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Abstract: For multiple attribute decision making, ranking and information aggregation problems
are increasingly receiving attention. In a normal neutrosophic number, the ranking method does
not satisfy the ranking principle. Moreover, the proposed operators do not take into account the
correlation between any aggregation arguments. In order to overcome the deficiencies of the existing
ranking method, based on the nonnegative normal neutrosophic number, this paper redefines the
score function, the accuracy function, and partial operational laws. Considering the correlation
between any aggregation arguments, the dual generalized nonnegative normal neutrosophic
weighted Bonferroni mean operator and dual generalized nonnegative normal neutrosophic weighted
geometric Bonferroni mean operator were investigated, and their properties are presented. Here, these
two operators are applied to deal with a multiple attribute decision making problem. Example results
show that the proposed method is effective and superior.

Keywords: multiple attribute decision making; nonnegative normal neutrosophic number;
aggregation operator

1. Introduction

During the decision making process, the evaluation information given by decision makers is
often incomplete, indeterminate, and inconsistent. To deal with this uncertain information, fuzzy
set (FS) was proposed by Zadeh [1] in 1965. On the basis of FS, intuitionistic fuzzy set (IFS) was
introduced by Atanassov [2] in 1986. However, IFS can not deal with all types of indeterminate
and inconsistent information. Hence, considering the indeterminacy-membership based on IFS,
Smarandache [3] developed the neutrosophic set (NS) in 1995. In NS, the truth-membership function,
indeterminacy-membership function, and false-membership function are independent of each other.
In real life, normal distribution is widely applied. Nevertheless, FS, IFS, and NS do not take the normal
distribution into account. Therefore, the normal fuzzy number (NFN) was firstly introduced by Yang
and Ko [4] in 1996, and NFN can deal with normal fuzzy information. Based on IFS and NFN, normal
intuitionistic fuzzy number (NIFN) was defined by Wang and Li [5] in 2002. Further, combining NFN
with NS, Liu [6] proposed the normal neutrosophic number (NNN).

With the development of society, many achievements have been made in the research of multiple
attribute decision making (MADM) [7–10]. Chatterjee et al. [7] proposed a novel hybrid method
encompassing factor relationship (FARE) and multi-attributive border approximation area comparison
(MABAC) methods. Petković et al. [8] introduced the performance selection index (PSI) method for
solving machining MADM problems. Roy et al. [9] developed a rough strength relational-decision
making and trial evaluation laboratory model. Badi et al. [10] used a new combinative distance-based
assessment (CODAS) method to handle MADM problems. Lee et al. [11] developed fuzzy entropy,
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which determined for an FS, by using the distance measure. Based on IFS, some authors [12–14]
investigated the distance-based technique for order preference by similarity to an ideal solution
(TOPSIS)method, entropy, and similarity measures of IFS, and applied them to MADM. Atanassov and
Gargov [15] extended IFS to interval valued intuitionistic fuzzy set (IVIFS). Huang [16] proposed
a (T, S)-based IVIF composition matrix and its application. Chen et al. [17] and Biswas et al. [18]
introduced a linear programming methodology and integrated the TOPSIS approach for MADM
in IVIFS. Because NS—a generalization of IFS and FS—can better describe uncertain information,
NS now attracts great attention. An outranking method, COPRAS method, and entropy with NS
for MADM has been developed in [19–21]. Wang et al. [22,23] introduced interval neutrosophic set
(INS) and single-valued neutrosophic set (SVNN). Zhang et al. [24,25] and Tian et al. [26] proposed
an outranking approach and weighted correlation coefficient: cross-entropy with INS for MADM.
Further, Huang [27] and Ye [28] presented a new distance measure—cross-entropy and its application
to MADM in SVNN.

Presently, information aggregation operators are attracting an increasing amount of attention
for dealing with MADM. Many aggregation operators have been developed in intuitionistic fuzzy
MADM [29–31]. Wang and Li [32,33] and Wang et al. [34] developed some intuitionistic normal
aggregation operators and proposed some MADM methods based on these operators, while
Wang et al. [5] developed some aggregation operators for NIFN. For NS and INS, some aggregation
operators were proposed, such as power aggregation operators [35], generalized weighted power
averaging operator [36], order weighted aggregation operators [37], generalized weighted power
averaging operator [38], etc. Liu [39–41] developed Frank operators, generalized weighted power
averaging operators, and Heronian mean operators for application with NNN; Şahin [42] introduced
generalized prioritized aggregation operators with NNN.

However, these operators do not consider the relationship between attributes. Considering the
interrelation between attributes, Bonferroni mean (BM) operator was first defined by Bonferroni
[43]. Liu [6] introduced normal neutrosophic weighted Bonferroni mean (NNWBM) operator and
normal neutrosophic weighted geometric Bonferroni mean (NNWGBM) operator. However, these
operators only take into account correlations between any two aggregation arguments, and they do
not consider the connections among any three or more than three aggregation arguments. The score
function and accuracy function of the NNN and their ranking method were proposed also. However,
the score function and accuracy function do not satisfy the ranking principle and are counterintuitive
(see Example 1 for details).

The main contribution of this paper is (1) the proposal of a score function and accuracy function
that satisfy the ranking principle, and (2) the extension of the operators in Liu [6]. First, we introduce the
nonnegative normal neutrosophic number (NNNN). Then, a new score function and accuracy function
are defined to solve the problem of the original function. Furthermore, considering the connections
between any two or more than two aggregation arguments, the operator in [6] is generalized and some
new operators are defined. For MADM, it is more reasonable to consider the relationship between each
attribute, and the example in this paper further illustrates the advantages of the proposed MADM
method compared with Liu [6]. The example in this paper further shows that when the relationship
between more aggregation arguments is considered, the aggregation result is more stable; when the
parameter value is larger, the aggregation result is more sensitive.

The structure of this paper as follows. Section 2 reviews the NNN, some operational laws, the score
function, accuracy function, and the ranking method. Section 3 proposes the basic concept of the NNNN,
and the new score function and accuracy function are introduced. Some generalized aggregation
operators are developed, which are the dual generalized nonnegative normal neutrosophic weighted
Bonferroni mean (DGNNNWBM) operator and dual generalized nonnegative normal neutrosophic
weighted geometric Bonferroni mean (DGNNNWGBM) operator. Their properties are discussed.
In Section 4, based on the DGNNNWBM operator and DGNNNWGBM operator, a MADM method is
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established. Section 5 gives a numerical example to explain the application of the proposed MADM
method, and compares it with the method presented in [6]. Section 6 concludes this paper.

2. Preliminaries

Yang and Ko (1996) introduced the concept of the normal fuzzy number (NFN).

Definition 1. [4] A = (a, σ) is an NFN if its membership function is defined by:
A(x) = e−(

x−a
σ )2

(x ∈ X, σ > 0),
where X is the set of real numbers, and the set of NFNs is denoted as Ñ.

The neutrosophic number (NN) and single-valued neutrosophic number (SVNN) were proposed
in 1995 and 2005.

Definition 2. [3] Let X be a universe of discourse, with a generic element in X denoted by x. An NN A in X is
A(x) = 〈x|(TA(x), IA(x), FA(x))〉,

where TA(x) denotes the truth-membership function, IA(x) denotes the indeterminacy-membership function,
and FA(x) denotes the falsity-membership function. TA(x),IA(x), and FA(x) are real standard or nonstandard
subsets of ]−0, 1+[.

There is no limitation on the sum of TA(x), IA(x), and FA(x), so −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 3. [23] Let X be a universe of discourse, with a generic element in X denoted by x. An SVNN A in
X is depicted by the following:

A(x) = 〈x|(TA(x), IA(x), FA(x))〉,
where TA(x) denotes the truth-membership function, IA(x) denotes the indeterminacy-membership function,
and FA(x) denotes the falsity-membership function. For each point x in X, we have TA(x), IA(x), FA(x) ∈ [0, 1]
and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Based on NFN and NN, Liu (2017) defined the normal neutrosophic number (NNN).

Definition 4. [6] Let X be a universe of discourse, with a generic element in X denoted by x, and (a, σ) ∈ Ñ;
then, an NNN A in X is expressed as:

A(x) = 〈x|(a, σ), (TA(x), IA(x), FA(x))〉 , x ∈ X,
where the truth-membership function TA(x) satisfies:

TA(x) = TAe−(
x−a

σ )2
, x ∈ X,

where the indeterminacy-membership function IA(x) satisfies:
IA(x) = 1− (1− IA)e−(

x−a
σ )2

, x ∈ X,
where the falsity-membership function FA(x) satisfies:

FA(x) = 1− (1− FA)e−(
x−a

σ )2
, x ∈ X.

For each point x in X, we have TA(x), IA(x), FA(x) ∈ [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
Then, we denote ã = 〈(a, σ), (T, I, F)〉 as an NNN.

Some operational laws are shown in the following.

Definition 5. [6] Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNs; then, the
operational rules are defined as follows:
(1) ã1

⊕
ã2 =

〈
(a1 + a2, σ1 + σ2), (T1 + T2 − T1T2, I1 I2, F1F2)

〉
;

(2) ã1
⊗

ã2 =
〈(

a1a2, a1a2

√
σ2

1
a2

1
+

σ2
2

a2
2

)
, (T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2)

〉
;

(3) λã1 =
〈
(λa1, λσ1), (1− (1− T1)

λ, Iλ
1 , Fλ

1 )
〉
(λ > 0);

(4) ãλ
1 =

〈
(aλ

1 , λ
1
2 aλ−1

1 σ1), (Tλ
1 , 1− (1− I1)

λ, 1− (1− F1)
λ)
〉
(λ > 0).
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Theorem 1. [6] Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNs, and
η, η1, η2 > 0; then, we have
(1) ã1

⊕
ã2 = ã2

⊕
ã1;

(2) ã1
⊗

ã2 = ã2
⊗

ã1;
(3) η(ã1

⊕
ã2) = η ã1

⊕
η ã2;

(4) η1 ã1
⊕

η2 ã1 = (η1 + η2)ã1;
(5) ãη

1
⊗

ãη
2 = (ã1

⊗
ã2)

η ;
(6) ãη1

1
⊗

ãη2
1 = ãη1+η2

1 .

Liu (2017) proposed the score function and accuracy function for an NNN.

Definition 6. [41] Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 be an NNN, then its score function is
s1(ãk) = ak(2 + Tk − Ik − Fk),
s2(ãk) = σk(2 + Tk − Ik − Fk);

and its accuracy function is
h1(ãk) = ak(2 + Tk − Ik + Fk),
h2(ãk) = σk(2 + Tk − Ik + Fk).

Zhang et al. (2017) proposed the dual generalized weighted Bonferroni mean (DGWBM) operator
and dual generalized weighted geometric Bonferroni mean (DGWGBM) operator.

Definition 7. [44] Let ai(i = 1, 2, ..., n) be a collection of nonnegative crisp numbers with the weight ω =

(ω1, ω2, ..., ωn)T , ωi ∈ [0, 1](i = 1, 2, ..., n) and ∑n
i=1 ωi = 1. If

DGWBMR(a1, a2, ..., an) =

(
n
∑

i1,i2,...,in=1

(
n
∏
j=1

ωij a
rj
ij

))1/ ∑n
j=1 rj

,

where R = (r1, r2, ..., rn)T is the parameter vector with rj ≥ 0 (i = 1, 2, ..., n).

Definition 8. [44] Let ai(i = 1, 2, ..., n) be a collection of nonnegative crisp numbers with the weight ω =

(ω1, ω2, ..., ωn)T , where ωi ∈ [0, 1] (i = 1, 2, ..., n) and ∑n
i=1 ωi = 1. if

DGWBMR(a1, a2, ..., an) =
1

∑n
j=1 rj

(
n
∏

i1,i2,...,in

(
n
∑

j=1

(
rjaij

)))∏n
j=1 ωij

,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0 (i = 1, 2, ..., n).

3. Main Results

3.1. Ranking of Nonnegative Normal Neutrosophic Number

Liu and Li (2017) [6] introduced the concept of the score function s1 and s2, and the accuracy
function h1 and h2, as shown in Definition 6. We found some deficiencies with the ranking of these
functions, as shown below.

Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNs. When T1 < T2, I1 > I2, F1 > F2,
a1 ≤ a2, and σ1 ≥ σ2:

(1) If ak > 0 or ak < 0, then ranking results may be completely opposite;
(2) When s1 can determine the ranking result of ak, the influence of σk is not considered;
(3) Neither the score function nor the accuracy function satisfy the monotonicity.

We use the following example to illustrate problems (1) and (3) mentioned above.

Example 1. Let ã1 and ã2 be two NNNs, where the specific values are as shown in Table 1. According to
s1(ãk) = ak(2 + Tk − Ik − Fk),
s2(ãk) = σk(2 + Tk − Ik − Fk),
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h1(ãk) = ak(2 + Tk − Ik + Fk),
h2(ãk) = σk(2 + Tk − Ik + Fk),

we can get its score function and accuracy function from Table 1. For number 1,
s1(ã1) = 1× (2 + 0.5− 0.2− 0.2) = 2.1, s1(ã2) = 2× (2 + 0.6− 0.1− 0.1) = 4.8,

by 2.1 < 4.8, we have ã1 < ã2. For number 2,
s1(ã1) = (−1)× (2 + 0.5− 0.2− 0.2) = −2.1, s1(ã2) = (−0.95)× (2 + 0.6− 0.1− 0.1) = −2.28,

by −2.1 > −2.28, we have ã1 > ã2 for the numerical results, which are shown in Table 2.
From Table 2, when T1 < T2, I1 > I2, F1 > F2, a1 ≤ a2, and σ1 ≥ σ2 are satisfied, we can intuitively see

that the score function and accuracy function will be ranked differently if different values are taken. For example,
the number 1 satisfies 0.5 < 0.6, 0.2 > 0.1, 0.2 > 0.1, 1 < 2, 0.3 > 0.1; the number 2 satisfies 0.5 < 0.6, 0.2 > 0.1,
0.2 > 0.1, −1 < −0.95, 0.2 > 0.1. However, their ranking results are completely different. The ranking results of
numbers 2, 4, 6, 8 in Table 2 are counterintuitive. For example, the number 2 satisfies 0.5 < 0.6, 0.2 > 0.1, 0.2 >
0.1, −1 < −0.95, 0.2 > 0.1, and the ranking result are ã1 > ã2. However, intuitively, ã2 should be ranked first.

Table 1. The numerical example.

Number ã1 ã2

1 〈(1, 0.3), (0.5, 0.2, 0.2)〉 〈(2, 0.1), (0.6, 0.1, 0.1)〉
2 〈(−1, 0.2), (0.5, 0.2, 0.2)〉 〈(−0.95, 0.1), (0.6, 0.1, 0.1)〉
3 〈(2, 0.4), (0.6, 0.2, 0.3)〉 〈(2.5, 0.2), (0.7, 0.1, 0.1)〉
4 〈(2, 0.4), (0.6, 0.2, 1)〉 〈(2.5, 0.2), (0.7, 0.1, 0.1)〉
5 〈(0, 1), (0.6, 0.3, 0.2)〉 〈(0, 0.5), (0.7, 0.05, 0.05)〉
6 〈(0, 1), (0.6, 0.3, 0.2)〉 〈(0, 0.9), (0.7, 0.05, 0.05)〉
7 〈(2, 2), (0.6, 0.8, 0.2)〉 〈(2, 1), (0.7, 0, 0.1)〉
8 〈(2, 2), (0.6, 0.8, 0.2)〉 〈(2, 1.5), (0.7, 0, 0.1)〉

Table 2. The score function and accuracy function of the numerical example.

Number s1(ã1) s1(ã2) h1(ã1) h1(ã2) s2(ã1) s2(ã2) h2(ã1) h2(ã2) Ranking

1 2.1 4.8 - - - - - - ã1 < ã2
2 −2.1 −2.28 - - - - - - ã1 > ã2
3 - - 5.4 6.75 - - - - ã1 < ã2
4 - - 6.8 6.75 - - - - ã1 > ã2
5 - - - - 2.1 1.3 - - ã1 < ã2
6 - - - - 2.1 2.34 - - ã1 > ã2
7 - - - - - - 4 2.8 ã1 < ã2
8 - - - - - - 4 4.2 ã1 > ã2

In order to avoid the disadvantages of the ranking, we propose the nonnegative normal
neutrosophic number (NNNN). Additionally, we take σ into account and introduce the score function
and accuracy function of the NNNN.

Definition 9. A(x) =
〈

x|(a, σ), (TA(x), IA(x), FA(x))
〉

is an NNNN if it has satisfied Definition 4 and
a ≥ 0.

Based on the NNNN, the new score function S and accuracy function H are proposed.

Definition 10. Suppose ã = 〈(a, σ), (T, I, F)〉 is an NNNN, then its score function is
S(ã) = (a + 1

σ )(2 + T − I − F);
and its accuracy function is

H(ã) = (a + 1
σ )(1 + T − F).

According to the score function and accuracy function, the following propositions are derived.
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Proposition 1. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then the following conclusions
are obtained.
(1) If a1 ≤ a2, σ1 ≥ σ2, T1 < T2 and I1 > I2 and F1 > F2, then S(ã1) < S(ã2);
(2) If a1 ≤ a2,σ1 ≥ σ2,T1 < T2, and F1 > F2, then H(ã1) < H(ã2).

Therefore, we have the following ranking principles.

Definition 11. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then we have the following
method for ranking an NNNN:
(1) If S(ã1) < S(ã2), then ã1 < ã2;
(2) If S(ã1) = S(ã2), then

(a) If H(ã1) < H(ã2), then ã1 < ã2;
(b) If H(ã1) = H(ã2), then ã1 ∼ ã2.

We introduce some operational laws as follows:

Definition 12. Let ãk = 〈(ak, σk), (Tk, Ik, Fk)〉 (k = 1, 2) be any two NNNNs, then the operational rules are
defined as follows:
(1) ã1

⊗̂
ã2 =

〈
(a1a2, σ1σ2), (T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2)

〉
;

(2) ã∗λ1 =
〈
(aλ

1 , σλ
1 ), (T

λ
1 , 1− (1− I1)

λ, 1− (1− F1)
λ)
〉
(λ > 0).

Moreover, the relations of the operational laws are given as below, and these properties are obvious.

Proposition 2. Let ã1 = 〈(a1, σ1), (T1, I1, F1)〉 and ã2 = 〈(a2, σ2), (T2, I2, F2)〉 be two NNNNs, and
η, η1, η2 > 0; then
(1) ã1

⊗̂
ã2 = ã2

⊗̂
ã1;

(2) ã∗η1
⊗̂

ã∗η2 = (ã1
⊗̂

ã2)
∗η ;

(3) ã∗η1
1
⊗̂

ã∗η2
1 = ã∗(η1+η2)

1 .

3.2. DGNNNWBM Operator and DGNNNWGBM Operator

This section extends the DGWBM and DGWGBM to NNNN, and proposes the dual
generalized nonnegative normal neutrosophic weighted Bonferroni mean (DGNNNWBM) operator
and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean
(DGNNNWGBM) operator.

Definition 13. Suppose {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} is a set of NNNNs, with their weight
vector being ωi = (ω1, ω2, ..., ωn)T , where ωi ∈ [0, 1] and ∑n

i=1 ωi = 1. The DGNNNWBM operator is
defined as

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij ã

∗rj
ij

))∗1/ ∑n
j=1 rj

,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

The DGNNNWBM operator can consider the relationship between any elements. Here are some
special cases of it.

Remark 1. If R = (λ, 0, 0, ..., 0)T , that is, consider the relationship of a single element, then the DGNNNWBM
reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i=1
λãi

)∗ 1
λ

,

which is called a generalized nonnegative normal neutrosophic weighted averaging (GNNNWA) operator.
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If R = (s, t, 0, 0, ..., 0)T , that is, consider the relationship between any two elements, then the
DGNNNWBM reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i,j=1

(
ωi ã∗si

⊗̂
ωj ã∗tj

))∗ 1
s+t

,

which is the nonnegative normal neutrosophic weighted Bonferroni mean(NNNWBM) operator.
If R = (s, t, r, 0, 0, ..., 0)T , that is, consider the relationship between any three elements, then the

DGNNNWBM reduces to:

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

(
n⊕

i,j,k=1

(
ωi ã∗si

⊗̂
ωj ã∗tj

⊗̂
ωk ã∗rk

))∗ 1
s+t+r

,

which is called a generalized nonnegative normal neutrosophic weighted Bonferroni mean (GNNNWBM) operator.

Theorem 2. Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs, then the aggregated result
of the DGNNNWBM is also an NNNN and

DGNNNWBMR
ω(ã1, ã2, ..., ãn) =

〈
(a, σ), (T, I, F)

〉
,

where

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)) 1
∑n

j=1 rj ,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

)) 1
∑n

j=1 rj ,

T =
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))) 1

∑n
j=1 rj ,

I = 1−
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))) 1
∑n

j=1 rj ,

F = 1−
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))) 1
∑n

j=1 rj .

Proof. By Definition 5 and 12, we have

ã
∗rj
ij

=
〈(

a
rj
ij

, σ
rj
ij

)
,
(

T
rj
ij

, 1−
(
1− Iij

)rj , 1−
(
1− Fij

)rj
)〉

,
and
ωij ã

∗rj

ij
=
〈(

ωij a
rj

ij
, ωij σ

rj

ij

)
,
(

1− (1− T
rj

ij
)

ωij , (1− (1− Iij )
rj )

ωij , (1− (1− Fij )
rj )

ωij
)〉

,
so⊗̂n

j=1ωij ã
∗rj

ij
=〈(

n
∏
j=1

ωij a
rj
ij

,
n
∏
j=1

ωij σ
rj
ij

)
,

(
n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,

n
∑

j=1
(1− (1− Iij)

rj)
ωij −

n
∏
j=1

(1− (1− Iij)
rj)

ωij ,
n
∑

j=1
(1− (1− Fij)

rj)
ωij −

n
∏
j=1

(1− (1− Fij)
rj)

ωij

)〉

=

〈(
n
∏
j=1

ωij a
rj
ij

,
n
∏
j=1

ωij σ
rj
ij

)
,

(
n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,

1−
n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

)
, 1−

n
∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))〉
,

then
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij ã

∗rj
ij

)
=

〈(
n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)
,

n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))
,(

n
∑

i1,i2,...,in=1

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)
−

n
∏

i1,i2,...,in=1

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
)

,
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n
∏

i1,i2,...in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))
,

n
∏

i1,i2,...in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

)))〉
,

=

〈(
n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)
,

n
∑

i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))
,

(
1−

n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))

,

n
∏

i1,i2,...in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))
,

n
∏

i1,i2,...in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

)))〉
,

Let

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

)) 1
∑n

j=1 rj ,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

)) 1
∑n

j=1 rj ,

T =
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
ij

)ωij
))) 1

∑n
j=1 rj ,

I = 1−
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Iij

)rj
)ωij

))) 1
∑n

j=1 rj ,

F = 1−
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1−

(
1− Fij

)rj
)ωij

))) 1
∑n

j=1 rj .

thus (
n⊕

i1,i2,...,in=1

(⊗̂n
j=1ωij a

∗rj
ij

))∗1/ ∑n
j=1 rj

=
〈
(a, σ), (T, I, F)

〉
.

Thereafter
a ≥ 0, σ > 0, 0 ≤ T ≤ 1, 0 ≤ I ≤ 1, 0 ≤ F ≤ 1.

Hence
0 ≤ T + I + F ≤ 3.

which completes the proof.

The following example is used to explain the calculation of the DGNNNWBM operator.

Example 2. Let ã1 =
〈
(0.7, 0.01), (0.6, 0.2, 0.1)

〉
, ã2 =

〈
(0.4, 0.02), (0.8, 0.1, 0.3)

〉
be two NNNNs. With the

weighted vector ω = (0.7, 0.3)T , and the parameter vector R = (2, 3)T , then, according to Theorem 2, we have

a = (
2
∑

ii ,i2=1
(ωi1 ωi2))

1
2+3

= (ω1a
r1ω1ar2

1
1 + ω1ar1ω2ar2

2
1 + ω2a

r1ω1ar2
1

2 + ω2ar1ω2ar2
2

2 )
1
5

= (0.7× 0.72 × 0.7× 0.73 + 0.7× 0.72 × 0.3× 0.43 + 0.3× 0.42 × 0.7× 0.73 + 0.3× 0.42 × 0.3× 0.43)
1
5

= 0.6327
Similarly, we can obtain σ = 0.0143.

T =
(

1−
2

∏
ii ,i2=1

(1− (1− (1− Tr1
i1
)ωi1 )(1− (1− Tr2

i2
)ωi2 ))

) 1
2+3

= (1− (1− (1− (1− Tr1
1 )ω1)(1− (1− Tr2

1 )ω1))(1− (1− (1− Tr1
1 )ω1)(1− (1− Tr2

2 )ω2))(1− (1− (1−
Tr1

2 )ω2)(1− (1− Tr2
1 )ω1))(1− (1− (1− Tr1

2 )ω2)(1− (1− Tr2
2 )ω2)))

1
5

= (1− (1− (1− (1− 0.62)0.7)(1− (1− 0.63)0.7))× (1− (1− (1− 0.62)0.7)(1− (1− 0.83)0.3))× (1−
(1− (1− 0.82)0.3)(1− (1− 0.63)0.7))× (1− (1− (1− 0.82)0.3)(1− (1− 0.83)0.4)))

1
5

= 0.64

I = 1− (1−
2

∏
ii ,i2=1

(1− (1− (1− (1− Ii1)
r1)ωi1 )(1− (1− (1− Ii2)

r2)ωi2 )))
1

2+3

= 1− (1− (1− (1− (1− (1− I1)
r1)ω1)(1− (1− (1− I1)

r2)ω1))(1− (1− (1− (1− I1)
r1)ω1)(1− (1−

(1− I2)
r2)ω2))(1− (1− (1− (1− I2)

r1)ω2)(1− (1− (1− I1)
r2)ω1))(1− (1− (1− (1− I2)

r1)ω2)(1−
(1− (1− I2)

r2)ω2)))
1
5
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= 1− (1− (1− (1− (1− (1− 0.2)2)0.7)(1− (1− (1− 0.2)3)0.7))(1− (1− (1− (1− 0.2)2)0.7)(1− (1−
(1− 0.1)3)0.3))(1− (1− (1− (1− 0.1)2)0.3)(1− (1− (1− 0.2)3)0.7))(1− (1− (1− (1− 0.1)2)0.3)(1−
(1− (1− 0.1)3)0.3)))

1
5

= 0.1265
Similarly, we can obtain F = 0.1195.
So, DGNNNWBMR

ω(ã1, ã2) =
〈
(0.6327, 0.0143), (0.64, 0.1265, 0.1195)

〉
Next, we discuss some properties of the DGNNNWBM operator.

Theorem 3. (Monotonicity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} and {b̃i|b̃i =
〈
(bi, δi),

(Tbi
, Ibi

, Fbi
)
〉
, i = 1, 2, ..., n} be two sets of NNNNs. If ai ≤ bi, σi ≥ δi and Tai < Tbi

and Iai > Ibi

and Fai > Fbi
hold for all i, then

DGNNNWBMR
ω(ã1, ã2, ..., ãn) < DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n),
where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

Proof. Let
DGNNNWBMR

ω(ã1, ã2, ..., ãn) = 〈(a, σ), (Ta, Ia, Fa)〉,
DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n) = 〈(b, δ), (Tb, Ib, Fb)〉.
According to the DGNNNWBM operator, we have

a =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij a
rj
ij

))1/ ∑n
j=1 rj

, b =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij b
rj
ij

))1/ ∑n
j=1 rj

,

σ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij σ
rj
ij

))1/ ∑n
j=1 rj

, δ =
( n

∑
i1,i2,...,in=1

( n
∏
j=1

ωij δ
rj
ij

))1/ ∑n
j=1 rj

.

By ai ≤ bi, σi ≥ δi we get a ≤ b, σ ≥ δ.
Let

Ta =

(
1−

n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
aij

)ωij
))) 1

∑n
j=1 rj

,

Tb =

(
1−

n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
bij

)ωij
))) 1

∑n
j=1 rj

when Tai < Tbi
, we can obtain

(1− T
rj
aij
)

ωij > (1− T
rj
bij
)

ωij ,

and
1− (1− T

rj
aij
)

ωij < 1− (1− T
rj
bij
)

ωij ,

therefore
1−

n
∏
j=1

(
1−

(
1− T

rj
aij

)ωij
)
> 1−

n
∏
j=1

(
1−

(
1− T

rj
bij

)ωij
)

,

thus

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
aij

)ωij
))

< 1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1−

(
1− T

rj
bij

)ωij
))

,

then Ta < Tb.
Similarly, we can obtain Ia > Ib and Fa > Fb.
According to Definition 11,

S(DGNNNWBMR
ω(ã1, ã2, ..., ãn)) = (a + 1

σ )(2 + Ta − Ia − Fa)

< (b + 1
δ )(2 + Tb − Ib − Fb) = S(DGNNNWBMR

ω(b̃1, b̃2, ..., b̃n)).
Therefore, the proof is completed.

Remark 2. If ai ≤ bi, σi ≥ δi, Tai ≤ Tbi
, Iai ≥ Ibi

, Fai ≥ Fbi
and (Tai −Tbi

)2 +(Iai − Ibi
)2 +(Fai − Fbi

)2 6= 0
hold for any i, Theorem 3 is still holds.
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Theorem 4. (Boundedness) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs.
If a+ =

〈
(maxi(ai), mini(σi)), (maxi(Ti), mini(Ii), mini(Fi)

〉
=
〈
(a+i , σ+

i ), (T+
ai

, I+ai
, F+

ai
)
〉

and a− =〈
(mini(ai), maxi(σi)), (mini(Ti), maxi(Ii), maxi(Fi)

〉
=
〈
(a−i , σ−i ), (T−ai

, I−ai
, F−ai

)
〉
, then

DGNNNWBMR
ω(ã−, ã−, ..., ã−) ≤ DGNNNWBMR

ω(ã1, ã2, ..., ãn) ≤ DGNNNWBMR
ω(ã+, ã+, ..., ã+).

Proof. By a−i ≤ ai ≤ a+i , σ+
i ≤ σi ≤ σ−i , T−i ≤ Ti ≤ T+

i , I+i ≤ Ii ≤ I−i , F+
i ≤ Fi ≤ F−i , according to

Theorem 3 and Remark 2, we get
DGNNNWBMR

ω(ã−, ã−, ..., ã−) ≤ DGNNNWBMR
ω(ã1, ã2, ..., ãn) ≤ DGNNNWBMR

ω(ã+, ã+, ..., ã+).

Theorem 5. (Commutativity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If ã′i is
any permutation of ãi, then

DGNNNWBMR
ω(ã1, ã2, ..., ãn) = DGNNNWBMR

ω(ã′1, ã′2, ..., ã′n).

Unfortunately, the DGNNNWBM operator is not satisfied with idempotency, i.e.,
DGNNNWBMR

ω(ã, ã, ..., ã) 6= a.

Example 3. Let ã = 〈(4, 0.2), (0.8, 0.2, 0.3)〉 be an NNNN. The weighted vector ω = (0.25, 0.25, 0.25, 0.25)T ,
and the parameter vector R = (2, 2, 2, 2)T , if all ãi = ã(i = 1, 2, 3, 4). Similar to Example 2, the following
results can be obtained

DGNNNWBMR
ω(ã, ã, ã, ã) = 〈(4, 0.2), (0.9886, 0.0114, 0.0886)〉 6= ã.

Furthermore, we extend the DGWBGM to NNNNs and propose the dual generalized nonnegative
normal neutrosophic weighted geometric Bonferroni mean (DGNNNWGBM) operator.

Definition 14. Suppose {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} is a set of NNNNs with their weight
vector being ωi = (ω1, ω2, ..., ωn)T , where ωi ∈ [0, 1] and ∑n

i=1 ωi = 1. The DGNNNWGBM operator is
defined as

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
∑n

j=1 rj

(⊗̂n
i1,i2,...in=1

( n⊕
j=1

(rj ãij)
)∗∏n

j=1 ωij

)
,

where R = (r1, r2, ..., rn)T is the parameter vector with ri ≥ 0(i = 1, 2, ..., n).

The DGNNNWGBM operator can consider the relationship between any elements. Here are some
special cases of it.

Remark 3. If R = (λ, 0, 0, ..., 0)T , that is, consider the relationship of a single element, then the
DGNNNWGBM reduces to:

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
λ

(⊗̂n
i=1

(
λãi

)∗ωi

)
which is called a generalized nonnegative normal neutrosophic weighted geometric averaging
(GNNNWGA) operator.

If R = (s, t, 0, 0, ..., 0)T , that is, consider the relationship between any two elements, then the
DGNNNWGBM reduces to:

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

1
s+t
⊗̂n

i,j=1

(
sãi
⊕

tãj

)∗ωiωj

which is called a nonnegative normal neutrosophic weighted Bonferroni geometric (NNNWBG) operator.
If R = (s, t, r, 0, 0, ..., 0)T , that is, consider the relationship between any three elements, then the

DGNNNWGBM reduces to:
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) =
1

s+t+r
⊗̂n

i,j,k=1

(
sãi
⊕

tãj
⊕

tãk

)∗ωiωjωk

which is called a generalized nonnegative normal neutrosophic weighted Bonferroni geometric
(GNNNWBG) operator.
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Theorem 6. Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs, then the aggregated result
of DGNNNWGBM is also an NNNN and

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) =

〈
(â, σ̂), (T̂, Î, F̂)

〉
,

where

â = 1
∑n

j=1 rj

n
∏

i1,i2,...in=1

( n
∑

j=1
(rjaij)

)∏n
j=1 ωij ,

σ̂ = 1
∑n

j=1 rj

n
∏

i1,i2,...in=1

( n
∑

j=1
(rjσij)

)∏n
j=1 ωij ,

T̂ = 1−
(

1−
n
∏

i1,i2,...,in=1

(
1−

n
∏
j=1

(
1− Tij

)rj
)∏n

j=1 ωij
) 1

∑n
j=1 rj ,

Î =
(

1−
n
∏

i1,i2,...,in=1

((
1−

n
∏
j=1

I
rj
ij

)∏n
j=1 ωij

)) 1
∑n

j=1 rj ,

F̂ =
(

1−
n
∏

i1,i2,...,in=1

((
1−

n
∏
j=1

F
rj
ij

)∏n
j=1 ωij

)) 1
∑n

j=1 rj .

The proof of Theorem 6 is similar to that of Theorem 2.
Likewise, an example is used to explain the calculation of the DGNNNWGBM operator.

Example 4. Let ã1 =
〈
(0.5, 0.03), (0.5, 0.4, 0.1)

〉
, ã2 =

〈
(0.8, 0.015), (0.9, 0.2, 0.2)

〉
be two NNNNs.

The weighted vector ω = (0.6, 0.4)T, and the parameter vector R = (3, 4)T, then, according to Theorem 6,
we have

â = 1
3+4

2
∏

i1,i2=1
(r1ai1 + r2ai2)

ωi1
ωi2

= 1
7 (r1a1 + r2a1)

ω1ω1(r1a1 + r2a2)
ω1ω2(r1a2 + r2a1)

ω2ω1(r1a2 + r2a2)
ω2ω2

= 1
7 (3× 0.5 + 4× 0.5)0.6×0.6(3× 0.5 + 4× 0.8)0.6×0.4(3× 0.8 + 4× 0.5)0.4×0.6(3× 0.8 + 4× 0.8)0.4×0.4

= 0.6112
Similarly, we can obtain σ̂ = 0.0234.

T̂ = 1− (1−
2

∏
i1,i2=1

(1− (1− Ti1)
r1(1− Ti2)

r2)ωi1
ωi2 )

1
3+4

= 1 − (1 − (1 − (1 − T1)
r1(1 − T1)

r2)ω1ω1(1 − (1 − T1)
r1(1 − T2)

r2)ω1ω2(1 − (1 − T2)
r1(1 −

T1)
r2)ω2ω1(1− (1− T2)

r1(1− T2)
r2)ω2ω2)

1
7

= 1− (1− (1− (1− 0.5)3(1− 0.5)4)0.6×0.6 × (1− (1− 0.5)3(1− 0.9)4)0.6×0.4 × (1− (1− 0.9)3(1−
0.5)4)0.4×0.6(1− (1− 0.9)3(1− 0.9)4)0.4×0.4)

1
7

= 0.5674

Î = (1−
2

∏
i1,i2=1

(1− Ir1
i1

Ir2
i2
)ωi1

ωi2 )
1

3+4

= (1− (1− Ir1
1 Ir2

1 )ω1ω1(1− Ir1
1 Ir2

2 )ω1ω2(1− Ir1
2 Ir2

1 )ω2ω1(1− Ir1
2 Ir2

2 )ω2ω2)
1
7

= (1− (1− 0.43 × 0.44)0.6×0.6(1− 0.43 × 0.24)0.6×0.4(1− 0.23 × 0.44)0.4×0.6(1− 0.23 × 0.24)0.4×0.4)
1
7

= 0.3517
Similarly, we can obtain Î = 0.1598.
So, DGNNNWGBMR

ω(ã1, ã2) = 〈(0.6112, 0.0234), (0.5674, 0.3517, 0.1598)〉 .

The DGNNNWGBM operator has the same properties as the DGNNNWBM operator. The proof
is also similar to that of the DGNNNWBM operator. Of particular note, the DGNNNWGBM operator
satisfies the property of idempotency.

Theorem 7. (Idempotency) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If all
ãi = ã, then

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) = ã.
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Proof. Since ãi = ã(i = 1, 2, ..., n), according to operational rules,
DGNNNWGBMR

ω(ã1, ã2, ..., ãn)

= 1
∑n

j=1 rj

(⊗̂n
i1,i2,...in=1

( n⊕
j=1

(rj ãij)
)∗∏n

j=1 ωij

)

= 1
∑n

j=1 rj

(⊗̂n
i1,i2,...,in=1

(
n
∑

j=1
rj ã

)∗∏n
j=1 ωij

)

= 1
∑n

j=1 rj

(
n
∑

j=1
rj ã

)∗ n
∑

i1,i2,...,in=1

n
∏
j=1

ωij

Here,
n
∑

i1,i2,...,in=1

m
∏
j=1

ωij = 1 is proved by mathematical induction.

When m = 2, we have
n
∑

i1,i2=1
ωi1 ωi2 =

n
∑

i1=1
ωi1

n
∑

i2=1
ωi2 = 1.

Suppose m = k− 1, and
n
∑

i1,i2,...,ik−1=1

k−1
∏
j=1

ωij = 1,

so when m = k, we get
n
∑

i1,i2,...,ik=1

k
∏
j=1

ωij =
n
∑

i1,i2,...,ik=1

k−1
∏
j=1

ωij ωik =
n
∑

i1,i2,...,ik−1=1

k−1
∏
j=1

ωij

k
∑

ik=1
ωik = 1.

Then
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) = ã.
That completes the proof.

Theorem 8. (Monotonicity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} and {b̃i|b̃i =
〈
(bi, δi),

(Tbi
, Ibi

, Fbi
)
〉
, i = 1, 2, ..., n} be two sets of NNNNs. If ai ≤ bi, σi ≥ δi, Tai ≤ Tbi

, Iai ≥ Ibi
, Fai ≥ Fbi

, and
(Tai − Tbi

)2 + (Iai − Ibi
)2 + (Fai − Fbi

)2 6= 0 hold for any i, then
DGNNNWGBMR

ω(ã1, ã2, ..., ãn) < DGNNNWGBMR
ω(b̃1, b̃2, ..., b̃n).

Theorem 9. (Boundedness) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. If ã+ =

〈(maxi(ai), mini(σi)), (maxi(Ti), mini(Ii), mini(Fi)〉 and ã− =
〈
(mini(ai), maxi(σi)), (mini(Ti), maxi(Ii),

maxi(Fi)
〉
, then

ã− ≤ DGNNNWGBMR
ω(ã1, ã2, ..., ãn) ≤ ã+

Theorem 10. (Commutativity) Let {ãi|ãi = 〈(ai, σi), (Ti, Ii, Fi)〉 , i = 1, 2, ..., n} be a set of NNNNs. ã′i is any
permutation of ãi, then

DGNNNWGBMR
ω(ã1, ã2, ..., ãn) = DGNNNWGBMR

ω(ã′1, ã′2, ..., ã′n).

4. A Multiple Attribute Decision-Making Method on the Basis of the DGNNNWBM Operator
and DGNNNWGBM Operator

In this section, based on the NNNN, we utilize the DGNNNWBM operator or DGNNNWGBM
operator to solve the MADM problem.

Let A = {A1, A2, ..., Am} be a set of the alternatives, and C = {C1, C2, ..., Cn} be a set of the
attributes; the weight vector of the attribute is ω = (ω1, ω2, ..., ωn)T , where ωj ∈ [0, 1] and ∑n

j=1 ωj = 1.
Let D = (ãij)m×n be the decision matrix, and ãij =

〈
(aij, σij), (Tij, Iij, Fij)

〉
be the evaluation value of

the alternative Ai with respect to attribute Cj, denoted by the form of NNNN.
The DGNNNWBM operator or DGNNNWGBM operator can be used to handle the MADM

problem, and the steps are shown as follows:

Step 1. Standardize the decision matrix.
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If all the attributes Ci are of the same type, then the attribute values do not need standardization.
If there is a different type, the attributes should be converted so they are of the same type. Suppose the
decision matrix D = (ãij)m×n transforms to the standardized matrix D̃ = (ã′ij)m×n.

According to [6], we have the following standardization method. For the benefit attribute:

ã′ij =
〈( aij

max1≤i≤m(aij)
,

σij
max1≤i≤m(σij)

σij
aij

)
,
(
Tij, Iij, Fij

)〉
.

For the cost attribute:
ã′ij =

〈(min1≤i≤m(aij)
aij

,
σij

max1≤i≤m(σij)

σij
aij

)
,
(

Fij, 1− Iij, Tij
)〉

.

Step 2. Utilize the DGNNNWBM operator

ãi = DGNNNWBMR
ω(ãi1, ãi2, ..., ãin) =

〈
(ai, σi), (Ti, Ii, Fi)

〉
or the DGNNNWGBM operator

ãi = DGNNNWGBMR
ω(ãi1, ãi2, ..., ãin) = 〈(ai, σi), (Ti, Ii, Fi)〉

for comprehensive evaluation.

Step 3. According to rank principles, which are shown in Definitions 10 and 11, rank the alternatives
A1, A2, ..., Am and choose the best one.

5. Numerical Example and Comparative Analysis

In this section, the effectiveness of the proposed MADM method is illustrated, demonstrating the
effect of different parameter values on the final ranking results. Finally, the advantages of the proposed
method are illustrated by comparison.

5.1. The Numerical Example

In the following, the application of the proposed method is illustrated by a numerical example.

Example 5. Patients choose a hospital according to their own needs. There are five alternatives hospitals to
choose from: (1) A1 is a people’s hospital; (2) A2 is a city hospital; (3) A3 is a second city hospital; (4) A4 is the
first affiliated hospital; and (5) A5 is the second affiliated hospital. There are four evaluation attributes: (1) C1 is
the hardware and software facilities; (2) C2 is the physician team; (3) C3 is the consumption index; and (4) C4 is
the service quality. We know the attributes C1,C2, and C4 are benefit criteria, and C3 is cost. The weight vector
of the attributes is ω = (0.2, 0.4, 0.3, 0.1)T . The final evaluation outcomes are expressed by the NNNN, which
is shown in Table 3.

Table 3. The nonnegative normal neutrosophic decision matrix D.

C1 C2 C3 C4

A1 〈(4, 0.3), (0.7, 0.2, 0.3)〉 〈(7, 0.7), (0.6, 0.1, 0.1)〉 〈(5.5, 0.6), (0.3, 0.3, 0.6)〉 〈(6, 0.4), (0.7, 0.2, 0.4)〉
A2 〈(5, 0.2), (0.5, 0.4, 0.5)〉 〈(8, 0.5), (0.7, 0.2, 0.3)〉 〈(6, 0.2), (0.2, 0.1, 0.7)〉 〈(7, 0.6), (0.4, 0.2, 0.7)〉
A3 〈(3, 0.5), (0.3, 0.3, 0.4)〉 〈(6, 0.2), (0.4, 0.5, 0.3)〉 〈(4, 0.7), (0.3, 0.5, 0.5)〉 〈(5.5, 0.4), (0.5, 0.4, 0.2)〉
A4 〈(4.5, 0.6), (0.3, 0.5, 0.3)〉 〈(5, 0.4), (0.6, 0.4, 0.5)〉 〈(7, 0.4), (0.3, 0.3, 0.5)〉 〈(4, 0.5), (0.8, 0.2, 0.5)〉
A5 〈(6, 0.5), (0.8, 0.1, 0.2)〉 〈(6.5, 0.6), (0.8, 0.2, 0.4)〉 〈(5, 0.3), (0.4, 0.2, 0.6)〉 〈(5, 0.6), (0.5, 0.5, 0.2)〉

Step 1. Since C1,C2, and C4 are benefit attributes, we have
a′11 = a11

max1≤i≤5ai1
= 4

6 = 0.6667, σ′11 = σ11
max1≤i≤5σi1

σ11
a11

= 0.3
0.6

0.3
4 = 0.0375, T′11 = T11, I′11 = I11, I′11 = I11,

and C3 is the cost attribute, so we have
a′13 =

min1≤i≤5
a13

= 4
5.5 = 0.7273, σ13 = σ13

max1≤i≤5σi1

σ13
a13

= 0.6
0.7

0.6
5.5 = 0.0935,

T′13 = F13 = 0.6, I′13 = 1− I13 = 0.7, F′13 = T13 = 0.3. .
The normalized decision matrix is shown in Table 4.
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Table 4. Normalized decision matrix D̃.

C1 C2

A1 〈(0.6667, 0.0375), (0.7, 0.2, 0.3)〉 〈(0.85, 0.1), (0.6, 0.1, 0.1)〉
A2 〈(0.8333, 0.0133), (0.5, 0.4, 0.5)〉 〈(1, 0.0446), (0.7, 0.2, 0.3)〉
A3 〈(0.5, 0.1389), (0.3, 0.3, 0.4)〉 〈(0.75, 0.0095), (0.4, 0.5, 0.3)〉
A4 〈(0.75, 0.1333), (0.3, 0.5, 0.3)〉 〈(0.625, 0.0457), (0.6, 0.4, 0.5)〉
A5 〈(1, 0.0694), (0.8, 0.1, 0.2)〉 〈(0.8125, 0.0791), (0.8, 0.2, 0.4)〉

C3 C4

A1 〈(0.7273, 0.0935), (0.6, 0.7, 0.3)〉 〈(0.8571, 0.0444), (0.7, 0.2, 0.4)〉
A2 〈(0.6667, 0.0095), (0.7, 0.9, 0.2)〉 〈(1, 0.0857), (0.4, 0.2, 0.7)〉
A3 〈(1, 0.1750), (0.5, 0.5, 0.3)〉 〈(0.7857, 0.0485), (0.5, 0.4, 0.2)〉
A4 〈(0.5714, 0.0327), (0.5, 0.7, 0.3)〉 〈(0.5714, 0.1042), (0.8, 0.2, 0.5)〉
A5 〈(0.8, 0.0257), (0.6, 0.8, 0.4)〉 〈(0.7143, 0.12), (0.5, 0.5, 0.2)〉

Step 2. Calculate the comprehensive evaluation value of each alternative by using the
DGNNNWBM (DGNNNWGBM) operator (suppose R = (1, 1, 1, 1)T), which is shown in Table 5. (There
are 256 cases in this example, which are not listed here. MATLAB can be used for the calculations.)

Table 5. Utilization of the dual generalized nonnegative normal neutrosophic weighted Bonferroni
mean (DGNNNWBM) operator and dual generalized nonnegative normal neutrosophic weighted
geometric Bonferroni mean (DGNNNWGBM) operator R = (1,1,1,1).

DGNNNWBM DGNNNWGBM

A1 〈(0.7772, 0.08), (0.8161, 0.0525, 0, 0303)〉 〈(0.7763, 0.0788), (0.6299, 0.313, 0.2301)〉
A2 〈(0.8667, 0.0319), (0.8095, 0.2210, 0.1474)〉 〈(0.8636, 0.0295), (0.6296, 0.4622, 0.3507)〉
A3 〈(0.7786, 0.0889), (0.5042, 0.2935, 0.1071)〉 〈(0.7736, 0.0788), (0.4194, 0.4503, 0.31)〉
A4 〈(0.6286, 0.0652), (0.6902, 0.3319, 0.2185)〉 〈(0.6277, 0.0622), (0.5287, 0.4919, 0.4004)〉
A5 〈(0.8364, 0.0652), (0.9198, 0.1201, 0.1236)〉 〈(0.8353, 0.0635), (0.7098, 0.3965, 0.3402)〉

Step 3. According to Definition 10, for the DGNNNWBM operator,
S(A1) = (0.7772 + 1

0.08 )(2 + 0.8161− 0.0525− 0.0303),
S(A2) = 78.59, S(A3) = 25.29, S(A4) = 34.18, S(A5) = 43.26.

By the ranking principle of Definition 11, we obtain A2 > A5 > A1 > A4 > A3, which is shown
in Table 6. The best alternative is A2.

Table 6. The score of the alternatives.

S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

DGNNNWBM 36.29 78.59 25.29 34.18 43.26 A2 > A5 > A1 > A4 > A3
DGNNNWGBM 28.10 63.07 22.34 27.33 32.73 A2 > A5 > A4 > A1 > A3

5.2. Influence Analysis

To show the effects on the ranking results by altering the parameters of the DGNNNWBM and
DGNNNWGBM operators, according to Definition 10 and 11, we can get the results by using MATLAB,
which is shown in Tables 7 and 8.
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Table 7. Ranking for different parameters of DGNNNWBM.

R S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1, 1, 1) 36.29 78.59 25.29 34.18 43.26 A2 > A5 > A1 > A4 > A3
(3, 3, 3, 3) 28.85 47.48 14.96 22.25 31.82 A2 > A5 > A1 > A4 > A3
(4, 4, 4, 4) 27.84 42.48 14.06 20.61 30.08 A2 > A5 > A1 > A4 > A3
(6, 6, 6, 6) 27.00 37.80 13.34 19.18 28.06 A2 > A5 > A1 > A4 > A3

(10, 1, 1, 1) 29.45 41.52 15.29 21.46 29.89 A2 > A5 > A1 > A4 > A3
(10, 10, 1, 1) 27.77 36.63 13.95 19.62 27.49 A2 > A1 > A5 > A4 > A3

(10, 10, 10, 1) 27.04 30.94 12.34 16.30 23.70 A2 > A1 > A5 > A4 > A3
(14, 15, 1, 1) 26.79 32.35 9.60 18.47 25.12 A2 > A1 > A5 > A4 > A3

(16, 17, 18, 19) 26.70 31.51 9.61 18.52 24.59 A2 > A1 > A5 > A4 > A3
(20, 20, 20, 20) 26.72 31.17 9.63 18.56 24.38 A2 > A1 > A5 > A4 > A3

Table 8. Ranking for different parameters of DGNNNWGBM.

R S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1, 1, 1) 28.10 63.07 22.34 27.33 32.73 A2 > A5 > A4 > A1 > A3
(3, 3, 3, 3) 25.29 54.01 21.92 25.55 29.07 A2 > A5 > A4 > A1 > A3
(4, 4, 4, 4) 24.47 50.6 21.74 24.80 27.89 A2 > A5 > A4 > A1 > A3
(6, 6, 6, 6) 23.46 45.62 21.40 23.53 26.40 A2 > A5 > A4 > A1 > A3

(10, 1, 1, 1) 24.07 46.39 21.22 23.28 27.02 A2 > A5 > A1 > A4 > A3
(10, 10, 1, 1) 23.11 42.60 21.01 22.45 25.72 A2 > A5 > A1 > A4 > A3

(10, 10, 10, 1) 22.81 40.93 20.92 22.10 25.14 A2 > A5 > A1 > A4 > A3
(14, 15, 1, 1) 22.68 40.98 22.63 22.03 25.23 A2 > A5 > A1 > A3 > A4

(16, 17, 18, 19) 31.59 53.67 31.74 28.52 37.37 A2 > A5 > A3 > A1 > A4
(20, 20, 20, 20) 31.52 74.73 31.64 28.30 37.27 A2 > A5 > A3 > A1 > A4

As shown in Table 7, when the parameter values are small, the ranking of the alternatives may
be of little influence. When the parameter values are large, the ordering of A1 and A5 changes.
However, the best alternative is the same, i.e., A2. As shown in Table 8, when the parameter values
are small, the ranking of the alternatives may be of little influence, but when the parameter values
are large, it has a great impact on the ranking results. Although the ranking changes greatly, the best
alternative is still A2. In practical applications, we usually take R = (1, 1, .., 1)T , which is not only
intuitive but also takes into account the effect of multiple parameters.

5.3. Comparison Analysis

In this section, we compare the DGNNNWBM and DGNNNWGBM operators proposed in this
paper with the normal neutrosophic weighted Bonferroni mean (NNWBM) operator and normal
neutrosophic weighted geometric Bonferroni mean (NNWGBM) operator proposed by Liu P and
Li H [6] for dealing with Example 5.1. The results are shown in Tables 8–14, where we take the first
two values of the parameter R in the DGNNNWBM and DGNNNWGBM operators as the parameter
values p, q in the NNWBM and NNWGBM operators.

According to the result, we conclude the following:
(1) From Tables 7 and 9, when p, q take different values and the values are small, the NNWBM

operator has three different ranking results, while the DGNNNWBM operator has only one. It shows
that the stability of the DGNNNWBM operator is better than that of the NNWBM operator.

(2) From Tables 8 and 10, there is only one ranking result of the NNWGBM operaotr.
However, Tables 11–14 show that when the parameter values p, q are taken as (10, 10) and (14, 15),
the result of the NNWBM operator is T = 0, I = 1, F = 1, and the NNWGBM operator result is
T = 1, I = 0, F = 0. Regardless of whether the parameters p, q change, the values of a and δ in the
NNWGBM operator are invariant. However, in this case, the DGNNNWBM and DGNNNWGBM
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operators consider more parameters, so they can overcome these problems that arise in the NNWBM
and NNWGBM operators.

From this, we know that the NNWBM and NNWGBM operators lack stability and sensitivity.
Compared to the NNWBM and NNWGBM operators, the DGNNNWBM and DGNNNWGBM are not
only more general, but they are also more flexible.

Table 9. Liu and Li’s method [6] (ranking for different parameters of the normal neutrosophic weighted
Bonferroni mean (NNWBM)).

(p, q) S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1) 69.31 126.23 24.29 52.83 72.66 A2 > A5 > A1 > A4 > A3
(3, 3) 78.69 209.45 57.12 77.09 108.89 A2 > A5 > A1 > A4 > A3
(4, 4) 70.23 200.1 54.65 74.78 102.21 A2 > A5 > A4 > A1 > A3
(6, 6) 58.8 182.3 44.67 68.65 88.42 A2 > A5 > A4 > A1 > A3
(10, 1) 67.93 127.63 43.67 80.84 74.68 A2 > A4 > A5 > A1 > A3

Table 10. Liu and Li’s method [6] (ranking for different parameters of the normal neutrosophic
weighted geometric Bonferroni mean (NNWGBM)).

(p, q) S(A1) S(A2) S(A3) S(A4) S(A5) Ranking

(1, 1) 62.89 149.2 14.17 54.77 70.31 A2 > A5 > A1 > A4 > A3
(3, 3) 61.89 146.55 13.78 53.1 68.49 A2 > A5 > A1 > A4 > A3
(4, 4) 61.6 145.91 13.66 52.71 68.02 A2 > A5 > A1 > A4 > A3
(6, 6) 61.24 145.12 13.78 52.23 67.45 A2 > A5 > A1 > A4 > A3
(10, 1) 58.03 128.07 9.32 49.42 61.20 A2 > A5 > A1 > A4 > A3

Table 11. The DGNNNWBM operator and DGNNWGBM operator R = (10, 10, 10, 1).

DGNNNWBM DGNNWGBM

A1 〈(0.8053, 0.0938), (0.6119, 0.1447, 0.1513)〉 〈(0.776, 0.0785), (0.6137, 0.6069, 0.3126)〉
A2 〈(0.9374, 0.0665), (0.5108, 0.247, 0.2609)〉 〈(0.8628, 0.0289), (0.5141, 0.7837, 0.5514)〉
A3 〈(0.7006, 0.1533), (0.3745, 0.3875, 0.2823)〉 〈(0.4772, 0.0757), (0.3809, 0.4822, 0.3454)〉
A4 〈(0.6559, 0.1119), (0.3997, 0.3468, 0.3391)〉 〈(0.6256, 0.0615), (0.4053, 0.6176, 0.4645)〉
A5 〈(0.8808, 0.0948), (0.5941, 0.1819, 0.272)〉 〈(0.8351, 0.063), (0.5961, 0.6959, 0.3844)〉

Table 12. Liu and Li’s method [6] (the NNWBM operator and NNWGBM operator p = 10, q = 10).

NNWBM NNWGBM

A1 〈(0.2491, 0.0223), (0.252, 0.6278, 0.6089)〉 〈(0.938, 0.0457), (1, 0, 0)〉
A2 〈(0.2608, 0.0063), (0.3112, 0.7388, 0.6502)〉 〈(0.962, 0.018), (1, 0.2037, 0)〉
A3 〈(0.159, 0.0213), (0.1708, 0.7887, 0.6887)〉 〈(0.8029, 0.2152), (0.7628, 0.1948, 0)〉
A4 〈(0.1913, 0.011), (0.2205, 0.8023, 0.7488)〉 〈(0.8898, 0.0494), (0.81, 0.2168, 0)〉
A5 〈(0.2574, 0.0138), (0.3343, 0.6173, 0.7303)〉 〈(0.9555, 0.0401), (1, 0.1649, 0)〉

Table 13. The DGNNNWBM operator and DGNNNWGBM operator R = (14, 15, 1, 1).

DGNNNWBM DGNNNWGBM

A1 〈(0.8131, 0.0944), (0.6071, 0.1287, 0.1299)〉 〈(0.7755, 0.0778), (0.611, 0.6145, 0.3321)〉
A2 〈(0.9493, 0.0693), (0.4878, 0.2317, 0.2434)〉 〈(0.8611, 0.0278), (0.4944, 0.7966, 0.5776)〉
A3 〈(0.7075, 0.1552), (0.3562, 0.364, 0.2669)〉 〈(0.4607, 0.0697), (0.3683, 0.4855, 0.3546)〉
A4 〈(0.6684, 0.1148), (0.3741, 0.3137, 0.323)〉 〈(0.6253, 0.0603), (0.3846, 0.6332, 0.4713)〉
A5 〈(0.8997, 0.0995), (0.5762, 0.1641, 0.248)〉 〈(0.8345, 0.062), (0.5809, 0.7067, 0.3868)〉
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Table 14. Liu and Li’s method [6] (the NNWBM operator and NNWGBM operator p = 14, q = 15).

NNWBM NNWGBM

A1 〈(0.2563, 0.0275), (0, 0.6164, 0.5947)〉 〈(0.938, 0.0457), (1, 0, 0)〉
A2 〈(0.2671, 0.0077), (0.3202, 1, 0.6403)〉 〈(0.962, 0.018), (1, 0, 0)〉
A3 〈(0.1638, 0.0271), (0, 1, 0.6798)〉 〈(0.8029, 0.2152), (1, 0, 0)〉
A4 〈(0.1955, 0.0125), (0, 1, 1)〉 〈(0.8898, 0.0494), (1, 0, 0)〉
A5 〈(0.2633, 0.0168), (0.3418, 0.6064, 1)〉 〈(0.9555, 0.0401), (1, 0, 0)〉

6. Conclusions

The multiple attribute decision-making method has a wide range of applications in many domains.
The nonnegative normal neutrosophic number is more suitable for dealing with uncertain information,
and the dual generalized weighted Bonferroni mean operator and dual generalized weighted geometric
Bonferroni mean operator take into account the relationship between arbitrary aggregation arguments.
Therefore, in this paper, the definition of nonnegative normal neutrosophic number has been proposed.
The score function and accuracy function have been developed to overcome the deficiency, i.e.,
that the original function does not satisfy the ranking principle. Considering the connections
between any two or more than two aggregation arguments, the dual generalized nonnegative
normal neutrosophic weighted Bonferroni mean operator and dual generalized nonnegative normal
neutrosophic weighted geometric Bonferroni mean operator were discussed. Meanwhile, some
properties were investigated, such as idempotency, monotonicity, boundedness, and commutativity.
Based on the dual generalized nonnegative normal neutrosophic weighted Bonferroni mean operator
and dual generalized nonnegative normal neutrosophic weighted geometric Bonferroni mean operator,
a method was developed to deal with a multiple attribute decision-making problem with nonnegative
normal neutrosophic number. Further, we used the dual generalized nonnegative normal neutrosophic
weighted Bonferroni mean and dual generalized nonnegative normal neutrosophic weighted geometric
Bonferroni mean operators for aggregative information. Decision making obtain the satisfactory
alternative according to actual need and preference by changing the values of R, which makes our
proposed multiple attribute decision-making method more flexible and reliable. Further, compared
with the method in Liu [6], our method shows that when the relationship between more aggregation
arguments are considered, the aggregation result is more stable; when the parameter value is larger,
the aggregation result is more sensitive.
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