : α + β + γ ≤ 1}. Assume Φ : M → [0, 1] is
a mapping, which satisfies the following conditions:

1. Φ(α, β, γ) = 1 if and only if α + β + γ = 1,
2. Φ(α, β, γ) = 0 if and only if α = β = γ = 0,
3. Φ(α, β, γ) = Φ(γ, β, α),
4. If α1 ≤ α2, β1 ≤ β2 and γ1 ≤ γ2, then Φ(α1, β1, γ1) ≤ Φ(α2, β2, γ2).

Examples of Φ functions which verify the previous conditions are:

1. Φ(α, β, γ) = α + β + γ,
2. Φ(α, β, γ) = (α + β + γ)k, k = 2, 3, . . .,

The following theorem gives an expression which will allow us to construct different
Q-neutrosophic entropies using a mapping satisfies the conditions of Definition 10.

Theorem 2. Let (ΓQ, A) be a Q-NSS, ε : Q-NSS(X) → R+ ∪ {0} be a mapping and Φ be a mapping
satisfying given condition in Definition 10. Then

ε(ΓQ, A) =
n

∑
j=1

lm

∑
i=1

(1−Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i))

is a Q-neutrosophic entropy for (ΓQ, A).

Proof. We shall prove all conditions of Definition 9.

1. Let ε(ΓQ, A) = 0. Then ∑n
j=1 ∑lm

i=1(1− Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i)) = 0 if and

only if Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i)) = 1 for all ej ∈ A and (x, q)i ∈ X × Q if

and only if TΓQ(ej)
(x, q)i + IΓQ(ej)

(x, q)i + FΓQ(ej)
(x, q)i = 1 for all ej ∈ A and (x, q)i ∈ X × Q.

Then (ΓQ, A) is a Q-intuitionistic fuzzy soft set.
2. Let ε(ΓQ, A) = lmn. Then ∑n

j=1 ∑lm
i=1(1− Φ(TΓQ(ej)

(x, q)i, IΓQ(ej)
(x, q)i, FΓQ(ej)

(x, q)i)) = lmn if
and only if Φ(TΓQ(ej)

(x, q)i, IΓQ(ej)
(x, q)i, FΓQ(ej)

(x, q)i) = 0 for all ej ∈ A and (x, q)i ∈ X × Q if
and only if TΓQ(ej)

(x, q)i = IΓQ(ej)
(x, q)i = FΓQ(ej)

(x, q)i = 0.

3. Let (ΓQ, A) = {〈ej, (TΓQ(e)(x, q)i, IΓQ(ej)
(x, q)i, FΓQ(ej)

(x, q)i)〉 : ej ∈ A, (x, q)i ∈ X×Q}. Then

(ΓQ, A)c = {〈ej, (FΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, TΓQ(e)(x, q)i)〉 : ej ∈ A, (x, q)i ∈ X×Q}.
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Hence,

ε(ΓQ, A) =
n

∑
j=1

lm

∑
i=1

(1−Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i))

=
n

∑
j=1

lm

∑
i=1

(1−Φ(FΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, TΓQ(e)(x, q)i))

= ε(ΓQ, A)c.

4. If (ΓQ, A) � (ΨQ, A), then it is clear that for all ej ∈ A and (x, q)i ∈ X×Q,

TΓQ(ej)
(x, q)i ≤ TΨQ(ej)

(x, q)i,

IΓQ(ej)
(x, q)i ≤ IΨQ(ej)

(x, q)i and

FΓQ(ej)
(x, q)i ≤ FΨQ(ej)

(x, q)i.

Hence, we have

Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i) ≤ Φ(TΨQ(ej)

(x, q)i, IΨQ(ej)
(x, q)i, FΨQ(ej)

(x, q)i)

and so

1−Φ(TΨQ(ej)
(x, q)i, IΨQ(ej)

(x, q)i, FΨQ(ej)
(x, q)i) ≤ 1−Φ(TΓQ(ej)

(x, q)i, IΓQ(ej)
(x, q)i, FΓQ(ej)

(x, q)i)

for all ej ∈ A and (x, q)i ∈ X ×Q. Thus, ∑n
j=1 ∑lm

i=1 1−Φ(TΨQ(ej)
(x, q)i, IΨQ(ej)

(x, q)i, FΨQ(ej)
(x, q)i) ≤

∑n
j=1 ∑lm

i=1 1−Φ(TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i), that is, ε(ΓQ, A) ≥ ε(ΨQ, A).

In the following, we give some examples of Q-neutrosophic entropy for Q-NSS.

ε1(ΓQ, A) =
n

∑
j=1

lm

∑
i=1

(1− (TΓQ(ej)
(x, q)i + IΓQ(ej)

(x, q)i + FΓQ(ej)
(x, q)i)). (1)

ε2(ΓQ, A) =
n

∑
j=1

lm

∑
i=1

(1− (TΓQ(ej)
(x, q)i + IΓQ(ej)

(x, q)i + FΓQ(ej)
(x, q)i)

k), k = 2, 3, . . . (2)

In the following, we shall compare the performance of the proposed entropy measures by the
following example:

Example 1. Let (ΓQ, A) = {
〈
e, TΓQ(e)(x, q), IΓQ(e)(x, q), FΓQ(e)(x, q)

〉
: e ∈ A, (x, q) ∈ X × Q} be

a Q-NSS in the finite universe X = {x1, x2, . . . , xm} with the nonempty set Q = {q1, q2, . . . , ql}. Then we
define the Q-NSS, (ΓQ, A)n for any positive real number, n, as follows:

(ΓQ, A)n = {
〈
e, Tn

ΓQ(e)(x, q), 1− (1− IΓQ(e)(x, q))n, 1− (1− FΓQ(e)(x, q))n〉 : e ∈ A, (x, q) ∈ X×Q}.

When we consider the Q-NSS, (ΓQ, A), in the finite universe X = {x1, x2} with Q = {q1, q2} and the
set of parameters A = {e1, e2} as

(ΓQ, A)

=
{
〈e1, [(x1, q1), 0.4, 0.1, 0.1], [(x1, q2), 0.2, 0.11, 0.12], [(x2, q1), 0.2, 0.1, 0.12], [(x2, q2), 0.4, 0.12, 0.12]〉,

e2,[(x1, q1), 0.1, 0.15, 0.1], [(x1, q2), 0.1, 0.12, 0.1], [(x2, q1), 0.3, 0.15, 0.13], [(x2, q2), 0.4, 0.13, 0.11]
}

.



Entropy 2018, 20, 672 7 of 16

Using the above operation, we can generate the following Q-NSSs:

(ΓQ, A)2

=
{
〈e1, [(x1, q1), 0.16, 0.19, 0.19], [(x1, q2), 0.04, 0.2079, 0.2256], [(x2, q1), 0.04, 0.19, 0.2256],

[(x2, q2), 0.16, 0.2256, 0.2256]〉, e2, [(x1, q1), 0.01, 0.2775, 0.19], [(x1, q2), 0.01, 0.2256, 0.19],

[(x2, q1), 0.09, 0.2775, 0.2431], [(x2, q2), 0.16, 0.2431, 0.2079]
}

,

(ΓQ, A)3

=
{
〈e1, [(x1, q1), 0.064, 0.271, 0.271], [(x1, q2), 0.008, 0.2950, 0.3185], [(x2, q1), 0.008, 0.271, 0.3185],

[(x2, q2), 0.064, 0.3185, 0.3185]〉, e2, [(x1, q1), 0.001, 0.3859, .271], [(x1, q2), 0.001, 0.3185, 0.271],

[(x2, q1), 0.027, 0.3859, 0.3415], [(x2, q2), 0.064, 0.3415, 0.2950]
}

,

(ΓQ, A)4

=
{
〈e1, [(x1, q1), 0.0256, 0.3439, 0.3439], [(x1, q2), 0.0016, 0.3726, 0.4003], [(x2, q1), 0.0016, 0.3439, 0.4003],

[(x2, q2), 0.0256, 0.4003, 0.4003]〉, e2, [(x1, q1), 0.0001, 0.4780, 0.3439], [(x1, q2), 0.0001, 0.4003, 0.3439],

[(x2, q1), 0.0081, 0.4780, 0.4271], [(x2, q2), 0.0256, 0.7271, 0.3726]
}

.

By taking into account the characterization of linguistic variable, (ΓQ, A) may be viewed as “Large" in X×Q.
Using the above operations, (ΓQ, A)2 may be viewed as “Very Large", (ΓQ, A)3 may be viewed as “Quite Very
Large" and (ΓQ, A)4 may be viewed as “Very Very Large". From logical consideration and human intuition,
the proposed entropy measures shown in Equations (1) and (2) of these Q-NSSs is required to satisfy the ranking
order εi((ΓQ, A)) > εi(ΓQ, A)n, i = 1, 2.

Therefore, from calculated entropy values listed in Table 1, we can easily see that they satisfy the required
ranking order.

Table 1. Comparison of the fuzziness with different entropy measures.

(ΓQ, A)n ε1 ε2, k = 2 ε2, k = 3 ε2, k = 4

(ΓQ, A) 4.02 5.8982 6.8354 7.3309

(ΓQ, A)2 3.795 5.7478 6.7720 7.3189

(ΓQ, A)3 2.771 4.5568 5.7158 6.4734

(ΓQ, A)4 1.6309 2.9011 3.8947 4.6756

4. Measures of Distance and Similarity of Q-Neutrosophic Soft Sets

The axiomatic definitions of the distance measure and similarity measure will be introduced.
We present several distance measures between Q-NSSs, specifically the distances of Hamming,
Euclidean, normalized Hamming and normalized Euclidean. These distances are obtained through
generalizing the corresponding measures of distances for NSSs characterized in [27], to make them
appropriate to the basis of Q-NSSs.

We start with defining the axiomatic definition for the measure of distance between two Q-NSSs.
Next the distances of Hamming, Euclidean, and their normalized forms are defined.
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Definition 11. A real valued non-negative function d : Q−NSS(X)×Q−NSS(X)→ R+ ∪ 0 is a distance
function between Q-NSSs if the conditions below are satisfied for any (ΓQ, A), (ΨQ, A), (ΥQ, A) ∈ Q −
NSSs(X)

(d1) d((ΓQ, A), (ΨQ, A)) ≥ 0,
(d2) d((ΓQ, A), (ΨQ, A)) = d((ΨQ, A), (ΓQ, A)),
(d3) d((ΓQ, A), (ΨQ, A)) = 0 if and only if (ΓQ, A) = (ΨQ, A),
(d4) d((ΓQ, A), (ΨQ, A)) + d((ΨQ, A), (ΥQ, A)) ≥ d((ΓQ, A), (ΥQ, A)).

Definition 12. If X = {x1, x2, . . . , xm} is a universal set, Q = {q1, q2, . . . , ql} is a nonempty set, A =

{e1, e2, . . . , en} being a set of parameters, (ΓQ, A) and (ΨQ, A) are a Q-NSSs(X) and d a distance measure
between Q-NSSs for all ej ∈ A and (x, q)i ∈ X×Q which are given below:

(1) The Hamming distance:

dH
Q−NSS((ΓQ, A), (ΨQ, A)) =

n

∑
j=1

lm

∑
i=1

|∆ijT(x, q)|+ |∆ij I(x, q)|+ |∆ijF(x, q)|
3

,

where

∆ijT(x, q) = TΓQ(ej)
(x, q)i − TΨQ(ej)

(x, q)i,

∆ij I(x, q) = IΓQ(ej)
(x, q)i − IΨQ(ej)

(x, q)i and

∆ijF(x, q) = FΓQ(ej)
(x, q)i − FΨQ(ej)

(x, q)i.

(2) The normalized Hamming distance:

dNH
Q−NSS((ΓQ, A), (ΨQ, A)) =

dH
Q−NSS((ΓQ, A), (ΨQ, A))

lmn
.

(3) The Euclidean distance:

dE
Q−NSS((ΓQ, A), (ΨQ, A)) =

( n

∑
j=1

lm

∑
i=1

(∆ijT(x, q))2 + (∆ij I(x, q))2 + (∆ijF(x, q))2

3

) 1
2

where

∆ijT(x, q) = TΓQ(ej)
(x, q)i − TΨQ(ej)

(x, q)i,

∆ij I(x, q) = IΓQ(ej)
(x, q)i − IΨQ(ej)

(x, q)i and

∆ijF(x, q) = FΓQ(ej)
(x, q)i − FΨQ(ej)

(x, q)i.

(4) The normalized Euclidean distance:

dNE
Q−NSS((ΓQ, A), (ΨQ, A)) =

dE
Q−NSS((ΓQ, A), (ΨQ, A))

√
lmn

.

The following properties clearly hold:

• 0 ≤ dH
Q−NSS((ΓQ, A), (ΨQ, A)) ≤ lmn.

• 0 ≤ dNH
Q−NSS((ΓQ, A), (ΨQ, A)) ≤ 1.

• 0 ≤ dE
Q−NSS((ΓQ, A), (ΨQ, A)) ≤

√
lmn.

• 0 ≤ dNE
Q−NSS((ΓQ, A), (ΨQ, A)) ≤ 1.
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Another main concept in the investigation of imprecise data is the measure of similarity. It shows
the level of similarity between sets. Next, we define the similarity measure between Q-NSSs.

Definition 13. A real non-negative function S : Q − NSS(X) × Q − NSS(X) → [0, 1] is a similarity
measure between Q-NSSs if the following conditions are satisfied for any (ΓQ, A), (ΨQ, A), (ΥQ, A) ∈ Q−
NSS(X):

(S1) 0 ≤ S((ΓQ, A), (ΨQ, A)) ≤ 1,
(S2) S((ΓQ, A), (ΨQ, A)) = 1 if and only if (ΓQ, A) = (ΨQ, A),
(S3) S((ΓQ, A), (ΨQ, A)) = S((ΨQ, A), (ΓQ, A)),
(S4) If (ΓQ, A) ⊆ (ΨQ, A) ⊆ (ΥQ, A), then S((ΓQ, A), (ΥQ, A)) ≤ min{S((ΓQ, A), (ΨQ, A)),

S((ΨQ, A), (ΥQ, A))}.

In mathematics, the distance measures and similarity measures are connected ideas. Consequently,
we can use the proposed distance measure to characterize similarity measures between Q-NSSs.
Hence, we can characterize several similarity measures between Q-NSSs (ΓQ, A) and (ΨQ, A)

as follows:

SH
Q−NSS((ΓQ, A), (ΨQ, A)) =

1
1 + dH

Q−NSS((ΓQ, A), (ΨQ, A))
(3)

SE
Q−NSS((ΓQ, A), (ΨQ, A)) =

1
1 + dE

Q−NSS((ΓQ, A), (ΨQ, A))
(4)

SNH
Q−NSS((ΓQ, A), (ΨQ, A)) =

1
1 + dNH

Q−NSS((ΓQ, A), (ΨQ, A))
(5)

SNE
Q−NSS((ΓQ, A), (ΨQ, A)) =

1
1 + dNE

Q−NSS((ΓQ, A), (ΨQ, A))
(6)

The following example illustrates the proposed Hamming, Euclidean, normalized Hamming and
normalized Euclidean distances between Q-NSSs and their corresponding similarity measures.

Example 2. Assume that two Q-NSS (ΓQ, A) and (ΨQ, A) are defined as follows:

(ΓQ, A) =
{
〈e1,[(x1, q1), 0.3, 0.5, 0.4], [(x1, q2), 0.1, 0.2, 0.3], [(x2, q1), 0.6, 0.3, 0.7], [(x2, q2), 0.8, 0.1, 0.3]〉,

〈e2,[(x1, q1), 0.8, 0.2, 0.5], [(x1, q2), 0.2, 0.5, 0.7], [(x2, q1), 0.4, 0.1, 0.9], [(x2, q2), 0.2, 0.2, 0.2]〉
}

,

(ΨQ, A) =
{
〈e1,[(x1, q1), 0.1, 0.6, 0.5], [(x1, q2), 0.7, 0.4, 0.1], [(x2, q1), 0.3, 0.1, 0.1], [(x2, q2), 0.1, 0.4, 0.5]〉,

〈e2,[(x1, q1), 0.4, 0.1, 0.7], [(x1, q2), 0.2, 0.6, 0.2], [(x2, q1), 0.5, 0.8, 0.3], [(x2, q2), 0.9, 0.4, 0.1]〉
}

.

By Definition 12 we have
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dH
Q−NSS((ΓQ, A), (ΨQ, A)) =

2

∑
j=1

4

∑
i=1

|∆ijT(x, q)|+ |∆ij I(x, q)|+ |∆ijF(x, q)|
3

=
|0.3− 0.1|+ |0.5− 0.6|+ |0.4− 0.5|

3
+
|0.1− 0.7|+ |0.2− 0.4|+ |0.3− 0.1|

3

+
|0.6− 0.3|+ |0.3− 0.1|+ |0.7− 0.1|

3
+
|0.8− 0.1|+ |0.1− 0.4|+ |0.3− 0.5|

3

+
|0.8− 0.4|+ |0.2− 0.1|+ |0.5− 0.7|

3
+
|0.2− 0.2|+ |0.5− 0.6|+ |0.7− 0.2|

3

+
|0.4− 0.5|+ |0.1− 0.8|+ |0.9− 0.3|

3
+
|0.2− 0.9|+ |0.2− 0.4|+ |0.2− 0.1|

3
= 2.3,

dNH
Q−NSS((ΓQ, A), (ΨQ, A)) = 2.3

2(2)(2) = 0.2875,

dE
Q−NSS((ΓQ, A), (ΨQ, A)) =

( 2

∑
j=1

4

∑
i=1

(∆ijT(x, q))2 + (∆ij I(x, q))2 + (∆ijF(x, q))2

3

) 1
2

=
( (0.3− 0.1)2 + (0.5− 0.6)2 + (0.4− 0.5)2

3
+

(0.1− 0.7)2 + (0.2− 0.4)2 + (0.3− 0.1)2

3

+
(0.6− 0.3)2 + (0.3− 0.1)2 + (0.7− 0.1)2

3
+

(0.8− 0.1)2 + (0.1− 0.4)2 + (0.3− 0.5)2

3

+
(0.8− 0.4)2 + (0.2− 0.1)2 + (0.5− 0.7)2

3
+

(0.2− 0.2)2 + (0.5− 0.6)2 + (0.7− 0.2)2

3

+
(0.4− 0.5)2 + (0.1− 0.8)2 + (0.9− 0.3)2

3
+

(0.2− 0.9)2 + (0.2− 0.4)2 + (0.2− 0.1)2

3

) 1
2

= 1.077

and dNE
Q−NSS((ΓQ, A), (ΨQ, A)) = 1.077√

2(2)(2)
= 0.380. Now, by Equations (3)–(6), respectively, we have

SH
Q−NSS((ΓQ, A), (ΨQ, A)) = 1

1+2.3 = 0.303, SNH
Q−NSS((ΓQ, A), (ΨQ, A)) = 1

1+0.2875 = 0.777,
SE

Q−NSS((ΓQ, A), (ΨQ, A)) = 1
1+1.077 = 0.481 and SNE

Q−NSS((ΓQ, A), (ΨQ, A)) = 1
1+0.380 = 0.725.

5. Applications

Q-NSSs is a suitable tool to better model and process imperfect two-dimensional information.
In this section, we present a practical examples of Q-NSSs to show that the proposed entropy and
similarity measures play a significant role in solving medical diagnosis and decision making problems.
To facilitate the discussion, this section will be divided into two subsections. The first subsection
will illustrate an application of the proposed entropy measure of Q-NSSs in decision making while
the second subsection illustrates two applications of the proposed similarity measures of Q-NSSs in
medical diagnosis and decision making.

5.1. Application of Entropy of Q-Neutrosophic Soft Sets

In the application of the proposed entropy measures in decision-making problems, if the entropy
value for an alternative throughout all the attributes is smaller, the decision-maker can provide more
useful information from this alternative. Hence, the alternative with the least entropy value should be
assigned a significant preference and priority.

The following algorithm and subsequent example will illustrate the application of Q-neutrosophic
soft entropy in decision making. Using the entropy defined in Theorem 2, we introduce the following
approach to solve decision making problem followed by a real life example to show the validity of
this approach.
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Step 1: Suppose there exists P alternatives represented by Q-NSSs.
Step 2: Compute the entropy of (ΓQ, A).
Step 3: Select the smallest entropy such that the corresponding Q-NSS is the best choice.

Example 3. Suppose X = {x1, x2} is a set of houses, Q = {q1 = near the city, q2 = far from the city} be a
set which describe the place of a house, A = {e1 = ease of transport, e2 = large, e3 = beautiful} be a set of
parameters. Suppose that Ms. L and Ms. M want to buy a house. The Q-NSSs (ΓQ, A) and (ΨQ, A) describe
the attractiveness of the house to them, respectively.

(ΓQ, A) =
{
〈e1,[(x1, q1), 0.2, 0.1, 0.6], [(x1, q2), 0.5, 0.4, 0.1], [(x2, q1), 0.4, 0.2, 0.2], [(x2, q2), 0.2, 0.2, 0.2]〉,

〈e2,[(x1, q1), 0.1, 0.5, 0.2], [(x1, q2), 0.1, 0.1, 0.6], [(x2, q1), 0.3, 0.3, 0.3], [(x2, q2), 0.3, 0.6, 0.1]〉,

〈e3,[(x1, q1), 0.7, 0.1, 0.1], [(x1, q2), 0.3, 0.2, 0.3], [(x2, q1), 0.1, 0.6, 0.2], [(x2, q2), 0.2, 0.7, 0.1]〉
}

,

(ΨQ, A) =
{
〈e1,[(x1, q1), 0.2, 0.1, 0.3], [(x1, q2), 0.4, 0.3, 0.2], [(x2, q1), 0.1, 0.2, 0.4], [(x2, q2), 0.1, 0.4, 0.4]〉,

〈e2,[(x1, q1), 0.2, 0.2, 0.5], [(x1, q2), 0.1, 0.1, 0.1], [(x2, q1), 0.4, 0.3, 0.2], [(x2, q2), 0.3, 0.2, 0.1]〉,

〈e3,[(x1, q1), 0.3, 0.5, 0.1], [(x1, q2), 0.1, 0.1, 0.4], [(x2, q1), 0.2, 0.1, 0.5], [(x2, q2), 0.3, 0.1, 0.3]〉
}

.

As known, the less uncertainty information each attractiveness has, the larger possibility they will buy a house.
Hence, we can rank buyers according to the entropy values of the corresponding Q-NSSs.

By equation (1), we can compute ε1((ΓQ, A)) = 1.6 and ε1((ΨQ, A)) = 3.2, i.e., ε1((ΓQ, A)) <

ε1((ΨQ, A)). Therefore, from the computation above, the real estate agency can presume that Ms. L has a larger
possibility to buy a house than Ms. M.

5.2. Applications of Similarity Measure of Q-Neutrosophic Soft Sets

We will now construct two algorithms to implement the defined Hamming similarity measure in
medical diagnosis and decision making.

5.2.1. Similarity Measures of Q-Neutrosophic Soft Sets Applied to Medical Diagnosis

We will now show the implementation of the characterized Hamming similarity measure of
Q-NSS in medical diagnosis.

The following algorithm to a medical diagnosis problem is used to determine if a patient suffers
from cerebrum malignancy as we discuss in the next example.

Step 1: Build a model Q-NSS for illness, which may be developed with the assistance of medicinal
master person.
Step 2: Construct Q-NSS for the patient.
Step 3: Calculate distance between the model Q-NSS for illness and the Q-NSS for the patient.
Step 4: Calculate similarity measure between the model Q-NSS for illness and the Q-NSS for the
patient.
Step 5: If the similarity measure is greater than or equal 0.5 then the patient may possibly suffer from
the disease and if the similarity measure is less than 0.5 then the patient may not possibly suffer from
the disease.

Below is a conceivable use of similarity measure of Q-NSS in a medical diagnosis to determine
whether a patient having a few symptoms is experiencing cerebrum malignancy.

Example 4. Let X = {x1 = severe, x2 = mild} be a universal set which describes the intensity, Q = {q1 =

frequently, q2 = rarely} describes the frequency of the symptoms. Let A = {e1 = headache, e2 = nausea, e3 =

weakness} be a set of certain symptoms.
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Step 1: Build the model Q-NSS for illness:

(ΠQ, A) =
{
〈e1,[(x1, q1), 0.6, 0.3, 0.6], [(x1, q2), 0.8, 0.1, 0.5], [(x2, q1), 0.5, 0.4, 0.3], [(x2, q2), 0.3, 0.2, 0.2]〉,

〈e2,[(x1, q1), 0.7, 0.2, 0.4], [(x1, q2), 0.5, 0.2, 0.1], [(x2, q1), 0.3, 0.2, 0.1], [(x2, q2), 0.2, 0.1, 0.4]〉,

〈e3,[(x1, q1), 0.6, 0.2, 0.2], [(x1, q2), 0.7, 0.4, 0.1], [(x2, q1), 0.2, 0.3, 0.3], [(x2, q2), 0.4, 0.3, 0.2]〉
}

.

Step 2: Construct Q-NSSs for patients Y and Z respectively as:

(ΓQ, A) =
{
〈e1,[(x1, q1), 0.8, 0.3, 0.6], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.4, 0.2, 0.1], [(x2, q2), 0.3, 0.2, 0.2]〉,

〈e2,[(x1, q1), 0.5, 0.2, 0.4], [(x1, q2), 0.5, 0.3, 0.1], [(x2, q1), 0.3, 0.3, 0.1], [(x2, q2), 0.2, 0.2, 0.3]〉,

〈e3,[(x1, q1), 0.6, 0.2, 0.5], [(x1, q2), 0.4, 0.4, 0.1], [(x2, q1), 0.2, 0.1, 0.2], [(x2, q2), 0.3, 0.3, 0.2]〉
}

,

(ΨQ, A) =
{
〈e1,[(x1, q1), 0.2, 0.4, 0.6], [(x1, q2), 0.1, 0.4, 0.3], [(x2, q1), 0.5, 0.7, 0.8], [(x2, q2), 0.6, 0.5, 0.6]〉,

〈e2,[(x1, q1), 0.1, 0.2, 0.4], [(x1, q2), 0.2, 0.3, 0.2], [(x2, q1), 0.6, 0.5, 0.8], [(x2, q2), 0.7, 0.4, 0.6]〉,

〈e3,[(x1, q1), 0.3, 0.3, 0.1], [(x1, q2), 0.2, 0.1, 0.4], [(x2, q1), 0.6, 0.6, 0.7], [(x2, q2), 0.8, 0.5, 0.7]〉
}

.

Step 3: By Definition 12 the Hamming distance between (ΠQ, A) and (ΓQ, A) is 0.867 while between (ΠQ, A)

and (ΨQ, A) is 3.567.

Step 4: By equation (3) the similarity measure between (ΠQ, A) and (ΓQ, A) is 0.536 while between (ΠQ, A)

and (ΨQ, A) is 0.219.

Step 5: Since S((ΠQ, A), (ΓQ, A)) > 0.5, therefore patient Y may possibly suffer cerebrum malignancy and
since S((ΠQ, A), (ΨQ, A)) < 0.5 therefore patient Z may not possibly suffer cerebrum malignancy.

5.2.2. Similarity Measures of Q-Neutrosophic Soft Sets Applied to Multicriteria Decision Making

We consider a method to show how to carry out the multicriteria decision-making problem by the
defined similarity measure for Q-NSSs. Q-neutrosophic sets with a parametrization tool are favorable
for decision making problems in the neutrosophic environment because of their ability to handle
two-dimensional indeterminate problems. To solve a multicriteria decision-making problem which is
based on the concept of the Q-neutrosophic soft set, we will consider the method introduced in [27] to
show how to carry out a multicriteria decision making problem by the defined similarity measure for
Q-NSSs. The two assessment criteria under consideration are the benefit and cost. To decide the best
estimation of every criterion among every conceivable option, an ideal option can be distinguished
by using a max-min-min operator and a min-max-max operator for the benefit and cost criteria,
respectively. Then, for ΓQ(ej)

(x, q)i = (TΓQ(ej)
(x, q)i, IΓQ(ej)

(x, q)i, FΓQ(ej)
(x, q)i), we define an ideal

Q-neutrosophic value for a benefit criterion and a cost criterion, respectively, as follows:

Γ∗Q(ebenefit)(x, q)i = {(T∗ΓQ(ej)
(x, q)i, I∗ΓQ(ej)

(x, q)i, F∗ΓQ(ej)
(x, q)i) : ej ∈ A, (x, q)i ∈ X×Q}

= {(max
j

TΓQ(ej)
(x, q)i, min

j
IΓQ(ej)

(x, q)i, min
j

FΓQ(ej)
(x, q)i) : ej ∈ A, (x, q)i ∈ X×Q}

and

Γ∗Q(ecost)(x, q)i = {(T∗ΓQ(ej)
(x, q)i, I∗ΓQ(ej)

(x, q)i, F∗ΓQ(ej)
(x, q)i) : ej ∈ A, (x, q)i ∈ X×Q}

= {(min
j

TΓQ(ej)
(x, q)i, max

j
IΓQ(ej)

(x, q)i, max
j

FΓQ(ej)
(x, q)i) : ej ∈ A, (x, q)i ∈ X×Q}.

We can use the following algorithm to use the defined measures of similarity in decision making.



Entropy 2018, 20, 672 13 of 16

Step 1: Construct Q-NSSs for the alternatives.
Step 2: Construct the ideal Q-NSS from the Q-NSSs of the alternatives taking into account the benefit
and the cost criteria.
Step 3: Calculate the Hamming distance between the Q-NSS of the alternatives and the ideal Q-NSS.
Step 4: Calculate the Hamming similarity measure between the Q-NSS of the alternatives and the
ideal Q-NSS.
Step 5: The decision is to select the Q-NSS which has the highest similarity to the ideal Q-NSS.

Example 5. Suppose that there is an investment company which has a downtrend in its returns. To overcome
this situation, the administration need to put a rescue package into action. Four committees which are independent
of one another, and an evaluation board are established by the administration. Each of these committees has
prepared a contingency plan according to the following three criteria: e1 is the hazard, e2 is the development
and e3 is the ecological effect, where e1 and e3 are the cost criteria and e2 is the benefit criterion. According to
the reports offered separately by the evaluation board, the four possible alternatives are to be obtained under the
above parameters by the form of Q-NSSs as follows:

(ΓQ, A) =
{
〈e1,[(x1, q1), 0.5, 0.2, 0.4], [(x1, q2), 0.6, 0.7, 0.3], [(x2, q1), 0.2, 0.5, 0.5], [(x2, q2), 0.8, 0.2, 0.6]〉,

〈e2,[(x1, q1), 0.4, 0.6, 0.4], [(x1, q2), 0.4, 0.5, 0.5], [(x2, q1), 0.6, 0.3, 0.1], [(x2, q2), 0.4, 0.1, 0.1]〉,

〈e3,[(x1, q1), 0.8, 0.3, 0.6], [(x1, q2), 0.5, 0.7, 0.5], [(x2, q1), 0.9, 0.8, 0.1], [(x2, q2), 0.7, 0.4, 0.2]〉
}

,

(ΨQ, A) =
{
〈e1,[(x1, q1), 0.6, 0.6, 0.6], [(x1, q2), 0.4, 0.5, 0.2], [(x2, q1), 0.2, 0.3, 0.9], [(x2, q2), 0.2, 0.7, 0.7]〉,

〈e2,[(x1, q1), 0.9, 0.2, 0.3], [(x1, q2), 0.1, 0.1, 0.4], [(x2, q1), 0.8, 0.2, 0.5], [(x2, q2), 0.6, 0.6, 0.3]〉,

〈e3,[(x1, q1), 0.7, 0.1, 0.5], [(x1, q2), 0.2, 0.2, 0.3], [(x2, q1), 0.2, 0.8, 0.4], [(x2, q2), 0.6, 0.6, 0.6]〉
}

,

(ΥQ, A) =
{
〈e1,[(x1, q1), 0.3, 0.4, 0.9], [(x1, q2), 0.5, 0.3, 0.8], [(x2, q1), 0.6, 0.2, 0.2], [(x2, q2), 0.1, 0.4, 0.3]〉,

〈e2,[(x1, q1), 0.5, 0.7, 0.1], [(x1, q2), 0.9, 0.2, 0.2], [(x2, q1), 0.4, 0.8, 0.1], [(x2, q2), 0.5, 0.9, 0.3]〉,

〈e3,[(x1, q1), 0.9, 0.4, 0.4], [(x1, q2), 0.1, 0.7, 0.5], [(x2, q1), 0.5, 0.4, 0.1], [(x2, q2), 0.3, 0.3, 0.6]〉
}

and

(ΛQ, A) =
{
〈e1,[(x1, q1), 0.7, 0.1, 0.1], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.3, 0.4, 0.1], [(x2, q2), 0.5, 0.2, 0.1]〉,

〈e2,[(x1, q1), 0.9, 0.3, 0.3], [(x1, q2), 0.3, 0.4, 0.3], [(x2, q1), 0.5, 0.5, 0.5], [(x2, q2), 0.7, 0.2, 0.4]〉,

〈e3,[(x1, q1), 0.8, 0.6, 0.3], [(x1, q2), 0.4, 0.8, 0.3], [(x2, q1), 0.2, 0.7, 0.9], [(x2, q2), 0.5, 0.1, 0.4]〉
}

.

Using the approach created to acquire the most appropriate option, from the ideal Q-neutrosophic value,
we can get the subsequent ideal Q-NSS:

(ΠQ, A) =
{〈

e1,[(x1, q1), 0.3, 0.6, 0.9], [(x1, q2), 0.4, 0.7, 0.8], [(x2, q1), 0.2, 0.5, 0.9], [(x2, q2), 0.1, 0.7, 0.7]
〉
,〈

e2,[(x1, q1), 0.9, 0.2, 0.1], [(x1, q2), 0.9, 0.1, 0.2], [(x2, q1), 0.8, 0.2, 0.1], [(x2, q2), 0.7, 0.1, 0.1]
〉
,〈

e3,[(x1, q1), 0.7, 0.6, 0.6], [(x1, q2), 0.1, 0.8, 0.5], [(x2, q1), 0.2, 0.8, 0.9], [(x2, q2), 0.3, 0.6, 0.6]
〉}

.
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Now, we can compute the similarity in view of the Hamming distance between the model ideal Q-NSS and
the Q-NSS of each project as follows:

dH
Q−NSS((ΓQ, A), (ΠQ, A)) =3.3⇒ SH

Q−NSS((ΓQ, A), (ΠQ, A)) = 0.233,

dH
Q−NSS((ΨQ, A), (ΠQ, A)) =2.133⇒ SH

Q−NSS((ΨQ, A), (ΠQ, A)) = 0.319,

dH
Q−NSS((ΥQ, A), (ΠQ, A)) =2.867⇒ SH

Q−NSS((ΥQ, A), (ΠQ, A)) = 0.259,

dH
Q−NSS((ΛQ, A), (ΠQ, A)) =3.267⇒ SH

Q−NSS((ΛQ, A), (ΠQ, A)) = 0.234.

Thus, the four alternatives are ranked orderly as (ΨQ, A), (ΥQ, A), (ΛQ, A) and (ΓQ, A).
The administration should select the rescue with highest score, which is (ΨQ, A).

6. Conclusions

We have introduced the entropy of Q-neutrosophic soft set which measures the degree of fuzziness
of a Q-neutrosophic soft set , taking into account the two-dimensionality and indeterminacy of a data
set, and have proposed several distance measures for Q-neutrosophic soft sets. Using the relations
of distance measure to similarity measure, the corresponding similarity measures for Q-NSSs have
been obtained. Finally, three different algorithms were constructed to implement the proposed
measures in real life decision making issues to show the validity of these measures in a Q-neutrosophic
soft environment. The advantages of the proposed measures are that they are defined over the set
where the membership, indeterminacy membership and non-membership degrees are defined as
a two-dimensional functions, and also complement the Q-NSS model in representing and modeling
two-dimensional uncertain, indeterminate and inconsistent data. The measures proposed in this article
may be extended further to different entropy, distance and similarity measures such as exponential
entropy, cross entropy, Jaccard Measure, Cotangent Measure and others. Furthermore, the work
presented in this paper can be used as a foundation to further extend the study of the information
measures for structures obtained by incorporating the idea of Q-neutrosophic soft set to other concepts
such as the refined neutrosophic set, soft expert set, bipolar/tripolar/multipolar neutrosophic, and
many other structures.
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