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Abstract: As an extension of neutrosophic set, interval complex neutrosophic set is a new research
topic in the field of neutrosophic set theory, which can handle the uncertain, inconsistent and
incomplete information in periodic data. Distance measure is an important tool to solve some problems
in engineering and science. Hence, this paper presents some interval complex neutrosophic distance
measures to deal with multi-criteria group decision-making problems. Firstly, this paper shows the
definitions of interval complex neutrosophic set, and especially some novel set theoretic properties.
Then, some new distance measures based on Hamming, Euclidean and Hausdorff metrics are proposed.
Next, an approach is developed to rank the alternatives in multi-criteria group decision-making
problems. Finally, a numerical example is given to demonstrate the practicality and effectiveness of
these distance measures.
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1. Introduction

Multi-criteria group decision-making (MCGDM) is the process of ranking a series of alternatives
and find the optimal one from them. During the last decades, most decision makers tend to evaluate the
rating values of each criterion with crisp number. However, due to the fuzziness of human thinking and
the complexity and uncertainty of objective things in real life, the information in MCGDM problem is
either vague, imprecise or uncertain [1]. To deal with it, the theory of fuzzy set (FS) [2], intuitionistic
fuzzy set (IFS) [3] and interval-valued IFS (IVIFS) [4], which can express the evaluation values more
reasonably, were proposed. Based on these theories, some decision making (DM) methodologies have
been presented and applied in various disciplines. For instance, Xu [5, 6] presented some aggregation
operators to aggregation information such as geometric aggregation operator and weighted averaging

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2020365


5701

operator. However, FS, IFS and IVIFS can only deal with incomplete information, but not uncertain
and inconsistent information.

Therefore, Smarandache [7] firstly introduced the neutrosophic set (NS) as a generalization of
classical set, FS, IFS and IVIFS. However, NS was mainly put forward from a philosophical
viewpoint which is difficult to be applied in real life. So single-valued neutrosophic set (SVNS) [8]
and interval neutrosophic set (INS) [9] were proposed. Based on SVNS, Ye [10] proposed the
correlation coefficient and weighted correlation coefficient for SVNS and used them to handle
multi-criteria decision-making (MCDM) problems. And a single-valued neutrosophic cross-entropy
for MCDM problem was proposed in [11]. Besides, some researchers studied the neutrosophic
algebraic structures or its extensions. Singh [12] proposed a method to generate three-way fuzzy
concept lattice using neutrosophic set. Cetkin and Aygun [13] proposed neutrosophic subgroup and
neutrosophic normal subgroup with their basic properties and characterizations.

In recent years, ”big data” which is frequently characterized by uncertainty and periodicity has
become a new research trend. However, FS, IFS, IVIFS, SVNS, INS can only deal with the data
with uncertainty but not periodicity. In order to handle this situation, Ramot et al. [14] introduced a
seminal concept and called it complex fuzzy set (CFS) which is a combination of fuzzy set and complex
number. In CFS, the degree of membership is represented in the form of complex value, denoted as
µ = rs (x) · e jωs(x) where j =

√
−1 and rs(x) ∈ [0, 1], ωs (x) is a real value. Later on, Alkouri and

Salleh [15] introduced the concept of complex intuitionistic fuzzy set (CIFS) by adding the degree of
non-membership with complex-valued form and defined the basic operations of CIFS. To provide the
more freedom to the decision-makers, it is advisable to ask the experts to describe their preferences by
means of intervals. So Garg and Rani [16] introduced the complex interval-valued intuitionistic fuzzy
set (CIVIFS) with their algebraic operators and corresponding aggregation operators, then established
a model to address MCGDM problems. Soon after, complex neutrosophic set (CNS) as an extension of
CFS, CIFS, CIVIFS was proposed by Ali and Smarandache [17], and applied it in the signal processing.
Later on, Ali et al. [18] firstly attempted to defined the interval complex neutrosophic set (ICNS). In
ICNS, its set theoretic properties, operations and operational rules were introduced, then a MCGDM
model was established under interval complex neutrosophic environment.

The selection of distance formula is a crucial step in MCGDM problems and several classical
distance formulas are usually used, such as Hamming distance, Euclidean distance and Hausdorff
distance. Rani and Garg [19] proposed some distance measures between the CIFSs based on
Hamming, Euclidean and Hausdorff metrics and discussed various desirable relations in detail. Ali
and Smarandache [17] proposed distance measure and δ-equalities of CNS, and then discussed their
properties. Kumar and Bajaj [20] proposed some distance and entropy measures for complex
intuitionistic fuzzy soft sets (CIFSSs) and applies them in MCDM problems. In view of the Cartesian
representation of pure complex fuzzy grade of membership, Ali [21] proposed some new operations
of complex fuzzy classes, and introduced the δ-equalities of complex fuzzy classes with
corresponding implication operators. Based on Hamming and Euclidean metrics, Dai et al. [22]
proposed some interval-valued complex fuzzy distance measures and discussed their geometric
properties. Based on traditional distance metrics, Hong et al. [23] presented a weighted parameter
interval neutrosophic distance measure, and applied it into TODIM method to deal with
multi-attribute decision making problems.
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The purpose of this paper is to construct some interval complex neutrosophic distance measures and
apply them into MCGDM problem. The specific arrangements of this article are structured as follows.
In section 2, we introduce the concept of ICNS. Section 3 proposes some set theoretic properties of
ICNS, such as operational rules, aggregated operator and comparison method. In section 4, we present
some distance measures which are satisfied with the axiomatic conditions. A MCGDM approach
based on the operator and distance measure is proposed in section 5. In section 6, this paper illustrates
the practicality and effectiveness of the proposed approach via a numerical example. In section 7, a
conclusion of this paper is given.

2. Preliminaries

2.1. Neutrosophic set

Definition 2.1. [7] Let X be a space of points(objects), with a generic element in X denoted by x.
A NS A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x), where TA(x),IA(x),FA(x) are real standard or
nonstandard subsets of ]0−, 1+[. That is TA(x): X →]0−, 1+[, IA(x):X →]0−, 1+[, FA(x):X →]0−, 1+[.

There is no restriction on the sum of TA(x), IA(x), and FA(x), so 0− ≤ sup TA(x) + sup IA(x) +

sup FA(x) ≤ 3+.
Definition 2.2. [7] The complement of A is denoted by AC and is defined as

TAC (x) = {1+} 	 TA(x), IAC (x) = {1+} 	 IA(x), FAC (x) = {1+} 	 FA(x)

for every x in X.
Definition 2.3. [7] A NS A is contained in the other NS B, A ⊆ B if and only if

inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x),

inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x),

inf FA(x) ≥ inf FB(x), sup FA(x) ≥ sup FB(x)

for every x in X.

2.2. Interval complex neutrosohic set

Definition 2.4. [18] Let X be a space of points(objects) with generic elements in X denoted by x.
An ICNS S in X is characterized by a truth-membership function TS (x), an indeterminacy-membership
function IS (x), and a falsity-membership function FS (x),which are satisfied the following conditions:

TS (x) : X → Γ[0,1] × R,TS (x) = tS (x) · e jωS (x)

IS (x) : X → Γ[0,1] × R, IS (x) = iS (x) · e jψS (x)

FS (x) : X → Γ[0,1] × R, FS (x) = fS (x) · e jφS (x)

where Γ[0,1] is the collection of interval neutrosophic sets and R is the set of real numbers, tS (x) is the
interval truth membership function, iS (x) is the interval indeterminate membership function and fS (x)
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is the interval falsehood membership function, while e jωS (x), e jψS (x) and e jφS (x) are the corresponding
interval-valued phase terms, respectively, with j =

√
−1. In set theoretic form, an interval complex

neutrosophic set can be written as:

S =

{〈
tS (x) · e jωS (x), iS (x) · e jψS (x), fS (x) · e jφS (x)

x

〉
: x ∈ X

}
(2.1)

In (2.1), the amplitude interval-valued terms TS (x), IS (x), FS (x) can be further split as tS (x) =[
tL
S (x), tU

S (x)
]
, iS (x) =

[
iL
S (x), iU

S (x)
]

and fS (x) =
[
f L
S (x), f U

S (x)
]
. Similarly, for the phase terms: ωS (x) =[

ωL
S (x), ωU

S (x)
]
, ψS (x) =

[
ψL

S (x), ψU
S (x)

]
and φS (x) =

[
φL

S (x), φU
S (x)

]
.

Definition 2.5. [18] The complement of an ICNS S is denoted by S c and is defined as

S c =

{〈
tS c(x) · e jωS c (x), iS c(x) · e jψS c (x), fS c(x) · e jφS c (x)

x

〉
: x ∈ X

}
(2.2)

where tS c(x) = fS (x), ωS c(x) = 2π−ωS (x), iS c(x) =
[
1 − iU

S (x), 1 − iL
S (x)

]
, ψS c(x) = 2π−ψS (x), fS c(x) =

tS (x), φS c(x) = 2π − φS (x).

3. Set theoretic properties of interval complex neutrosohic set

Definition 3.1. Let A and B be two ICNSs, then the operational rules of ICNS are defined as follows:
(1) The addition of A and B, denoted as A + B, and is defined as:

TA+B(x) = [tL
A(x) + tL

B(x) − tL
A(x)tL

B(x), tU
A (x) + tU

B (x) − tU
A (x)tU

B (x)] · e j[ωL
A+B(x),ωU

A+B(x)]

IA+B(x) = [iL
A(x)iL

B(x), iU
A (x)tU

B (x)] · e j[ψL
A+B(x),ψU

A+B(x)]

FA+B(x) = [ f L
A (x) f L

B (x), f U
A (x) f U

B (x)] · e j[φL
A+B(x),φU

A+B(x)]

the addition of phase terms is defined below:

ωL
A+B(x) = 2π

(
ωL

A(x)
2π

+
ωL

B(x)
2π

−
ωL

A(x)ωL
B(x)

(2π)2

)

ωU
A+B(x) = 2π

(
ωU

A (x)
2π

+
ωU

B (x)
2π

−
ωU

A (x)ωU
B (x)

(2π)2

)
ψL

A+B(x) = 2π
(
ψL

A(x)
2π

·
ψL

B(x)
2π

)
, ψU

A×B(x) = 2π
(
ψU

A (x)
2π

·
ψU

B (x)
2π

)
φL

A+B(x) = 2π
(
φL

A(x)
2π
·
φL

B(x)
2π

)
, φU

A×B(x) = 2π
(
φU

A (x)
2π

·
φU

B (x)
2π

)
(2) The product of A and B, denoted as A × B, and is defined as:
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TA×B(x) = [tL
A(x)tL

B(x), tU
A (x)tU

B (x)] · e jπ[ωL
A×B(x),ωU

A×B(x)]

IA×B(x) = [iL
A(x) + iL

B(x) − iL
A(x)iL

B(x), iU
A (x) + iU

B (x) − iU
A (x)tU

B (x)] · e jπ[ψL
A×B(x),ψU

A×B(x)]

FA×B(x) = [ f L
A (x) + f L

B (x) − f L
A (x) f L

B (x), f U
A (x) + f U

B (x) − f U
A (x) f U

B (x)] · e jπ[φL
A×B(x),φU

A×B(x)]

the product of phase terms is defined below:

ωL
A×B(x) = 2π

(
ωL

A(x)
2π

·
ωL

B(x)
2π

)
, ωU

A×B(x) = 2π
(
ωU

A (x)
2π

·
ωU

B (x)
2π

)

ψL
A×B(x) = 2π

(
ψL

A(x)
2π

+
ψL

B(x)
2π

−
ψL

A(x)ψL
B(x)

(2π)2

)
ψU

A×B(x) = 2π
(
ψU

A (x)
2π

+
ψU

B (x)
2π

−
ψU

A (x)ψU
B (x)

(2π)2

)
φL

A×B(x) = 2π
(
φL

A(x)
2π

+
φL

B(x)
2π
−
φL

A(x)φL
B(x)

(2π)2

)
φU

A×B(x) = 2π
(
φU

A (x)
2π

+
φU

B (x)
2π

−
φU

A (x)φU
B (x)

(2π)2

)
(3) The scalar multiplication of A is an interval complex neutrosophic set denoted as C = λA, λ > 0,

and defined as:
TC(x) = [1 − (1 − tL

A(x))λ, 1 − (1 − tU
A (x))λ] · e j[ωL

C(x),ωU
C (x)]

IC(x) = [(iL
A(x))λ, (iU

A (x))λ] · e j[ψL
C(x),ψU

C (x)]

FC(x) = [( f L
A (x))λ, ( f U

A (x))λ] · e j[φL
C(x),φU

C (x)]

The scalar multiplication of phase terms is defined below:

ωL
C(x) = 2π

1 − (
1 −

ωL
A(x)
2π

)λ , ωU
C (x) = 2π

1 − (
1 −

ωU
A (x)
2π

)λ
ψL

C(x) = 2π
(
ψL

A(x)
2π

)λ
, ψU

C (x) = 2π
(
ψU

A (x)
2π

)λ
φL

C(x) = 2π
(
φL

A(x)
2π

)λ
, φU

C (x) = 2π
(
φU

A (x)
2π

)λ
(4) The power of A is denoted as D = Aλ, λ > 0 and defined as:

TD(x) = [(tL
A(x))λ, (tU

A (x))λ] · e j[ωL
D(x),ωU

D(x)]

ID(x) = [1 − (1 − iL
A(x))λ, 1 − (1 − iU

A (x))λ] · e j[ψL
D(x),ψU

D(x)]

FD(x) = [1 − (1 − f L
A (x))λ, 1 − (1 − f U

A (x))λ] · e j[φL
D(x),φU

D(x)]
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The power of phase terms is defined below:

ωL
D(x) = 2π

(
ωL

A(x)
2π

)λ
, ωU

D(x) = 2π
(
ωU

A (x)
2π

)λ
ψL

D(x) = 2π

1 − (
1 −

ψL
A(x)
2π

)λ , ψU
D(x) = 2π

1 − (
1 −

ψU
A (x)
2π

)λ
φL

D(x) = 2π

1 − (
1 −

φL
A(x)
2π

)λ , φU
D(x) = 2π

1 − (
1 −

φU
A (x)
2π

)λ
Definition 3.2. Let ak =

([
tL
k , t

U
k

]
· e j[ωL

k ,ω
U
k ],

[
iL
k , i

U
k

]
· e j[ψL

k ,ψ
U
k ],

[
f L
k , f U

k

]
· e j[φL

k ,φ
U
k ]

)
(k = 1, 2, · · · , n) be

a collection of interval complex neutrosophic numbers (ICNNs), the interval complex neutrosophic
weighted averaging (ICNWA) operator can be defined as follows:

ICNWAw(a1, a2, · · · , an) = w1a1 + w2a2 + · · · + wnan

where w = (w1,w2, · · · ,wn)T is the weight vector of ak, such that 0 < wk < 1,
n∑

k=1
wk = 1. Then the

ICNWA operator is denoted as following:

ICNWAw(a1, a2, · · · , an) =

n∑
k=1

wkak

=


1 − n∏

k=1

(
1 − tL

k

)wk
, 1 −

n∏
k=1

(
1 − tU

k

)wk

 · e j

2π
1− n∏

k=1

(
1−

ωL
k (x)
2π

)wk ,2π
1− n∏

k=1

(
1−

ωU
k (x)
2π

)wk 

,

 n∏
k=1

(
iL
k

)wk
,

n∏
k=1

(
iU
k

)wk

 · e j
[
2π

(
n∏

k=1

(
ψL

k
2π

)wk )
,2π

(
n∏

k=1

(
ψU

k
2π

)wk )]
, n∏

k=1

(
f L
k

)wk
,

n∏
k=1

(
f U
k

)wk

 · e j
[
2π

(
n∏

k=1

(
φL

k
2π

)wk )
,2π

(
n∏

k=1

(
φU

k
2π

)wk )]

(3.1)

Especially when the weight vector is w =
(

1
n ,

1
n , · · · ,

1
n

)
, the ICNWA operator will reduce to interval

complex neutrosophic average (ICNA) operator.
Definition 3.3. Let A be an ICNN, then the score function S (A) of A is defined as:

S (A) =
1

12

((
2 + tL

A − iL
A − f L

A

)
+

(
2 + tU

A − iUA − f U
A

)
+

1
2π

((
4π + ωL

A − ψ
L
A − φ

L
A

)
+

(
4π + ωU

A − ψ
U
A − φ

U
A

)))
(3.2)

Definition 3.4. Let A be an ICNN, then the accuracy function H (A) of A is defined as:

H (A) =
1
3

(
tL
A − f L

A + tU
A − f U

A

2
+
ωL

A − φ
L
A + ωU

A − φ
U
A

2π

)
(3.3)

Definition 3.5. Let A1 and A2 be two ICNNs, and S be the score functions, H be the accuracy
functions. If S (A1) < S (A2) then A1 < A2, if S (A1) = S (A2) then

(1) If H (A1) < H (A2), then A1 < A2;
(2) If H (A1) = H (A2), then A1 = A2.
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4. Distance measures between ICNSs

Definition 4.1. [24] Let X = {x1, x2, · · · , xn} be the universe of discourse, Φ (X) be the family
of ICNSs and R+ be the set of non-negative real numbers. A distance measure of interva complex
neutrosophic set is a function d : Φ (X) × Φ (X) → R+, which satisfies the following three conditions:
for any A, B,C ∈ Φ (X),

(1) d (A, B) ≥ 0 and d (A, B) = 0 if and only if A = B;
(2) d (A, B) = d (B, A);
(3) d (A,C) ≤ d (A, B) + d (B,C).
Now, we define the some distance measures with interval complex neutrosophic sets as follows: for

any two ICNSs A and B,
Definition 4.2. The normalized Hamming distance:

dHm (A, B) =

1
12n

n∑
j=1

{∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣ +
∣∣∣∣tU

A

(
x j

)
− tU

B

(
x j

)∣∣∣∣ +
∣∣∣∣iL

A

(
x j

)
− iL

B

(
x j

)∣∣∣∣ +
∣∣∣∣iU

A

(
x j

)
− iU

B

(
x j

)∣∣∣∣ +∣∣∣∣ f L
A

(
x j

)
− f L

B

(
x j

)∣∣∣∣ +
∣∣∣∣ f U

A

(
x j

)
− f U

B

(
x j

)∣∣∣∣ +
1

2π

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ωU

A

(
x j

)
− ωU

B

(
x j

)∣∣∣∣ +∣∣∣∣ψL
A

(
x j

)
− ψL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ψU

A

(
x j

)
− ψU

B

(
x j

)∣∣∣∣ +
∣∣∣∣φL

A

(
x j

)
− φL

B

(
x j

)∣∣∣∣ +
∣∣∣∣φU

A

(
x j

)
− φU

B

(
x j

)∣∣∣∣)}
(4.1)

Definition 4.3. The normalized Euclidean distance:

dE (A.B) = 1
12n

n∑
j=1

[∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣2 +
∣∣∣∣tU

A

(
x j

)
− tU

B

(
x j

)∣∣∣∣2 +
∣∣∣∣iL

A

(
x j

)
− iL

B

(
x j

)∣∣∣∣2 +
∣∣∣∣iU

A

(
x j

)
− iU

B

(
x j

)∣∣∣∣2+∣∣∣∣ f L
A

(
x j

)
− f L

B

(
x j

)∣∣∣∣2 +
∣∣∣∣ f U

A

(
x j

)
− f U

B

(
x j

)∣∣∣∣2 +
1

(2π)2

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣2 +
∣∣∣∣ωU

A

(
x j

)
− ωU

B

(
x j

)∣∣∣∣2+∣∣∣∣ψL
A

(
x j

)
− ψL

B

(
x j

)∣∣∣∣2 +
∣∣∣∣ψU

A

(
x j

)
− ψU

B

(
x j

)∣∣∣∣2 +
∣∣∣∣φL

A

(
x j

)
− φL

B

(
x j

)∣∣∣∣2 +
∣∣∣∣φU

A

(
x j

)
− φU

B

(
x j

)∣∣∣∣2)]} 1
2

(4.2)

Definition 4.4. The normalized Hausdorff distance:

dHd (A, B) =

1
n

n∑
j=1

max
{

max
(
1
2

(∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣ +
∣∣∣∣tU

A

(
x j

)
− tU

B

(
x j

)∣∣∣∣) , 1
2

(∣∣∣∣iL
A

(
x j

)
− iL

B

(
x j

)∣∣∣∣ +
∣∣∣∣iU

A

(
x j

)
− iU

B

(
x j

)∣∣∣∣) ,
1
2

(∣∣∣∣ f L
A

(
x j

)
− f L

B

(
x j

)∣∣∣∣ +
∣∣∣∣ f U

A

(
x j

)
− f U

B

(
x j

)∣∣∣∣)) , 1
2π

max
(
1
2

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ωU

A

(
x j

)
− ωU

B

(
x j

)∣∣∣∣) ,
1
2

(∣∣∣∣ψL
A

(
x j

)
− ψL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ψU

A

(
x j

)
− ψU

B

(
x j

)∣∣∣∣) , 1
2

(∣∣∣∣φL
A

(
x j

)
− φL

B

∣∣∣∣ +
∣∣∣∣φU

A − φ
U
B

(
x j

)∣∣∣∣))}
(4.3)
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Definition 4.5. The normalized generalized distance:

dE (A.B) = 1
12n

n∑
j=1

[∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣λ +
∣∣∣∣tU

A

(
x j

)
− tU

B

(
x j

)∣∣∣∣λ +
∣∣∣∣iL

A

(
x j

)
− iL

B

(
x j

)∣∣∣∣λ +
∣∣∣∣iU

A

(
x j

)
− iU

B

(
x j

)∣∣∣∣λ+∣∣∣∣ f L
A

(
x j

)
− f L

B

(
x j

)∣∣∣∣λ +
∣∣∣∣ f U

A

(
x j

)
− f U

B

(
x j

)∣∣∣∣λ +
1

(2π)λ

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣λ +
∣∣∣∣ωU

A

(
x j

)
− ωU

B

(
x j

)∣∣∣∣λ+∣∣∣∣ψL
A

(
x j

)
− ψL

B

(
x j

)∣∣∣∣λ +
∣∣∣∣ψU

A

(
x j

)
− ψU

B

(
x j

)∣∣∣∣λ +
∣∣∣∣φL

A

(
x j

)
− φL

B

(
x j

)∣∣∣∣λ +
∣∣∣∣φU

A

(
x j

)
− φU

B

(
x j

)∣∣∣∣λ)]} 1
λ

(4.4)

with λ > 0.
Theorem 4.1. All functions defined in Eqs (4.1)–(4.4) are distance measures of ICNSs.

Proof. Take Hamming distance dHm(A, B) as an example, it is easy to see that dHm(A, B) satisfies the
conditions (1)–(2). Thus, we just go to prove the condition (3), i.e., the triangular inequality.

Let A, B,C ∈ Φ (X), for the Hamming distance, we have

dHm (A, B) + dHm (B,C) =

1
12n

n∑
j=1

{∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣ +
∣∣∣∣tU

A

(
x j

)
− tU

B

(
x j

)∣∣∣∣ +
∣∣∣∣iL

A

(
x j

)
− iL

B

(
x j

)∣∣∣∣ +
∣∣∣∣iUA (

x j

)
− iUB

(
x j

)∣∣∣∣ +
∣∣∣∣ f L

A

(
x j

)
− f L

B

(
x j

)∣∣∣∣
+

∣∣∣∣ f U
A

(
x j

)
− f U

B

(
x j

)∣∣∣∣ +
1

2π

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ωU

A

(
x j

)
− ωU

B

(
x j

)∣∣∣∣ +
∣∣∣∣ψL

A

(
x j

)
− ψL

B

(
x j

)∣∣∣∣
+

∣∣∣∣ψU
A

(
x j

)
− ψU

B

(
x j

)∣∣∣∣ +
∣∣∣∣φL

A

(
x j

)
− φL

B

(
x j

)∣∣∣∣ +
∣∣∣∣φU

A

(
x j

)
− φU

B

(
x j

)∣∣∣∣)} +

1
12n

n∑
j=1

{∣∣∣∣tL
B

(
x j

)
− tL

C

(
x j

)∣∣∣∣ +
∣∣∣∣tU

B

(
x j

)
− tU

C

(
x j

)∣∣∣∣ +
∣∣∣∣iL

B

(
x j

)
− iL

C

(
x j

)∣∣∣∣ +
∣∣∣∣iUB (

x j

)
− iUC

(
x j

)∣∣∣∣ +
∣∣∣∣ f L

B

(
x j

)
− f L

C

(
x j

)∣∣∣∣
+

∣∣∣∣ f U
B

(
x j

)
− f U

C

(
x j

)∣∣∣∣ +
1

2π

(∣∣∣∣ωL
B

(
x j

)
− ωL

C

(
x j

)∣∣∣∣ +
∣∣∣∣ωU

B

(
x j

)
− ωU

C

(
x j

)∣∣∣∣ +
∣∣∣∣ψL

B

(
x j

)
− ψL

C

(
x j

)∣∣∣∣
+

∣∣∣∣ψU
B

(
x j

)
− ψU

C

(
x j

)∣∣∣∣ +
∣∣∣∣φL

B

(
x j

)
− φL

C

(
x j

)∣∣∣∣ +
∣∣∣∣φU

B

(
x j

)
− φU

C

(
x j

)∣∣∣∣)}
=

1
12n

n∑
j=1

{∣∣∣∣tL
A

(
x j

)
− tL

B

(
x j

)∣∣∣∣ +
∣∣∣∣tL

B

(
x j

)
− tL

C

(
x j

)∣∣∣∣ + · · · +
∣∣∣∣ f U

A

(
x j

)
− f U

B

(
x j

)∣∣∣∣ +
∣∣∣∣ f U

B

(
x j

)
− f U

C

(
x j

)∣∣∣∣
+

1
2π

(∣∣∣∣ωL
A

(
x j

)
− ωL

B

(
x j

)∣∣∣∣ +
∣∣∣∣ωL

B

(
x j

)
− ωL

C

(
x j

)∣∣∣∣ + · · · +
∣∣∣∣φU

A

(
x j

)
− φU

B

(
x j

)∣∣∣∣ +
∣∣∣∣φU

B

(
x j

)
− φU

C

(
x j

)∣∣∣∣)}
≥

1
12n

n∑
j=1

{∣∣∣∣tL
A

(
x j

)
− tL

C

(
x j

)∣∣∣∣ +
∣∣∣∣tU

A

(
x j

)
− tU

C

(
x j

)∣∣∣∣ +
∣∣∣∣iL

A

(
x j

)
− iL

C

(
x j

)∣∣∣∣ +
∣∣∣∣iUA (

x j

)
− iUC

(
x j

)∣∣∣∣ +
∣∣∣∣ f L

A

(
x j

)
− f L

C

(
x j

)∣∣∣∣
+

∣∣∣∣ f U
A

(
x j

)
− f U

C

(
x j

)∣∣∣∣ +
1

2π

(∣∣∣∣ωL
A

(
x j

)
− ωL

C

(
x j

)∣∣∣∣ +
∣∣∣∣ωU

A

(
x j

)
− ωU

C

(
x j

)∣∣∣∣ +
∣∣∣∣ψL

A

(
x j

)
− ψL

C

(
x j

)∣∣∣∣
+

∣∣∣∣ψU
A

(
x j

)
− ψU

C

(
x j

)∣∣∣∣ +
∣∣∣∣φL

A

(
x j

)
− φL

C

(
x j

)∣∣∣∣ +
∣∣∣∣φU

A

(
x j

)
− φU

C

(
x j

)∣∣∣∣)}
= dHm(A,C)

So we can consider dHm (A, B) as a distance measure. Analogously, the normalized Euclidean
distance dE (A, B), normalized Hausdorff distance dHd (A, B) and normalized generalized distance
dG (A, B) be proved as valid distance measures. �
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5. An approach for MCGDM

In this section, a MCGDM approach is presented by using the operational rules and above-defined
distance measures for ICNSs.

Assume that a committee of l decision makers (Dh, h = 1, 2, · · · , l) is responsible for evaluating m
alternatives (Ap, p = 1, 2, · · · ,m) under n selection criteria (Cq, q = 1, 2, · · · , n), where the performance
ratings are ICNNs. The weight vector of the creteria is wq(q = 1, 2, · · · , n) which satisfies 0 < wq < 1

and
n∑

q=1
wq = 1. Then the steps of the proposed MAGDM method as follows:

Step 1: Aggregate the ratings of alternatives versus criteria.
Let xhpq =

([
T L

hpq,T
U
hpq

]
,
[
IL
hpq, I

U
hpq

]
,
[
FL

hpq, F
U
hpq

])
, h = 1, 2, · · · , l; p = 1, 2, · · · ,m; q = 1, 2, · · · , n

be the performance ratings evaluated by decision maker Dh for alternative Ap versus criterion Cq, then
its decision-making matrix can be denoted as M(h) =

(
xhpq

)
m×n

. By using the ICNA operator, we can

get the aggregating decision making matrix M =
(
xpq

)
m×n

=
(
Tpq, Ipq, Fpq

)
m×n

with aggregation ratings,
where xpq is defined as follows:

xpq =

l∑
h=1

1
l

xhpq =
1
l

x1pq +
1
l

x2pq + · · · +
1
l

xlpq =
1
l

(
x1pq + x2pq + · · · + xlpq

)
where

Tpq =

1 − l∏
h=1

(
1 − T L

hpq

) 1
l
, 1 −

l∏
h=1

(
1 − T U

hpq

) 1
l

 · e j

2π
1− l∏

h=1

1−ωL
hpq
2π


1
l
,2π

1− l∏
h=1

1−ωU
hpq
2π


1
l



Ipq =

 l∏
h=1

(
IL
hpq

) 1
l
,

l∏
h=1

(
IU
hpq

) 1
l

 · e j

2π
 l∏

h=1

 ψL
hpq
2π


1
l
,2π

 l∏
h=1

 ψU
hpq
2π


1
l



Fpq =

 l∏
h=1

(
FL

hpq

) 1
l
,

l∏
h=1

(
FU

hpq

) 1
l

 · e j

2π
 l∏

h=1

 φL
hpq
2π


1
l
,2π

 l∏
h=1

 φU
hpq
2π


1
l



(5.1)

Step 2: Calculating the weighted decision-making matrix R according to the criteria weights.

R =
(
rpq

)
m×n

=

([
T

L
pq,T

U
pq

]
,
[
I

L
pq, I

U
pq

]
,
[
F

L
pq, F

U
pq

])
m×n

where rpq = wq ∗ xpq and

[
T

L
pq,T

U
pq

]
=

[
1 −

(
1 − T L

pq

)wq
, 1 −

(
1 − T U

pq

)wq
]
· e

j
[
2π

(
1−

(
1−

ωL
pq

2π

)wq )
,2π

(
1−

(
1−

ωU
pq

2π

)wq )]

[
I

L
pq, I

U
pq

]
=

[(
IL

pq

)wq
,
(
IU

pq

)wq
]
· e

j
[
2π

((
ψL

pq
2π

)wq )
,2π

((
ψU

pq
2π

)wq )]

[
F

L
pq, F

U
pq

]
=

[(
FL

pq

)wq
,
(
FU

pq

)wq
]
· e

j
[
2π

((
φL

pq
2π

)wq )
,2π

((
φU

pq
2π

)wq )]
(5.2)

Step 3: Determination of the positive ideal solution (PIS) and negative ideal solution (NIS).
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PIS = R+ =
(
R+

1 ,R
+
2 , · · · ,R

+
n

)
and NIS = R− =

(
R−1 ,R

−
2 , · · · ,R

−
n

)
where

R+
q =

([
max

p

(
T

L
pq

)
,max

p

(
T

U
pq

)]
· e

j
[
max

p
(ωL

pq),max
p

(ωU
pq)

]
,[

min
p

(
I

L
pq

)
,min

p

(
I

U
pq

)]
· e

j
[
min

p

(
ψ

L
pq

)
,min

p

(
ψ

U
pq

)]

[
min

p

(
F

L
pq

)
,min

p

(
F

U
pq

)]
· e

j
[
min

p

(
φ

L
pq

)
,min

p

(
φ

U
pq

)]
(5.3)

R−q =

([
min

p

(
T

L
pq

)
,min

p

(
T

U
pq

)]
· e

j
[
min

p
(ωL

pq),min
p

(ωU
pq)

]
,[

max
p

(
I

L
pq

)
,max

p

(
I

U
pq

)]
· e

j
[
max

p

(
ψ

L
pq

)
,max

p

(
ψ

U
pq

)]
,[

max
p

(
F

L
pq

)
,max

p

(
F

U
pq

)]
· e

j
[
max

p

(
φ

L
pq

)
,max

p

(
φ

U
pq

)]
(5.4)

Step 4: Calculating the distance between each alternative and PIS, NIS.

d+
p =

n∑
q=1

d
(
rpq,R+

q

)
(5.5)

d−p =

n∑
q=1

d
(
rpq,R−q

)
(5.6)

where d
(
rpq,R+

q

)
and d

(
rpq,R−q

)
are defined in section 3.

Step 5: Calculating the closeness coefficients of alternatives.

CCp =
d−p

d+
p + d−p

(5.7)

Step 6: Ranking the alternatives. The larger value of closeness coefficients CCp, the better
alternative Ap is.

6. Numerical example

In this section, we applies the proposed MCGDM method for green supplier selection.
The managers would like to manage the suppliers effectively, due to an increasing number of

them [18]. Data were collected by conducting semi-structured interviews with managers and
department heads. Three managers (decision-makers), i.e., D1 − D3, were requested to separately
proceed to their own evaluation. Five criteria, namely Price/cost (C1), Quality (C2), Delivery (C3),
Relationship Closeness (C4) and Environmental Management Systems (C5), were selected to evaluate
the green suppliers. The weight of criteria is w = {0.2, 0.3, 0.25, 0.15, 0.1}. Three managers
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determined the performance ratings of three suppliers A1, A2 and A3 under the criteria by using the
linguistic set S = {VL, L, F,G,VG}, where

VL = VeryLow =
(
[0.1, 0.2] e jπ[0.7,0.8], [0.7, 0.8] e jπ[0.9,1.0], [0.6, 0.7] e jπ[1.0,1.1]

)
L = Low =

(
[0.3, 0.4] e jπ[0.8,0.9], [0.6, 0.7] e jπ[1.0,1.1], [0.5, 0.6] e jπ[0.9,1.0]

)
F = Fair =

(
[0.4, 0.5] e jπ[0.8,0.9], [0.5, 0.6] e jπ[0.9,1.0], [0.4, 0.5] e jπ[0.8,0.9]

)
G = Good =

(
[0.6, 0.7] e jπ[0.9,1.0], [0.4, 0.5] e jπ[0.9,1.0], [0.3, 0.4] e jπ[0.7,0.8]

)
VG = VeryGood =

(
[0.7, 0.8] e jπ[1.1,1.2], [0.2, 0.3] e jπ[0.8,0.9], [0.1, 0.2] e jπ[0.6,0.7]

)
to evaluate the suitability of the suppliers under each criteria. Tables 1–3 show the three managers’
performance ratings.

Table 1. The Performance Rating From Decision maker D1.

C1 C2 C3 C4 C5

A1 G F L G L
A2 F VG G F G
A3 VG F F G G

Table 2. The Performance Rating From Decision maker D2.

C1 C2 C3 C4 C5

A1 G F L G L
A2 F VG G F G
A3 VG F F G G

Table 3. The Performance Rating From Decision maker D3.

C1 C2 C3 C4 C5

A1 G F L G L
A2 F VG G F G
A3 VG F F G G

Then the complete MCGDM procedure is characterized by the following steps:
Step 1: Aggregated performance ratings.
According to Eq (5.1), the aggregated ratings of three suppliers versus five criteria from three

decision makers are given in Table 4.
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Table 4. The Aggregated Ratings of Suppliers versus The Criteria.

Cq Ap Aggregation ratings
C1 A1

(
[0.5421, 0.6443] e j2π[0.4338,0.4839], [0.4309, 0.5313] e j2π[0.45,0.50], [0.3302, 0.4309] e j2π[0.3659,0.4160]

)
A2

(
[0.4759, 0.5783] e j2π[0.4172,0.4672], [0.4642, 0.5646] e j2π[0.45,0.50], [0.3646, 0.4642] e j2π[0.3826,0.4327]

)
A3

(
[0.6698, 0.7711] e j2π[0.5189,0.5691], [0.2520, 0.3557] e j2π[0.4160,0.4661], [0.1442, 0.2520] e j2π[0.3158,0.3659]

)
C2 A1

(
[0.4, 0.5] e j2π[0.40,0.45], [0.5, 0.6] e j2π[0.45,0.50], [0.4, 0.5] e j2π[0.40,0.45]

)
A2

(
[0.6366, 0.7379] e j2π[0.4856,0.5358], [0.3175, 0.4217] e j2π[0.4327,0.4827], [0.2080, 0.3175] e j2π[0.3325,0.3826]

)
A3

(
[0.5421, 0.6443] e j2π[0.4338,0.4839], [0.4309, 0.5313] e j2π[0.45,0.50], [0.3302, 0.4309] e j2π[0.3659,0.4160]

)
C3 A1

(
[0.3351, 0.4354] e j2π[0.40,0.45], [0.5646, 0.6649] e j2π[0.4827,0.5328], [0.4642, 0.5646] e j2π[0.4327,0.4827]

)
A2

(
[0.6, 0.7] e j2π[0.45,0.50], [0.4, 0.5] e j2π[0.45,0.50], [0.3, 0.4] e j2π[0.35,0.4]

)
A3

(
[0.4759, 0.5783] e j2π[0.4172,0.4672], [0.4642, 0.5646] e j2π[0.45,0.50], [0.3646, 0.4642] e j2π[0.3826,0.4327]

)
C4 A1

(
[0.5421, 0.6443] e j2π[0.4338,0.4839], [0.4309, 0.5313] e j2π[0.45,0.50], [0.3302, 0.4309] e j2π[0.3659,0.4160]

)
A2

(
[0.3684, 0.4687] e j2π[0.40,0.45], [0.5313, 0.6316] e j2π[0.4661,0.5161], [0.4309, 0.5313] e j2π[0.4160,0.4661]

)
A3

(
[0.6366, 0.7379] e j2π[0.4672,0.5173], [0.3175, 0.4217] e j2π[0.4327,0.4827], [0.2080, 0.3175] e j2π[0.3325,0.3826]

)
C5 A1

(
[0.3351, 0.4354] e j2π[0.40,0.45], [0.5646, 0.6649] e j2π[0.4827,0.5328], [0.4642, 0.5646] e j2π[0.4327,0.4827]

)
A2

(
[0.6366, 0.7379] e j2π[0.4856,0.5358], [0.3175, 0.4217] e j2π[0.4327,0.4827], [0.2080, 0.3175] e j2π[0.3325,0.3826]

)
A3

(
[0.4759, 0.5783] e j2π[0.4172,0.4672], [0.4642, 0.5646] e j2π[0.45,0.50], [0.3646, 0.4642] e j2π[0.3826,0.4327]

)

Step 2: Calculating the weighted decision making matrix R =
(
rpq

)
m×n

.
According to the attribute weight w = {0.2, 0.3, 0.25, 0.15, 0.1} and Eq (5.2), the weighted decision

making matrix is obtained and shown in Table 5.

Table 5. The Weighted Decision Making Matrix R.

Cq Ap Aggregation ratings
C1 A1

(
[0.1446, 0.1868] e j2π[0.1075,0.1239], [0.8450, 0.8812] e j2π[0.8524,0.8706], [0.8012, 0.8450] e j2π[0.8178,0.8391]

)
A2

(
[0.1212, 0.1586] e j2π[0.1024,0.1183], [0.8577, 0.8920] e j2π[0.8524,0.8706], [0.8173, 0.8577] e j2π[0.8252,0.8457]

)
A3

(
[0.1988, 0.2554] e j2π[0.1361,0.1550], [0.7591, 0.8132] e j2π[0.8391,0.8584], [0.6789, 0.7591] e j2π[0.7941,0.8178]

)
C2 A1

(
[0.1421, 0.1877] e j2π[0.1421,0.1642], [0.8123, 0.8579] e j2π[0.7870,0.8123], [0.7597, 0.8123] e j2π[0.7597,0.7870]

)
A2

(
[0.2619, 0.3308] e j2π[0.1808,0.2057], [0.7088, 0.7718] e j2π[0.7778,0.8037], [0.6243, 0.7088] e j2π[0.7157,0.7496]

)
A3

(
[0.2089, 0.2666] e j2π[0.1569,0.1800], [0.7768, 0.8272] e j2π[0.7870,0.8123], [0.7172, 0.7768] e j2π[0.7396,0.7686]

)
C3 A1

(
[0.0970, 0.1332] e j2π[0.1199,0.1388], [0.8668, 0.9030] e j2π[0.8335,0.8544], [0.8254, 0.8668] e j2π[0.8110,0.8335]

)
A2

(
[0.2407, 0.2599] e j2π[0.1388,0.1591], [0.7953, 0.8409] e j2π[0.8190,0.8409], [0.7401, 0.7953] e j2π[0.7692,0.7953]

)
A3

(
[0.1491, 0.1942] e j2π[0.1263,0.1456], [0.8254, 0.8668] e j2π[0.8190,0.8409], [0.7764, 0.8254] e j2π[0.7883,0.8110]

)
C4 A1

(
[0.1106, 0.1436] e j2π[0.0818,0.0945], [0.8814, 0.9095] e j2π[0.8871,0.9013], [0.8469, 0.8814] e j2π[0.8600,0.8767]

)
A2

(
[0.0666, 0.0905] e j2π[0.0738,0.0858], [0.9095, 0.9334] e j2π[0.8918,0.9055], [0.8814, 0.9095] e j2π[0.8767,0.8918]

)
A3

(
[0.1409, 0.1820] e j2π[0.0901,0.1035], [0.8419, 0.8785] e j2π[0.8819,0.8965], [0.7901, 0.8419] e j2π[0.8478,0.8658]

)
C5 A1

(
[0.0400, 0.0556] e j2π[0.0498,0.0580], [0.9444, 0.9600] e j2π[0.9298,0.9390], [0.9261, 0.9444] e j2π[0.9196,0.9298]

)
A2

(
[0.0963, 0.1253] e j2π[0.0643,0.0739], [0.8916, 0.9173] e j2π[0.9196,0.9298], [0.8547, 0.8916] e j2π[0.8957,0.9084]

)
A3

(
[0.0626, 0.0827] e j2π[0.0526,0.0610], [0.9261, 0.9444] e j2π[0.9233,0.9390], [0.9037, 0.9261] e j2π[0.9092,0.9196]

)
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Step 4: Determination of the PIS and NIS.
According to Eqs (5.3) and (5.4), we can get the PIS and NIS as following:

R+
1 =

(
[0.1988, 0.2554] e j2π[0.1361,0.1550], [0.7591, 0.8132] e j2π[0.8391,0.8584],

[0.6789, 0.7591] e j2π[0.7941,0.8178]
)

R+
2 =

(
[0.2619, 0.3308] e j2π[0.1808,0.2057], [0.7088, 0.7718] e j2π[0.7778,0.8037],

[0.6243, 0.7088] e j2π[0.7187,0.7496]
)

R+
3 =

(
[0.2407, 0.2599] e j2π[0.1388,0.1591], [0.7593, 0.8409] e j2π[0.8190,0.8409],

[0.7401, 0.7953] e j2π[0.7692,0.7953]
)

R+
4 =

(
[0.1409, 0.1820] e j2π[0.0901,0.1035], [0.8419, 0.8785] e j2π[0.8819,0.8965],

[0.7901, 0.8419] e j2π[0.8478,0.8658]
)

R+
5 =

(
[0.0963, 0.1253] e j2π[0.0643,0.0739], [0.8916, 0.9173] e j2π[0.9196,0.9298],

[0.8547, 0.8916] e j2π[0.8597,0.9084]
)

R−1 =
(
[0.1212, 0.1586] e j2π[0.1024,0.1183], [0.8577, 0.8920] e j2π[0.8524,0.8706],

[0.8173, 0.8577] e j2π[0.8252,0.8457]
)

R−2 =
(
[0.1421, 0.1877] e j2π[0.1421,0.1642], [0.8123, 0.8579] e j2π[0.7870,0.8123],

[0.7597, 0.8123] e j2π[0.7597,0.7870]
)

R−3 =
(
[0.0970, 0.1332] e j2π[0.1199,0.1388], [0.8668, 0.9030] e j2π[0.8335,0.8544],

[0.8254, 0.8668] e j2π[0.8110,0.8335]
)

R−4 =
(
[0.0666, 0.0905] e j2π[0.0738,0.0858], [0.9095, 0.9334] e j2π[0.8918,0.9055],

[0.8814, 0.9095] e j2π[0.8767,0.8918]
)

R−5 =
(
[0.0400, 0.0556] e j2π[0.0498,0.0580], [0.9444, 0.9600] e j2π[0.9298,0.9390],

[0.9261, 0.9444] e j2π[0.9196,0.9298]
)

Step 5: Calculating the distance measures between alternatives and PIS, NIS.
We compute the distance measures by Eqs (5.5) and (5.6) which are shown in Table 6.

Table 6. The Distance Measures by Different Methods.

d+
1 d+

2 d+
3 d−1 d−2 d−3

dHm 0.2484 0.1082 0.0974 0.0331 0.1684 0.1819
dE 0.2972 0.1288 0.1191 0.0406 0.2012 0.2176
dHd 0.4819 0.2014 0.2009 0.0744 0.3297 0.3552

AIMS Mathematics Volume 5, Issue 6, 5700–5715.



5713

Step 6: Computing the closeness coefficients.
According to Eq (5.7), the closeness coefficients are obtained and shown in Table 7.

Table 7. The Closeness Coefficient.

CC1 CC2 CC3 Final Ranking
dHm 0.1176 0.6088 0.6513 A3 > A2 > A1

dE 0.1202 0.6097 0.6463 A3 > A2 > A1

dHd 0.1337 0.6208 0.6387 A3 > A2 > A1

From these results, it is obvious that the ranking of three suppliers is A3 > A2 > A1, and the optimal
supplier is A3.

By comparing with the method proposed in [18], the biggest difference is the criteria weights which
are the interval complex neutrosophic numbers in [18] whereas real numbers in our paper, but one
similarity is that the weights are satisfied that w2 > w3 > w1 > w4 > w5, so the ranking result and
optimal supplier are in the same way which can show our approach is practical and effective.

7. Conclusions

It is obvious that interval complex neutrosophic set is a useful tool for dealing with the uncertain,
inconsistent and incomplete information in periodic data. The aim of this paper is to introduce some
interval complex neutrosophic distance measures and apply them into MCGDM problems. Hence,
based on the Hamming, Euclidean, Hausdorff metrics, we present some distance measures for ICNSs,
and an approach is developed to handle the MCGDM problems. At the beginning of this article, we
briefly introduce some definitions and set theoretic properties of ICNS. Next, in order to obtain the
best alternative(s), we propose an approach based on some distance measures for MCGDM problems.
Finally, we illustrate the application of the proposed method thorough a numerical example. From the
result we can see the practicality and effectiveness of this method.

As further work, we may develop more information measures and techniques for decision-making
problems under interval complex neutrosophic environment and apply them into different fields, such
as venture capital, pattern recognition and comprehensive evaluation.
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